導航:首頁 > 知識科普 > 大學生數學簡便計算方法

大學生數學簡便計算方法

發布時間:2022-05-29 21:00:46

Ⅰ 數學乘法簡便計算方法技巧有哪些

一、結合法

一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。

示例:

計算:19×4×5

19×4×5

=19×(4×5)

=19×20

=380

在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。

二、分解法

一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。

示例:

計算:45×18

48×18

=45×(2×9)

=45×2×9

=90×9

=810

將18分解成2×9的形式,再將括弧去掉,使計算簡便。

三、拆數法

有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。

示例:

計算:99×99+199

(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:

99×99+199

=99×99+99+100

=99×(99+1)+100

=99×100+100

=10000

(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:

99×99+199

=(100-1)×99+(100-1)+100

=(100-1)×(99+1)+100

=(100-1)×100+100

=10000

四、改數法

有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。

示例:

計算:25×5×48

25×5×48

=25×5×4×12

=(25×4)×(5×12)

=100×60

=6000

把48轉化成4×12的形式,使計算簡便。

數學乘法運算定律

整數的乘法運算滿足:交換律,結合律,分配律,消去律。

隨著數學的發展, 運算的對象從整數發展為更一般群。

群中的乘法運算不再要求滿足交換律。 最有名的非交換例子,就是哈密爾頓發現的四元數群。 但是結合律仍然滿足。

1、乘法交換律:ab=ba,註:字母與字母相乘,乘號不用寫,或者可以寫成「·」。

2、乘法結合律:(ab)c=a(bc)

3、乘法分配律:(a+b)c=ac+bc

Ⅱ 數學簡便計算,有哪幾種方法

數學簡便計算方法:

一、運用乘法分配律簡便計算

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

這個方法實際上是運用了乘法分配律,將相同因數提取出來。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

Ⅲ 數學簡便計算怎麼做

Ⅳ 數學中所有簡便運算方法是什麼

利用等差數列求和公式就可以解決(教師重點強調了「項數」的求法)(3)可以把3進行拆分,再分別和9998、998、99和9組合湊整。而對於第二種和第四種類型,絕大部分學生感到有些困難,此時我還是引導學生從算式的特點入手,引導學生分析算式的特點,如(2)這些加數不同但很接近,學生說出了他們思考得出的策略:也可以用湊整法把54中的「4」分出來和47湊整……,藉助學生的思維火花,我又適當的用語言點撥,學生馬上得出了把這些加數都可以看作50,然後比50多的差加上,比50少的差減去。學生又發現了一種簡便演算法,都比較興奮。在(4)的解決過程中,學生立即總結出了算式的特點。也發現了如果把這些數重新排列就得到了這樣的算式:12÷12×(45÷45)×(72÷72)這道題就迎刃而解了。
根據這樣的幾個類型題,讓學生感覺到了觀察、發現算式特點的重要性,要這一基礎上,我送給學生兩個字,那就是「靈活」,我告訴學生,這才是簡便運算的法寶,只有根據題的特點靈活地選擇簡便演算法,你才能解決更多的簡算題。

對於教師來說,教給學生解決多少道題並不是最重要的,重要的是讓學生找到開啟鎖頭的鑰匙,這鑰匙就是一種意識,一種數學思想和方法。

Ⅳ 數學簡便計算的方法

首同尾合十,例如23,27這兩個數就是首同尾合十,在計算時,還拿23,27這兩個數舉例,23×27=10十位上的數×10(十位上的數加1)+兩數個位上的數的積,在這里就是20×30+3×7=621。
尾同首合十,例如46,66這兩個數就是尾同首合十,在計算時,還拿46,66這兩個數舉例,46×66=10(4+1)×(10×6)+6^2=3036

Ⅵ 數學簡便運算題怎麼做

脫式計算2×(18.5-3.15)+6.6÷(0.75-0.2)
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
2×(18.5-3.15)+6.6÷(0.75-0.2)

=2×15.35+6.6÷0.55

=30.7+6.6÷0.55

=30.7+12

=42.7

(6)大學生數學簡便計算方法擴展閱讀{豎式計算-計算過程}:將被除數從高位起的每一位數進行除數運算,每次計算得到的商保留,余數加下一位數進行運算,依此順序將被除數所以位數運算完畢,得到的商按順序組合,余數為最後一次運算結果
解題過程:
步驟一:因為除數不為整數,首先將除數化為整數為55,被除數同時擴大同樣的倍數為:660

步驟二:66÷55=1 余數為:11

步驟三:110÷55=2 余數為:0

根據以上計算步驟組合結果為12

存疑請追問,滿意請採納

Ⅶ 有什麼數學簡便計演算法

二位數乘法速算總匯
1、兩位數的十位相同的,而個位的兩數則是相補的(相加等於10)
如:78×72= 37×33= 56×54= 43×47 = 28×22 46×44
(1)分別取兩個數的第一位,而後一個的要加上一以後,相乘。
(2)兩個數的尾數相乘,(不滿十,十位添作0)
78×72=5616 37×33=1221 56×54= 3024 43×47= 2021
(7+1)×7=56 (3+1)×3=12 (5+1)×5=30 (4+1)×4=20
8×2=16 7×3=21 6×4=24 3×7=21
口決:頭加1,頭乘頭,尾乘尾

2、兩個數的個位相同,十位的兩數則是相補的
如:36×76= 43×63= 53×53= 28×88= 79×39
(1)將兩個數的首位相乘再加上未位數
(2)兩個數的尾數相乘(不滿十,十位添作0)
36×76=2736 43×63=2709
3×7+6=27 4×6+3=27
6×6=36 3×3=9
口決:頭乘頭加尾,尾乘尾

3、兩位數的十位差1,個位的兩數則是相補的。
如:48×52 12×28 39×11 48×32 96×84 75×65
即用較大的因數的十位數的平方,減去它的個位數的平方。
48×52=2496 12×28 = 336 39×11= 819 48×32=1536
2500-4=2496 400-64=336 900-81=819 1600-64=1536
口決:大數頭平方—尾平方

4、一個乘數十位加個位是9,另一個乘數十位和個位是順數
如:36 × 45 = 72 × 67 = 45 × 78 = 81 × 23 = 27 × 89 =
1、解: 3+1=4 4×4=16 5的補數是5
4×5=20 所以 36 × 45 = 1620
2、解: 7+1=8 8×6=48 7的補數是23
8×3=24 所以 72 × 67 = 4824
3、解: 4+1=5 5×7=35 8的補數是2
5×2=10 所以 45 × 78 = 3510

5、10-20的兩位數乘法
如:12×13= 13×15= 14×15= 16×18= 17×19= 19×18=
(1)尾數相乘,寫在個位上(滿十進位)
(2)被乘數加上乘數的尾數
12×13=156 13×15= 195 14×15=210 16×18= 288
2×3=6 3×5=15 4×5=20 6×8=48
12+3=15 13+5=18 14+5=19 16+8=24
口決:尾數相乘,被乘數加上乘數的尾數(滿十進位)

6、任何二位數數乘於11
如:15×11= 16×11= 88×11= 34×11= 59×11= 76×11=
(1)兩數中間拉
(2)十位加個位(滿十進位)
15×11= 165 88×11=968
1、5 兩頭拉 8、8 兩頭拉
1+5=6 十位加個位,寫中間 8+8=16 寫中間(滿十進位)
尾乘尾,十位數加個位數,首乘首

7、99乘任意兩位數
如:99×23= 99×57= 99×34= 99×68= 99×74=
(1)差多少減多少
(2)差多少就寫多少(寫在個位上)
99×23=2277 99×57= 5643 99×34=3366
100-23=77 100-57=43 100-34=66
99-77=22 99-43=56 99-66=33

8、任意兩位數平方
如:23×23= 36×36= 42×42= 56×56= 78×78= 92×92=
(1)尾數的平方,寫在個位上,(滿十進位)
(2)首尾數相乘再擴大兩倍,寫在十位上,(滿十進位)
(3)首數的平方
23×23= 529 36×36= 1296
3×3=9 寫在個位上 6×6=36 寫在個位上,滿十進位
2×3=6×2=12 寫在十位上,滿十進位 3×6=18×2=36 寫在十位上,滿十進位
2×2=4 寫在百位上,加上十位進的進位1為5 3×3=9 寫在百位上,加上十位進的進位
口決:尾數的平方,首數乘尾數擴大2倍,首數的平方

9、大數的平方速算 (90--99)
94× 9 4=8836
(1)94與100相差為6
(2)差數6的平方36寫在個位和十位上
(3)用94減去差數6為88寫在百位和千位上
(4)把計算結果相連即為所求結果

10、十位和個位相反的數
如:32×23= 56×65= 73×37= 85×58= 41×14= 64×46=
(1)取一個數的頭尾相乖,寫在個位上(滿十進位)
(2)頭尾數的平方相加(滿十進位)
(3)頭乘尾
32×23=736 56×65= 3640
3×2=6 寫在個位上 5×6=30 寫在個位上 (滿十進位)
3×3+2×2=13 寫在十位上 5×5+6×6=61 寫在十位 (滿十進位)
3×2=6 寫在百位上 5×6=30 寫在百上
口決:頭乘尾,頭尾平方相加,頭乘尾

11、任意兩位數乘法
3 7
X 6 2
---------
2 2 9 4
(1)尾數相乘7X2=14(滿十進位)
(2)對角相乘3X2=6;7X6=42,兩積相加6+42=48(滿十進位)8+1=9
(3)首數相乘3X6=18加上十位進上的4為18+4=22
(4)把計算結果相連即為所求結果
方法:尾數相乘,對角相乘再相加,首數相乘

Ⅷ 數學簡便計算方法講解


數學簡便計算方法:

一、運用乘法分配律簡便計算

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

這個方法實際上是運用了乘法分配律,將相同因數提取出來。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

Ⅸ 簡便運算的16種運算方法是什麼

一、運用乘法分配律簡便計算

乘法分配律指的是:

例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

(9)大學生數學簡便計算方法擴展閱讀:

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。

乘法結合律

乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。

Ⅹ 數學計算的簡便方方法

數學計算巧算例子解析82×12+12×28
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
82×12+12×28

=(82+28)×12
=110×12
=1320

(10)大學生數學簡便計算方法擴展閱讀~豎式計算-計算結果:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:
步驟一:2×110=220

步驟二:1×110=1100

根據以上計算結果相加為1320

存疑請追問,滿意請採納

閱讀全文

與大學生數學簡便計算方法相關的資料

熱點內容
海螺怎麼處理方法視頻 瀏覽:407
血管堵塞如何疏通方法 瀏覽:741
陽暑解決方法 瀏覽:938
用什麼方法豐胸最好 瀏覽:4
三叉神經疼有什麼方法可以治療呢 瀏覽:133
懷孕流血怎麼處理方法 瀏覽:772
有什麼方法才能脫毛 瀏覽:367
強直性脊柱炎什麼方法最治療最好 瀏覽:897
建模模擬常用方法 瀏覽:885
幫我找個簡單的疊穿方法 瀏覽:739
課程思政是教學方法還是手段 瀏覽:736
花捲製作方法視頻 瀏覽:879
安全帶與手機的連接方法 瀏覽:347
汽車空調膨脹閥檢測和維修方法 瀏覽:812
兒童食用酸棗仁的方法 瀏覽:632
用阿膠塊如何使用製作方法 瀏覽:17
退燒葯的使用方法 瀏覽:502
怎樣矯正兒童駝背鍛煉方法 瀏覽:968
在線煙氣檢測方法 瀏覽:422
熱寶寶使用方法 瀏覽:289