⑴ 小學五年級簡便計算有哪些
五年級簡便計算如下圖:
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
在進行簡便運算(四則運算)時,應注意運算符號(乘除和加減)和大、中、小括弧之間的關連。不要越級運算,以免發生運算錯誤。
簡便計算使用的運算率
1、乘法分配律
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用。
2、乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。
3、乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a。
4、加法交換律
加法交換律用於調換各個數的位置:a+b=b+a。
⑵ 五年級簡便運算的技巧和方法是什麼
簡便運算方法:
1、分配法 括弧里是加或減運算,與另一個數相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540。
2、提取公因式 注意相同因數的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 這里35是相同因數。
3、注意構造,讓算式滿足乘法分配律的條件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500。
簡便計算注意:
1、在同級運算中,可以任意交換數字的位置,但要連著前面的符號一起交換。(加法或乘法交換律)。
2 、在同級運算中,加號或乘號後面可以直接添括弧,去括弧。減號、除號後面添括弧,去括弧,括弧裡面的要變號。(加法或乘法結合律)。
3、湊一法,湊十法,湊百法,湊千法:「前面湊九,末尾湊十」。
⑶ 小學五年級簡便計算方法
在小學數學中,數學的學習,基本內容包含:對數的認識,數的運算,圖形的認識以及運算,還有就是對數的應用,這幾個部分,但是在從1年級到6年級一直學習的一項內容,而且貫穿始終的,那就是簡便運算。
提取公因式
這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數,要注意相同因數的提取。
借來借去法
用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
加法結合律
注意對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
拆分法和乘法分配律
這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的時候,要首先考慮拆分。
利用基準數
在一系列數中找出一個比較折中的數字來代表這一系列的數字,當然要記得這個數字的選取不能偏離這一系列數字太遠。
利用公式法
(1) 加法:
交換律,a+b=b+a,
結合律,(a+b)+c=a+(b+c).
(2) 減法運算性質:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3)乘法(與加法類似):
交換律,a*b=b*a,
結合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.(4) 除法運算性質(與減法類似):
a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前邊的運算定律、性質公式很多是由於去掉或加上括弧而發生變化的。其規律是同級運算中,加號或乘號後面加上或去掉括弧,後面數值的運算符號不變。
減號或除號後面加上或去掉括弧,後面數值的運算符號要改變。
⑷ 如何有效提升小學五年級學生數學簡便運算能力
小學生簡便計算能力的培養
在小學數學教學中,學生計算能力的高低直接影響著教師的教學質量,學生的學習的質量。因此,提高學生的計算能力,也就成了小學數學教學中要研究的重要課題之一。為了有效的提高小學生的計算能力就要採取多種措施和方法。因此簡便計算能力是在學生數感發展,運算能力較強的基礎上形成的,而簡便計算能力的提高又能促進學生數感的發展和計算能力的增強。如何提高學生的簡便計算能力呢?
一、抓口算,培養學生思維的敏捷性。
准確迅速的解題思維活動是思維敏捷性的重要表現。抓口算基本訓練,能提高學生應用法則的能力。口算時應注意兩點:其一,不動筆,動筆計算不利於提高口算能力,亦不利於培養學生思維的敏捷性。其二,計算時要有速度的要求,使學生有一種緊迫感。利用板條進行口算訓練是很好的方法。
二、抓湊整,培養學生思維的靈活性。
思維的靈活性反映了思維活動在選擇角度、運用方法、展開過程諸多方面的靈活程度。主要抓以下幾方面的訓練。(1)湊。就是把數湊成整十、整百等,再進行計算。即用湊整法,多加再減或多減再加。(2)分。就是把運算中的一個數拆開,分別與另一個數運算,便於湊整運算。(3)估。估算能提高學生的自檢能力,提高速算的正確率,有利於培養學生思維的靈活性。估算,一般地把某些數估成與它最接近的整十、整百等,先估結果大約是多少,再精確做答。其次用估算檢驗。
三、勤歸納,培養學生思維的深刻性思維的深刻性。
是指思維活動的抽象程度與邏輯水平。主要抓住以下幾方面訓練。(1)合。根據湊整的特點,把兩個數或兩個以上的數合並,便於口算、心算。(2)轉。轉化運算方法,化繁為簡,促使心算。引導學生總結規律,加深對知識的理解和記憶。(3)變。就是改變運算順序,變型不變值。根據法則定義,改變運算符號和數據,促使學生對知識融會貫通。一是抓逆運算,二是掌握特殊性質,加深對題目的深刻理解,從而培養學生思維的深刻性,提高學生巧算能力。
四、精設題,培養學生思維的獨創性。
思維的獨創性一般表現為多思善想,新穎獨特等特點。主要抓以下幾個技巧進行訓練。
1、略。根據0和1在運算中的特殊性,使計算步驟省略,從而培養學生獨特的創新思維。
2、消。把兩個相對應的數(如+3與 -3)對消,減少運算步驟,培養學生創新思維。
總之,在小學數學教學中,學生的計算能力不是靠一朝一夕能養成的。作為教師,首先自身要對計演算法則、定律等運用自如,指導時才能得心應手,提高效果。同時訓練應持之以恆,三天打漁兩天曬網,是難見成效的。在計算教學中,做到不斷思考,不斷探索,不要單純為了計算而計算,而要把它和目前新課標所倡導的生活實際、情感態度等結合起來,避免計算的單一性、枯燥性。所以只有通過簡便運算,注重學生思維能力的培養訓練,才能有效地提高教學質量,並能促進學生運算技能的提高
⑸ 小學五年級解簡易方程不會做怎麼辦
解簡易方程的方法是
1、四則運演算法則
2、等式基本性質
不會做,只能是對方法的理解程度不夠
多理解算理,多做訓練題即可
⑹ 五年級簡便計算的技巧
常用的簡便演算法有以下幾種
一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
例1
計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
例2
計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
例3
計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
例4
計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
例5
計算:16×25×25
因為4×25=100,而16=4×4,由此可將兩個4分別與兩個25相乘,即原式可轉化為:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
所以,你五年級的話,如果要使用簡便計算進行做題,可以參考上面幾個技巧。
⑺ 小學五年級數學簡便計算方法和技巧方法
五年級數學簡便計算方法過程解析
182×67+67×48
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
182×67+67×48
=(182+48)×67
=230×67
=15410
(7)五年級學生不會簡便方法擴展閱讀[豎式計算-計算結果]:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:
步驟一:7×230=1610
步驟二:6×230=13800
根據以上計算結果相加為15410
存疑請追問,滿意請採納
⑻ 五年級的簡便方法。
簡便運算一般有5種方法:
1. 湊整法:通過加、減一個數將其湊成整十、整百、整千的數。
2. 交置法:也就是通常所說的結合律,幾個數相加、相減,將其位置交換一下,湊成整十、整百、整千的數。
3. 去括弧法:有時在計算含有括弧的算式時,通過去除括弧,可使運算簡便,但要注意的是去括弧後的符號變化。
4、運用運算定律
加法交換律:a+b=b+a
加法結合律: a+b+c=a+(b+c)
乘法交換律:a×b=b×a
乘法結合律:a×b×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
5、減法性質: a-b-c=a-c-b=a-(b+c)
除法性質:a÷b÷c=a÷c÷b=a÷(b×c)
A、當一個計算題只有同一級運算(只有乘除或只有加減)又沒有括弧時,我們可以隨意「帶符號搬家」
12.06+5.07+2.94 30.34+9.76-10.34
25×7×4 34÷4÷1.7
102×7.3÷5.1 41.06-19.72-20.28
7.2+2.2×1.2 2.6÷1.3+8.7
B、當同級運算需加括弧或去括弧時,即加或去括弧時,括弧前是加或乘號,可以直接加或去括弧,而括弧前是減或除號,括弧里要變號。
700÷14÷5 18.6÷2.5÷0.4
1.06×2.5×4 5.68+(5.39+4.32)
19.68-(2.97+9.68) 1.25×(8÷0.5)
0.25×(4×1.2) 1.25×(213×0.8)
乘法分配律的兩種典型類型
A、括弧里是加或減運算,與另一個數相乘,注意分配。
0.4×(0.25+2.5) (12+1.2) ×0.2 (40-1.25)×0.8
B、注意相同因數的提取。
0.92×1.41+0.92×8.59 7.8×9.9+9.9×2.2
1.3×11.6-1.6×1.3 11.9×9.9+1.19×1
⑼ 我兒子五年級了 怎麼教解方程都不會 有什麼簡便計算方法嗎
一個蘋果x=5
三個蘋果3x=15
4個蘋果20元,每個蘋果多少錢?
設一個蘋果x元
4x=20
x=20÷4
x=5
答:灬
⑽ 小學五年級簡便運算是怎麼樣的
1、25+89+75
=25+75+89
=100+89
=189
2、25×177×4 125×(80+8)
=25×4×177 =125×80+125×8
=100×177 =10000+1000
=17700 =11000
3、1/1x2-1/2x3-1/3x4-1/4x5-1/5x6-1/6x7-1/7x8
=1-1/2-(1/2-1/3)-(1/3-1/4)-(1/4-1/5)-(1/5-1/6)-(1/6-1/7)-(1/7-1/8)
=1-1/2-1/2+1/3-1/3+1/4-1/4+1/5-1/5+1/6-1/6+1/7-1/7+1/8
=1/8
簡便計算定律:
1、乘法交換律乘法交換律用於調換各個數的位置:a×b=b×a4、減法的性質:一個數連續減去幾個數等於一個數減去這幾個數的和。
字母表示:a-b-b= a-(b+c)。
2、除法的性質:一個數連續除以幾個數(0除外)等於一個數除以這幾個數的積。
字母表示:a÷b÷c= a÷(b×c)。
3、商不變的規律概念:被除數和除數同時乘上或除以相同的數(0除外)它們的商不變。
字母公式:a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)。