1. 小學數學解決問題教學的創新方法有哪些
新課標明確指出小學生通過學習要具有初步的創新精神和實踐能力,並在情感態度和一般能力方面都得到充分發展;在解決問題方面要形成解決問題的一些基本策略,體驗解決問題策略的多樣性,發展實踐能力與創新精神。因此,在教學中我們要結合學生的年齡特徵和認知規律,有意識的激發學生的創新意識,不斷總結教學實踐中的經驗,得出培養學生創新意識的途徑和措施。始終堅持以學生為主體的教學原則,努力提高學生的創新思維能力,提高學生的素質。下面就結合多年的一線教學談談我的做法:
一、營造民主氣氛,激發創新熱情
融洽的師生關系昀能激發學生的求知慾和創新意識,學生思維與表達有差異,教師要給予思維慢的學生有更多思考的空間,允許表達不清晰不流暢的學生有重復和改過的時間,更重要的是允許學生有失誤和糾正失誤的機會。一時語塞或思維相左,立即請他坐下,便是扼殺了學生的自尊心和自信心,使學生不敢想,不敢說。我們要盡力做到待人至誠,與學生平等相處,師生關系和諧,讓學生和教師交談感到心理安全、心理自由,即使回答問題有錯誤,也能得到教師的指點和鼓勵。在學生敘述自己發現的問題、思考的過程、得出的結論時,教師決不能插嘴打斷或表示出不耐煩的情緒。教師變「威嚴」為「朋友」,首先應確立教學服務於學生成長的觀念。學生到處可見教師燦爛的笑容,親切的笑臉,到處可聽到教師的肯定與表揚,便能時刻使學生處在平等、民主、寬容的教學環境中,確保他們擁有自由支配的時間和主動探究的心態,常常品嘗到成功的喜悅,從而使他們產生創新的慾望,勇於創新,善於創新。創新慾望是學生們天生的,他們對什麼都充滿了好奇心與幻想,因此應為學生創設情境,激發他們的創新熱情,使他們善於創新。
二、深挖教材中創新元素,豐富想像,培養創新意識
真正的教學就是為了「不教」,通過教學活動我們主要不是把現有的知識教給學生,而是把學習方法教給學生,學生就可以受用一生。為了培養面向新世紀的高素質人才,我們不僅要教給學生的學習方法,還要使這些方法轉化為學習能力、思維能力和創新能力,也就是要讓學生從小學會學習。注重知識傳授,重視綜合能力的培養,特別是在運用知識的過程中進行再創造能力的培養。因此,我們要在課堂教學中著重教給學生方法。想像是創新的第一步,任何創造性活動都離不開想像。想像越豐富,創新能力就越強。想像是通過對過去經驗和已有記憶表象的加工改造,構成新意象或觀念的心理過程。想像可以幫助學生沖破現有知識的局限,引導往廣處想、往新處想,培養學生的創新能力。如:概念教學,學生除提出為什麼這樣表述外,想像增加或刪改一些字詞,將會產生什麼樣的情形。這樣學生就可能利用一種發散思維產生合理的想像。
教材中的很多例題和故事本身就是培養學生創造性思維的好素材,教師要充分利用教材,引導學生學會正確思維,敢於大膽創新。例如:應用題:在花園里,要把
10棵月季平均種成 9行,每行有 3棵,該怎麼種?學生知道,每行 3棵, 9行就是需要 27棵,可現在只有 10棵花,缺
16棵,怎麼種?這個超乎常規的問題一下子吸引了學生的注意。這時老師要把握機會,因勢利導,激發他們的求知慾和創造欲。老師可出示以下問題:①5棵花種成
2行,每行有 3棵,怎麼種? ②7棵花種成 3行,每行 3棵,怎麼種?③ 6棵花種成 3行,每行
3棵,怎麼種?讓學生利用學具動手操作,引導他們發現「公共花」的作用,掌握一棵花有時可作為二棵花甚至三棵花的不同排法,使上述思考題昀終得以解決,學生的創新意識也就等到了培養。
三、手腦並用,增強創新體驗
手腦並用是提高創新意識的有效方法。學生的實際動手能力是衡量人才的重要重要指標,是從小學會學習、學會生活的重要內容。在教學中,可以引導學生利用實際操作這項活動來幫助學生掌握知識,具有創造性、開拓性。符合國家關於活動課開設的目的和意義。有利於數學教學的輔助過程,有利於創新能力的培養。在教學活動中,教師要注重提供各種機會讓學生參與活動,使學生在參與過程中掌握方法,促進思維的發展。教學中,經常設置一些懸念性的問題,鼓勵學生探索,喚起學生創新意識,改變教師的主體。學生的創新潛能得到挖掘,逐步形成創新能力。
四、優化教學模式,深化創新意識培養
傳統意義上教學的幾個重要的環節一般是:導入新課—新授—鞏固練習—布置作業。經過多年的改進,形式雖然有變化,但實質卻沒有什麼改動。其實,課堂不必套用這個模式,對小學來說,一本正經的像對成人那樣傳授知識,未免太呆板了些。活動教學、游戲教學、發現教學、探究教學、數學建模教學、競賽教學,根據不同的教學內容,都是可以採取的。比如:導入這一環節,完全可以用昀新的教學詞彙—創設情境來表示和演繹,情境是教師和學生共同面對的,它必然會起到導入的作用,但更重要的是面對著一個問題,藉以引起學生的興趣,激發學生的求知慾望,培養尋求解決問題的不同方法的意識。再比如:新授這一環節,完全可以改成探索與討論,而鞏固環節可以換成實踐與反思等等,這些改變並不是換換詞語那樣簡單,更重要的是教學觀念的改變與教學方式的更新,通過這些改變增強學生的主動性,從而更好的提高學生創新意識。
總之,激發小學生的創新意識不是一蹴而就的事,這需要我們在整個教學活動中認真研究和探索,徹底改變傳統的教學觀念,注意學生創新意識的激發與創新能力的發展,整體構建有利於激發學生創新思維的教學過程,從而全面提高學生創新意識的發展。
2. 三年級下冊數學解決問題的方法
1.一個果園里栽了125棵蘋果樹,梨樹的棵數比蘋果樹的4倍少20棵.這個果園一共栽了多少棵樹?
2.一段路長324米,已經修了240米,剩下的計劃4小時修完.平均每小時修多少米?
3.紅光印刷廠裝訂一批日記本,前三天共裝訂了960本,後16天平均每天裝訂420本.這批日記本共有多少本?
4.一個打字員4分鍾輸入200個漢字.照這樣計算,輸入3000個漢字需要多少分鍾?
5.3袋麵粉共重75千克,8袋麵粉重多少千克?
6.一個鋼鐵廠,煉750千克鋼需要用5噸水.照這樣計算,鋼鐵廠一天節約55噸生活用水,可以煉鋼多少千克?
7.5箱蜜蜂一年可以釀375千克蜂蜜.照這樣計算,19箱蜜蜂一年可以釀多少千克蜂蜜?一年要釀1725千克蜂蜜需要養多少箱蜜蜂?
8.兩個年級的同學去買書,三年級有48人,每人買2本,四年級每人買3本,四年級買的總本數和三年級一樣多.四年級一共有多少人買書?
9.工人們修馬路,原計劃用40個工人,實際用了45個工人.計劃要修路90天,實際修了多少天?
10.小華從學校步行回家要20分,騎自行車回家要10分.小華步行每分走45米,他騎自行車每分行多少米?
11.學校買15盒彩色粉筆,每盒50枝,用去10盒.還剩多少枝沒有用?
12.海天機械廠第一,二,三車間各生產了6箱零件,每箱120個,一共生產零件多少個?
13.一台織布機一小時織布21米,5小時4台同樣的織布機共織布多少米?
14.汽車從南京開往上海,每小時行60千米,3小時行了全程的一半.因車上一人生病,剩下的路程要2小時行完.平均每小時要行多少千米?
15.劉師傅23天共加工4255個零件,王師傅平均每天比劉師傅多加工18個.王師傅每天加工零件多少個?
16.李伯伯家的一頭牛,10天吃草50千克.照這樣計算,有155千克草夠這頭牛吃多少天?
17.湖濱公園有18條遊船,每天收入1008元.照這樣計算,現在有26條遊船,每天增加收入多少元?
18.工廠要加工360個零件,小王5天可做完,用這樣的速度,做8天能加工多少個零件?
19.明明看一本故事書,每天看20頁,5天看了這本書的一半.這本書一共有多少頁?
20.老師買來6枝鋼筆,鋼筆的價錢是圓珠筆的3倍,一枝圓珠筆的價錢是2元.老師買鋼筆用了多少元?
21.農機廠一車間分3個組加工3420個零件,每組12個工人.平均每個工人加工多少個零件?(用兩種方法解)
22.工廠租用10輛汽車運480噸貨,每輛汽車都運了12次.平均每輛車每次運貨多少噸?
23.啄木鳥一天能吃645隻害蟲,青蛙8天能吃608隻害蟲.啄木鳥每天比青蛙多吃害蟲多少只?
24.一堆煤160噸,4輛卡車3次運96噸.照這樣計算,4輛卡車幾次才能運完這堆煤?
25.工程隊鋪一條路,計劃每天鋪90米,20天可以鋪完.實際只用了18天,平均每天鋪多少米?
26.強強8歲時,他父親32歲.當父親的年齡是強強的2倍時,父親多少歲?
27.某校三年級有4個班,共為殘疾人捐款576元,平均每人捐3元,平均每班有多少人?
28.修一段長324米的路,前8小時共修了240米,剩下的每小時修21米,還要幾小時才能修完?
29.訂一份電視節目報半年需要15元,張叔叔想訂閱三個季度的電視節目報,需要多少錢?有線電視收視維護每月16元,全年要多少錢?
30.一堆煤,計劃每天燒45千克,可以燒32天,由於節省用煤,實際燒了36天,實際每天燒煤多少千克?
3. 如何解好小學數學應用題
應用題教學是小學數學教學的重要組成部分,他是培養學生綜合運用所學知識分析問題、解決問題的能力,是發展學生數學思維的最重要途徑.。因此,在教學中必須突出多讀、多思。讓學生在多讀,多思中發現問題、探索問題、掌握規律,提高解答應用題的能力。
下面我談談孩子們應該如何讀題?
(一)運用直觀媒體,理解應用題的題意,從當前教學中反映的問題來看,應注意讀題和直觀媒體緊密結合,依題解題,讀題要加強。不能一字一字地讀,也不要只讀一遍。要讀出停頓。如按標點符號停頓;按句子成分停頓;按內容的邏輯停頓。可多讀幾遍,在讀的過程中使用直觀媒體,幫助學生理解題內容,操作時可把一句句話和媒體正確對應,讀時可以圍繞難點,重點詞語,勾畫內容之間的聯系。 (二) 讀題後的思考
第一,思已知 就是讓學生在感知已知條件的基礎上,展開思維,「你聯想到了什麼?」它是學生讀懂題意,找到已知條件與問題聯系的途徑之一。例如:一個圓柱的側面展開是一個正方形,它的邊長是18.84厘米,這個圓柱的底面半徑是多少厘米?學生在讀完「一個圓柱的側面展開是一個正方形」時,就會聯想到它的底面周長等於高,也就是底面周長和高都等於這個正方形的邊長,從而實現了已知條件與問題的緊密聯系,有助於問題的解決。
第二,思問題 就是根據問題,展開思維,找到問題與已知條件的聯系。它是培養學生分析問題能力的有效方法之一。在教學中,我們可以從問題入手分析,學生根據自己已有的數量關系和生活經驗,找到要解決這個問題需要知道哪兩個條件,如果兩個條件都是未知的,下一步該怎麼做?這樣一步一步地分析,就能找到要求的問題。例如:甲乙兩車分別從相距420千米兩地同時出發,相向而行,經過6小時相遇,已知甲車每小時行40千米,乙車每小時行多少千米?要求乙車的速度,需要知道甲乙兩車的速度和與甲車的速度(或需要知道乙車行的路程和所行時間)。速度和是未知的,甲車的速度是已知的,因此要先求出速度和;而要求速度和?就要知道總路程和相遇時間,這兩者都是已知的,問題就解決了。 (三) 解題後在思考
第一,思多解 思多解不僅可以鍛煉學生的發散性思維,創新思維,而且可以培養學生綜合運用數學知識解決問題的能力。在教學中,不少的應用題客觀上存在著多種解法,我們應啟發學生一題多思,一題多解,在多解中比較各種解法的優點和缺點,選擇最佳解法。從而達到提高學生解題能力,培養學生良好思維品質的目的。
第二,思變通 應用題是千變萬化的,多練只會苦了學生,累了自己,精練才會事半功倍。「一題多變」就是精練的好方法之一,它不僅可以開闊學生的眼界,拓展學生的思維,提高學生的應變能力,而且可以防止學生思維的定勢。教師在設計作業時,將某一應用題的已知條件或問題變一變,讓學生對比練習,提高遷移能力。
第三,思規律 解題後,要啟發學生思考解題思路,不但要學生知道該怎麼做,而且還要知道為什麼這樣做,認真總結規律,以達到舉一反三的目的,這樣有利於強化知識的理解和運用,提高學生解答應用題的能力。
如何教好小學數學應用題
應用題的教學是小學數學教學中的一個難點,解答應用題的過程,其實就是分析、推導、綜合數量關系,由已知求出未知的過程。應用題的解答不僅要綜合運用小學數學中的概念、性質、意義、法則、公式等基礎知識,還要具有分析、判斷、推理、綜合等思維能力。所以,應用題教學不但可以鞏固知識,而且有利於培養學生初步的邏輯思維能力。那麼,如何進行應用題教學呢?為此,筆者經過不斷探索與實踐,精心設計了應用題七環教學法,收到了可觀的教學效果。
應用題七環教學法是在心理學理論和《數學課程標准》的指導下,根據應用題的特點,從應用題生活化的角度,針對應用題在小學中的地位,對應用題給師生帶來的困惑進行不斷的探索與研究得出的。它以學生為主體,以加強思維訓練、發展學生思維為重點,著眼於提高學生靈活解決實際問題的能力。其基本環節是:導→讀→思→說→記→找→研。現分述導
導,即導入新課,是老師有機連接各個環節的橋梁。其目的是為學生探究新知識指明方向,激發學生學習的積極性,把學生的注意力集中於新知識上,使學生全身心地投入學習。導的水平如何,將直接影響教學的成敗。因此,對這一環節的教學,教師千萬不可小覷,要引起高度的重視,不僅要讓導的內容與新知識緊密聯系在一起,使其有利於學生進行遷移類推,而且要密切聯系學生實際和現實生活,使學生感到既容易學,又有趣;
既有用,又有價值。為此,教學中,教師要注意導的方式,或者從學生的實際生活進行啟發,或者充分使用學具、教具進行設疑,或者運用課件,充分發揮多媒體的優勢吸引學生,或者環環相扣,以舊引新。總之,不論運用什麼方式,只要能達到導的目的,導得自然,一般來說,都是可取而有效的導入方式。 2、讀
讀,指讀題目,是應用題教學的重要環節,是學生自己感知信息數據的過程。讀,看起來是非常簡單的事,其實,要把應用題讀通、讀透,還是比較困難的。有的學生之所以做錯,其實主要原因之一就是由於讀題時走馬觀花,沒有讀懂。「書讀百遍,其義自見。」應用題也不例外。甚至可以這么說:「與其讓學生抄題目,不如讓學生多讀題目。」這當中的道理,就像讓學生抄不認識的字一樣,不論抄多少遍,學生還是同樣不認識、不理解。
讀,要講究一定的方式。在小學,大多數的學生讀題時都不注意停頓,語感非常差,使得數學意識低下,因而理解不透題意。教學中教師要給學生以讀的指導:可以朗讀,可以默讀;可以個人讀,也可以分組讀;還可以全班齊讀,形式不拘一格。此外,還要注意讀的語速。通常情況下,語速以稍慢為佳,以能准確感知信息數據及問題為標准。因此 ,讀的時候一定要全面、仔細,既不加字也不減字,對於較深的題目,甚至要咬文嚼字。這樣不僅能提高學生的數學意識,而且也使學生的感知能力得到了培養,同時也提高了學生捕捉信息數據的能力,為學生理解題意奠定了初步的基石。 3、思
思,指學生讀題後,思考題目中的已知條件和問題該如何表述,該把哪個量看作單位「1」,如何用線段圖描述題目,題目中有什麼樣的數量關系,可以用什麼方法來解答等,是培養學生思維能力的中心環節。學生思得如何,主要是看教師是否根據學生的經歷和思維水平,合理而充分利用可用的教學資源,使學生思維現實化。只要是上數學的老師,都很清楚地知道,一些學生,尤其是學困生,在掌握數學知識時,往往感到困難重重,其中重要的原因就是他們在解題過程中缺乏思維活動的自覺性與周密性。因此,教學中教師要加強引導,切實做好學生的引導者,設法調動學生的大腦器官。不但要留給學生充分思考的餘地,使學生主動而積極地產生遐想,引發思維的火花,而且要關注每一個學生的思維活動,為學生提供獨立思考的機會,對學生負責。切忌以教師的說講來代替學生的思,力求「實現不同的人在數學上都得到不同程度的發展」。
4、說
說,指學生用語言對自己的思考進行表達,屬於口頭動腦,是對題目的再理解,是最積極的思維表現。「人的思維,尤其是抽象思維,與言語密不可分。」「言語使思維更凝縮。」「語言是思維的工具,人們利用它進行各種思維活動。」可見,語言能促進思維的發展。說也是教師了解學生思維水平的重要手段。教師評價學生愛動腦筋,勤於思考,智商高等,主要就是從學生平時說的積極性這一角度來進行評價的。所以在教學過程中,教師要重視說的訓練,尤其是學困生,更應該激發他們說的慾望,使他們不僅僅是想說,而且是要說;給他們一個說的舞台,讓他們充分表現自己,體驗到成功的快樂。因此,說的時候應盡可能採用個人說的方式進行,以便更好地了解學生。此外,還要要重視說的依據,也就是根據什麼來說的。只有把依據弄得一清二楚,學生才能明白應用題是如何體現基礎知識點的,才能判斷自己思的結果是否正確。這樣不僅能讓學生更好地掌握和運用基礎知識,加深對應用題的理解,學會思的方法,而且能使學生正確認識自己,建立自信。 5、記
記,指將學生說的內容簡單明了地寫下來。就條件和問題來說,記的實質是對原題進行刪節、組裝、製作的過程,是對原題的一種精加工。就整個這一環節來說,記的目的是變復雜為簡單,加深記憶,強化理解,以便於學生觀察、分析和綜合運用。常言道:好記性不如爛筆頭。學生通過「讀」「思」「說」的訓練後,得到的材料往往是零亂的,因而運用時常常丟三落四。在現實生活中,應用題也並非要像書上那樣詳細地寫出來,而只需要進行簡單地記載即可。記,還是學生概括能力的表現之一。通過觀察記的內容是否完整簡潔,可以看出學生提練語言的水平。因此,教師有必要培養學生記的能力,尤其是較復雜的應用題,記就更有必要了。記,最好在草稿本上進行,當然,如果覺得有必要,也可以在作業本上進行,但一定要注意題目中具有隱蔽性的那種條件,記的時候應當把預設部分寫出來。
例如:「一個兒童體內所含的水分有28千克,占體重的4/5。這個兒童的體重是多少千克?」在這道題中,「占體重的4/5」是一個預設條件,應該把預設的部分「水分」補出來,記為「水分佔體重的4/5」只有這樣,才能為學生掃清第一道障礙。 6、找
找,指學生根據已知條件和問題,找出題目的突破口和單位「1」等,進而找出題目中
的數量關系(等量關系),屬於分析的過程。
突破口一般是一個比較難理解的句子,是學生理解題的攔路虎,通常是帶比、分數或幾倍等的語句。教師應當設法使學生找出這種句子進行理解。單位「1」是用來衡量的量,一般是緊接分數或幾倍前的那個量;有比時,通常是相比的幾個合起來的總量;或者就是題目中的總路程、總工作量等。總的說來,和誰進行比較,誰就是單位「1」。單位「1」是學生解答應用題的基礎之一。學生是否找准單位「1」,常常影響解題的對錯。因此,教學中,教師要要引導學生弄清用來比較的量,教給學生識別比較量的方法,以便找出單位「1」的量。值得注意的是有的題目中存在著兩個甚至三個單位「1」,解題時要注意單位「1」的統一。數量關系是應用題的靈魂,是學生解答應用題的前提和根本,也是學生解答應用題最大的困難。數學教學不僅要使學生了解人類關於數學方面的文化遺產,學到一定的數學知識,還要使學生學會用知識來認識事物,解決實際問題。因此,教師不僅要使學生能獲取數學基礎知識,而且要重視培養學生的數學意識和從具體題目中找數量關系的能力。只有找到正確無誤的數量關系,才能根據數量關系進行正確的解答。
找數量關系的方法有三種: ①對已知條件和問題逐一找; ②對已知條件和問題綜合找;
③明確單位「1」,畫線段圖找。畫線段圖時,一般是先任意畫一條線段來表示單位「1」的量,然後確定應該分的段數……單位「1」的量畫好了,再畫其他的量。
例如:「一條褲子的價格是75元,是一件上衣的2/3。一件上衣多少元?」在這道題中,「是一件上衣的2/3」是一個預設條件,是題目的突破口,應注意理解;應該把「上衣」看作單位「1」。學生這樣理解後,自然能找出「褲子單價=上衣單價×2/3」這一數量關系,或者畫出下面的線段圖,找出數量關系。 7、研
研,指學生根據信息數據,利用找到的基本數量關系及某一條件或問題,研究出其他的數量關系,也就是從不同的角度進行思考,靈活運用後學知識,嘗試多種多樣化的解題方法,是解題思維的拓展,能培養學生思維的靈活性。其具體做法可以是利用加減乘除各部分間的關系對數量關系進行變式,也可以是對題目中能進行轉換說法的條件(多數是
帶幾倍分數或比的條件)進行換說法,也就是運用多種方法表達所學知識,)3找出新的數量關系進行解答。
例如:「一個農場計劃在100公頃的地里播種大豆和玉米。播種面積的比是3:2。兩種作物各播種多少公頃?」本題中有一個明顯的數量關系:「大豆面積 玉米面積 = 100 」利用加法各部分間的關系,可以得到兩個數量關系:「大豆面積 = 100 - 玉米面積」和「玉米面積 = 100 - 大豆面積」。題目中的關鍵句是「播種面積的比是3:2」,也是一個預設條件,補完整就是「大豆面積與玉米面積的比是3:2,即,大豆面積:玉米面積=3:2 。對這一條件進行換說訓練,又可以得到以下說法和理解: ①玉米面積:大豆面積 = 2:3
②大豆面積是玉米面積的3/2(豆=玉×3/2;玉為單位「1」) ③玉米面積是大豆面積的2/3(玉=豆×2/3;豆為單位「1」)
④大豆面積比玉米面積多1/2〈 豆=玉 玉×1/2;豆=玉×(1 1/2);玉為單位「1」 〉 ⑤玉米面積比大豆面積少1/3 玉=豆-豆×1/3;玉 = 豆×(1-1/3);豆為單位「1」 ⑥大豆面積3份,玉米面積2份,共5份。
又如:「一張課桌比一把椅子貴10元,如椅子的單價是課桌的3/5。課桌、椅子各是多少元?」本題中的「 椅子的單價是課桌的3/5」這一條件也可以理解為「椅子單價:課桌單價=3:5」這樣又可以像上一例一樣進行探究,從而找出多種多樣的數量關系,這樣不僅加深了理解,豐富了解法,更有助於發展學生的思維。
總之,研究出的數量關系越多,「腦野」越開闊,思路越清析,解題方法越豐富靈活。因此,教學中教師不能僅僅滿足於得出正確的結果,而要進行必要的研究。只有這樣才能使學生能靈活運用不同的方法解決問題,做到活學活用,也只有這樣才能滿足於優秀學生的求知慾,使其在數學上得到更好的發展。
以上七個環節,並非是孤立的,每一環節都可能會有其他環節的相隨或參與。《數學課程標准》指出:學生是學習的主人,教師是數學教學的組織者,引導者與合作者。因此,在七環教學法中,教師要把握好自己的角色。提高學生解應用題的能力,是一個長期而復雜的過程,不能一蹴而就。教師要轉變思想觀念、教學方式和學習方式,經常以思為中心,讓說貫穿始終,充分調動學生感觀,使學生的腦、眼、口、手齊頭並進,勇於讓學生以合作交流等方式去主動探究。只有這樣,才能培養學生思維,拓寬解題思路。學生遇到應用題時,才能迎刃而解。
如何做好小學數學應用題教學
我們大家都知道,小學階段的學習是人的終身教育的起始站,學習數學不應僅僅是為了獲取有限的知識和技能。我們的教學更要注重讓學生學習自行獲取數學知識的方法,學習主動參與本領,獲得終身受用的可持續學習的發展性學力,即讓學生學會學習,為他們將來走向社會和終身學習打下基楚,由此,「以學生的發展為本」應是我們課堂教學的出發點和歸宿。
通過實踐教學獲得的經驗,我認為應用題難學的學生佔63%,很多學生家長也認為輔導子女學習應用題比較困難。存在這種現象的原因:一是題材內容不符合當地的實際情況,往往有些題型的內容在我們農村孩子從來都沒有見過或接觸過,也就是說現在教材中的應用題有許多內容脫離學生的實際生活,這就增加了學生對題目的理解缺乏興趣,缺少與其學科的聯系與溝通,從而影響到對其他學科的學習,教師只有普遍採用一問一答的講解;二是教學目標注重解題技能、解題技巧的訓練,忽視應用意識、應用能力及創新意識、創新精神的培養;。三是解法不活,解題思路不夠開闊,學生僅僅是模仿解題,沒有選擇的權利,沒有思考想像的機會,更沒有主動探究、創新思維的時間與空間。影響學生靈活運用知識。導致學生對應用題理解困難。四是應用題的呈現方式主要以城市為主,把農村的教育忽略,缺乏與農村知識的溝通,導致學生學得不明不白。教學模式單一,多為一例一練,應用性不強,學生學的時候好像明明白白,用的時候無從下手。因此,應用題的教學應該從上面這幾個問題去思考。從而增強應用題的應用味,提高學生解決實際問題的能力,提高應用題教學的效果。
如何使應用題更應生活化呢?我認為教師應該讓學生喜歡充滿樂趣的生活中的數學問題,所以有必要對教材中應用題的選材,作一下改編。例如教學相差關系的應用題時,老師提供給學生幾條信息:蘋果有20筐,梨子有12筐,蘋果比梨子多8筐。應該把「筐」改為「顆」或「個」就把學生帶入了身邊的情境中,讓學生感受到了數學就在身邊,使應用題有了「應用味」。?此外,應用題應具有多樣性和靈活性。多樣的、靈活的呈現應用題,能讓學生全面參與教學的過程,教師跟著學生的思路走,適時予以點撥,充分體現了學生學習的主體性。才能更有效的解決問題,既擴大農村孩子的眼界,又擴展孩子的知識面。這樣就能使得教育教學質量得到更好的提高。
如何教學應用題
小學三年級應用題是整數應用題的總結。在這一階段把整數應用題中的一般應用題和典型應用題作了一個全面的匯總。所以小學三年級應用題的教學是一個非常重要的階段,涉及一般應用題到典型應用題,從一步應用題到幾步應用題,這就要求學生掌握從普遍到特殊,從簡單到復雜的解答方法,也要求教師要幫助學生不斷地歸納、綜合,讓學生從已學習到的解題方法中找出規律,把握特點。
在小學三年級數學整數應用題的教學中,應注意抓住解答應用題的一般方法,教會學生解答應用題的切入點。我們知道解答一般思考應用題的方法是:問題〈--〉已知。解答過程是:1、讀題,2、分析,3、解答,[列式],4、檢查。而在教學實踐中,我覺得最難的是要教會學生把這個程有機的結合。於是,我就提出一些要求,讓學生知道解題過程中各個環節中應達到的目的,使學生有的放矢。例如在教學:「三年級一班栽樹40棵,二班栽的比一班多5棵。兩個班一共栽樹多少棵?」
這道應用題時,我就提出一系列的問題要學生思考:這道題說的什麼事?有幾個班栽樹?拿個班栽得多?「一共」是什麼意思?求「一共」用什麼方法?這一串問題使學生在思考的過程中把解題的方法也有機的結合起來。教會了學生怎樣去發現問題,提出問題,解決問題。也就教會了學生在不知不覺中運用從問題〈---〉已知的一般的解題方法。
小學三年級應用題中還涉及到許多典型應用題。如:路程除以速度=時間,總產量除以工效=工作時間,總產量除以單產量=數量,總價除以數量=單價。之所以把它們叫做典型應用題,是因為這類應用題有著極強的規律性。雖然這類應用題也可以用解答一般應用題的方法來解答,但如果學生把握到它的規律性,用它特有的典型關系式來分析、解答就會更加簡便。例如:商店有12箱水瓶,每箱5個,每個10元。著些水瓶一共可以賣多少元?(這道題是求總價,關系式是:總價=單價乘以數量)
這樣根據數量關系式就能輕松的解決這道題。當然一般典型應用題都不是一步的簡單應用題,這就要求學生要熟練地、准確地應用各種關系式子。在教學中教師要准確的定義關系式子中的一些慨念。如:「速度」,「單價」,「工效」等等。並列舉生活中有關慨念的例子,讓學生判斷、理解,逐步掌握、運用,以利於學生更好的解決典型應用題。
以上是我的一管之見,在大力實施素質教育的今天,學生素質的提高,有賴於教師素質的提高。希望我們不斷的研究教材,探索教法提高自身的素質,從而更好的貫徹素質教育。
如何教小學生解應用題
在小學數學的學習中,應用題的占的比率很大。而在現實生活中,我們也可以利用所學到的應用題來解決實際的問題。例如,費用的支出和收入、盈虧問題,行程問題,工程問題等等。因此,可以說應用題是生活的需要,無所不有,無處不在。其實應用題的學習是對小學生進行思維訓練,培養小學生的數學邏輯思維能力,提高其數學素質。因此,應用題教學是小學數學教學中的一個重點。
我認為應用題的教授一定要加強其思維的訓練,語言的訓練,這樣才能提高學生靈活解決實際問題的能力。所以我總結了以下幾個步驟:讀——劃——思——解,現分述如下,希望可以幫助學生更好的學習應用題。
1:讀
應用題是用語言表述的一類題型,對語言的理解能力要求非常高。因此,讀題便成為解應用題的一個重要環節是學生自己感知信息數據的過程。讀看起來很簡單,但數學應用題的讀並非泛泛而讀,它要求講究一定的方式,數學中的讀不講究抑揚頓挫、優美動聽,但需要用心、用腦、集中注意的讀,一般來講要讀三遍:第一遍初讀,對題目有初步印象;第二遍應逐字逐句的讀,重點理解每個詞、術語的實際含義;第三遍連貫起來讀,重點掌握題目的已知條件和所求問題。
例:星火煤廠上半年原計劃產煤6.6萬噸,實際每月比原計劃多產2.2萬噸,照這樣計算,完成上半年計劃需用幾個月?
在讀這個題目時需要通過大腦反映弄清四個問題: (1)這道題敘述的是哪個單位的什麼事?
(2)題目第一個條件是什麼?「上半年」和「原計劃」又是什麼? (3)題目第二個條件是什麼?關鍵詞是什麼?誰和誰比?比什麼?比的結果怎樣?
(4)問題是什麼?「照這樣計算」是什麼意思?
劃。顧名思義就是把什麼圈出來。這一步對小學生而言是無論如何都不能省略的,它是在讀完題後進行的,是在讀的基礎上進一步明確題意,抓住重點的關鍵。例如:在教《分數加減法》時,經常會遇到這樣的題目,一塊地公頃,其中種大豆, 種棉花,其餘種玉米,玉米的種植面積占這塊地的幾分之幾?
這道題主要是讓你區別給你的分數是分率還是一個數。這個時候我就要求學生必須把有單位名稱的數字圈出來,這樣可以提醒自己,數和分率是不同的,不可以進行加減法。同時劃出「幾分之幾」明白的告訴學生求的是一個分率,和 公頃無關。劃是一個很好的習慣,可以提醒學生在今後的思考中注意一些細小的地方,以免出現不該有的錯誤。
思:
學生讀題後,獲取了一知和問題後,接下來就是在大腦中對這些信息進行加工,也就是思。一般來說,思有兩種思考方法:
(1)順著思考,即由已知——結論,從已知中獲取信息,一步步推出過程量,慢慢靠近所求結果:
例果園里有4行蘋果樹,每行18棵,還有2行梨樹,每行12棵,蘋果樹是梨樹的幾倍?
解:我們可以用圖把思考過程表示如下(順推) 已知
4行蘋果樹 2行梨樹 每行18棵每行12棵 蘋果樹總數 梨樹總數 蘋果樹是梨樹的幾倍?
(2)倒推法,即從問題入手——想要解決這個問題需要知道些什麼條件,這些條件是題目中的已知的,還是未知量,要知道這個未知量又需要什麼條件,需要什麼樣的數量關系來解決,直到在題目中找到已知:
同上例:執果溯因(倒推圖解) 問題: 蘋果樹是梨樹的幾倍? 蘋果樹有多少棵? 梨樹有多少棵? 4行蘋果樹 2行梨樹 每行18棵每行12棵
已知
綜上,思考應用題是培養學生思維能力的中心環節。因此,教學中教師要加強引導,切實做好學生的引導者,設法調動學生的大腦器官。要留給學生充分思考的餘地,為學生提供一個獨立思考的機會。
解,指的是學生的解答。或許學生認為這一部分他們是最會的。其實要把一道應用題完整的寫下來,讓老師給你滿分。同樣需要錘煉。學生需要把剛才思考的過程用數字的形式表示出來。在解應用題時,題目中沒有出現過的數學是不可以出現在題目中的,即使是顯而易見的數字也需要你進行一定的說明。這是數學的嚴謹性。所寫的式子,要讓別人看了也完全明白你的思路,這樣才是一個漂亮的式子。應用題寫的時候要注意:如果是方程,學生的解設就是不可或缺的。所列的方程未知數後面並不需要有單位名稱。但如果是一般的式子,單位名稱則需要寫上去。當然求比率、分率等是沒有單位名稱的。最後是寫上完整的答句。其實要完成一道應用題,每一個部分都不可以忽略。所以更需要學生通過前面的認真讀、仔細劃,努力想才能最終完整的寫完。
其實,要完成一道應用題,每一個部分都是不可忽略的,而做到以上步驟的前提是掌握基礎知識和各種基本用演算法則,這就需要教師在平時的教學中不斷訓練和督導,每講完一道題後,引導學生進行反思:對該類型題進行再分析、進一步解剖題干、挖掘其等量關系,並進一步總結;例如:「相遇問題」,題後思考總結:1、什麼樣的題目表述的是相遇問題?2、這類問題的等量關系是什麼?3、拿到這樣的題目該怎樣列式計算?4、它與「追及問題」有什麼異同等等?
總之,學生的思路越清析,解題方法也就越豐富靈活。因此,教學中教師不能僅僅滿足於得出正確的結果,而要進行必要的研究。只有這樣才能使學生能靈活運用不同的方法解決問題,做到活學活用,也只有這樣才能滿足於學生的求知慾,使其在數學上得到更好的發展。
4. 小學三年級數學解決問題的策略有哪些
列舉 畫圖
5. 分析小學數學解決問題的方法有哪些
教師應根據教學的實際,讓學生把所學知識和周圍的生活環境相聯系,幫助他們在形成知識、技能的同時,感受數學應用范圍的廣泛。 2.收集應用事例,加深學生對數學應用的理解與體會 隨著科學技術的飛速發展,數學的發展涉及的領域越來越廣泛。數字化的家電系列,宇航工程、臨床醫學、市場的調查與預測、氣象學……無處不體現數學的廣泛應用。讓學生搜集這些信息,既可以幫助學生了解數學的發展,體會數學的價值,激發學生學好數學的勇氣與信心,更可以幫助學生領悟數學知識的應用過程。例如:在統計的初步認識教學中,學生搜集了自家幾個月用水的情況,通過收集、描述、分析數據(人口的多少、老人和孩子等諸多因素)的過程,得出了自家用水是否合理的判斷,並做出今後用水情況的決策。既滲透了環保教育,又使學生感受到數學知識的應用。 3.引導學生從日常生活中尋找數學問題: 羅傑斯認為:「倘若要使學生全身心地投入學習活動,那就必須讓學生面對他們個人有意義的或有關的問題。但我們的教育正在力圖把學生與生活所有的現實隔絕開來,這種隔絕對意義學習構成一種障礙。然而我們希望讓學生成為一個自由的和負責的個體的話,就得讓他們直接面對各種現實問題。」 日常生活中有大量的數學問題,結合數學內容選擇一些簡單的問題加以分析、解決,這對從小培養學生的數學應用意識和數學觀念尤為重要,同時也促進學生進一步理解所學的內容。 如在三年級學生認識長方形的周長之後,我是這樣做的:讓三四個學生為一組,量一量教室內門框、窗框、鏡框等長方形的長與寬,
並設計一下做這些物品需多少材料。最好再給每種不同的材料標上單價,讓他們計算一下,選擇怎樣的材料,用什麼方案,可以既經濟實惠,又滿足需要。 4.指導學生從數學內部尋找數學問題: 數學內部充滿著各種問題,雖然通過前人的多年努力,已經解決了很多問題,但是學生學習作為再次創造的過程,仍有一個不斷探究、解決新問題的過程。在數學內部,學生接觸最多的問題是解答習題,而解答習題是解決問題的一種特殊形式。教師可以從問題的角度出發,指導學生對問題正確加以理解,明確已知的條件和要達到的目標,作出合理的假設,尋求通向目標的可能途徑,確定最優的解決方案。要使學生從中養成習慣,形成技能,並遷移到其他方面,使他們擁有問題解決的意識,提高思維水平。 例如:計算12345+23456.這是一道多位數的加法,學生計算後,教師可以改變題目的形式,出題「CROSS+ROADS=DANGER,已知O=2,S=3,求其他字母各代表幾(不同的字母代表不同的數字)」。這顯然為學生創設了一個問題解決的情景。因為解答用字母來表示兩個加數的加法,對他們來說是一個沒有遇到過的問題,而且解此題時學生不僅要具有加法知識,還須具備假設和推理能力。 5.引導學生聯系生活實際解決數學問題: 小學生經過課堂學習能夠解決一些簡單的實際問題,但是這些實際問題已經經過數學處理,各種條件與問題都比較明顯,然而實際生活中的問題並非如此容易,因此要多聯系生活實際,從學生遇到的疑惑、矛盾入手,引出新知識的實際問題或情境。
6. 小學數學三年級怎樣傳授解決問題的策略
化抽象為形式,讓學生體會問題產生的過程,身臨其境。