① 污泥中重金屬怎麼處理
污泥重金屬的處理
污泥重金屬的危害不僅與其含量有關,還與其存在形態密切相關。相應地的處理方式也有兩種,一種是將污泥中的重金屬固定或者隱定,另一種方式是將重金屬從污泥中去除。對前者來說,重金屬仍存在於污泥或其衍生物中,但由易溶、有毒、不穩定的狀態變為低溶或不溶、無毒、穩定的狀態,即通過減少重金屬不穩定態的含量、降低重金屬的活性和生物有效性使污泥達到無害化;後者則通過減少污泥中重金屬的總量來處理污泥。
1 污泥重金屬的穩定
污泥重金屬的穩定一般是向其中加入鈍化劑,提高污泥的pH值,使重金屬轉化成氫氧化物等沉澱,達到鈍化重金屬並殺死病原菌的效果。曹仲宏等研究了添加劑對填埋污泥重金屬穩定的影響,實驗結果表明生石灰、粉煤灰和黏土三種添加劑均有利於Cr和Cd向穩定形態轉化,其中粉煤灰對Cr向穩定態轉化的促進作用最明顯,而黏土對Cd的穩定作用最強;生石灰能促進Pb和Zn的穩定,而粉煤灰和黏土則有相反的作用;粉煤灰對Ni有促進作用,生石灰和黏土則反之。由此可知,加入添加劑後污泥重金屬的形態發生變化,當向穩定態轉化時即起到了固定重金屬的作用;不同添加劑對同一金屬的穩定效果不同,即使是同種添加劑對不同金屬的穩定作用也不一樣,有時甚至會起相反的作用,因此在實際中應綜合考慮各種重金屬後選擇適宜大多數重金屬穩定的添加劑。
Gan等學者將近年來發展的微波法應用於污泥重金屬的穩定,之後一些學者研究了微波在添加劑的作用下對重金屬的穩定效果。Chen等研究了微波在不同添加劑作用下對重金屬銅的穩定作用,表明鐵粉比其它添加劑如碳酸鈉、硅酸鈉等在促進銅離子的穩定方面效果更顯著,能將銅離子的濃度從179.4mg/L降低到6.5mg/L。Hsieh等則深入探索了微波處理重金屬的影響因素,認為適當的提高微波功率,延長反應時間,在加熱過程中通入惰性氣體N2等方法均能促進金屬銅的固定。微波法固定污泥中的重金屬是微波輻射通過破壁、堆積、包埋、固定、成孔過程將重金屬有效的閉塞在固定的孔穴實現的。已有文獻關於微波法對重金屬銅固定的研究較多,對於其它重金屬的固定效果研究較少,並且微波法目前還局限於室內試驗,對於實際大批量污泥的處理仍存在很多問題。
2 污泥重金屬的去除
2.1吸附法
吸附法是利用具有特殊結構或化學成分的物質來分離去除重金屬的方法。Kosobucki等探索了經濟有效且易獲得的地質材料天然沸石對污泥重金屬進行研究,表明添加2%的斜發沸石,經5h震盪後,粒徑為0.7-1.0mm的沸石吸附重金屬的效果最好。沸石礦物具有開礦的硅氧格架,在晶體內部形成很多孔徑均勻的孔道和內表面很大的空穴,因而對重金屬離子有很強的吸附性。此外,一些微生物具有的獨特細胞壁結構和成分使其也具有吸附能力。一般認為,微生物吸附主要是生物體細胞壁表面的一些具有金屬結合、配位能力的基團如羥基、羥基等通過與吸附的重金屬離子形成離子鍵或共價健來達到去除重金屬離子的目的。Brinza等發現藻類可以吸附一種或多種重金屬離子;Klimmek等研究了30種藻類對Pb、Cd、Ni和Zn的吸附作用,其中藍藻對4種金屬的吸附量最高。Romera等對37種藻類生物吸附重金屬的情況進行了比較,認為紅藻、綠藻和褐藻3大藻中,褐藻的吸附容量較高。這些藻類具有較強的吸附能力可能是由於細胞壁外有一層黏性物質,這類物質因含有糖醛酸而具有很大的結合金屬離子的能力。由此可知利用藻類對污泥重金屬進行吸附可以同時實現多種金屬的吸附且吸附量大,藻類吸附劑還具有成本低、選擇性好等優點,因而具有較為廣闊的發展前景。
2.2化學淋濾法
化學淋濾法處理污泥中的重金屬通常是採用硫酸、鹽酸或硝酸等將污泥的酸度降低,通過溶解作用,使難溶態的金屬化合物形成可溶解的金屬離子;或者用EDTA、檸檬酸等絡合劑通過離子交換作用、酸化作用,鰲合劑和表面活性劑的絡合作用,將其中的重金屬分離出來,達到減少污泥重金屬總量的目的。Stylianou等研究了酸處理對雅典市政污水污泥重金屬去除的影響,結果表明當反應溫度為80℃,濃度為20%的硫酸與污泥作用30min後對污泥重金屬的去除效果最明顯,其中Ni、Cu、Cr和Zn的去除率高達70%以上,對Pb的去除效果不是很明顯。無機酸處理雖然對大部分金屬去除效果較好但其環境危害性大,為此黃翠紅等[25]對有機酸檸檬酸去除化工廠污泥中的鎘、鉛進行研究,發現當pH值在3左右,檸檬酸濃度0.2mol/L,搖床轉速200r/min,反應時間1d時,污泥中鎘、鉛的最大去除率分別為91.5%和96.5%,且用此法去除其它污泥中的重金屬鎳、銅也取得了很好的效果。與無機酸有所不同,有機酸檸檬酸能高效的去除重金屬是由檸檬酸的酸性和陰離子的絡合特性共同發揮作用的結果;同時檸檬酸易於生物降解,對環境污染較小。一些學者還認為:僅用酸來降低污泥的pH值不利於重金屬硫化物向可溶態離子形式轉化,當污泥的氧化還原電位Eh值升高時,金屬硫化物才能被氧化成硫酸鹽溶解出來。為此,Yoshizaki等採用8%的磷酸和H2O2的室溫下處理污餅,水力停留時間1h的處理效果即可與1mol/L的鹽酸相當,在H2O2存在的情況Cu很容易從污泥中去除,大部分磷酸可以循環利用。由於加入H2O2提高了污泥的氧化還原電位,因而重金屬的瀝濾效果得到了進一步的提高。
2.3電動修復法
電動技術最初於20世紀80年代應用在土壤重金屬的去除中,在城市污泥重金屬去除中的應用剛起步。電動修復法的去除效率與重金屬的形態有關,Akertche等的研究表明污泥中重金屬的形態是影響重金屬遷移和電動修復效果的重要因素。kin等通過現場實驗得出了類似的結論,表明電動過程對可交換態重金屬的去除率可達92.5%,而有機態和殘渣態重金屬的去除率分別為34.2%和19.8%。一些學者嘗試將酸化後的污泥進行電動修復試驗,Wang等的研究表明經酸化後污泥中的重金屬去除率顯著提高,其中Zn、Cu和Ni的去除率高達90%以上,Cr的去除率達68%,As的去除率達31%,經電動修復技術處理後重金屬Zn,Cu,Ni,Cr和Pb的濃度均達到了美國環境保護部關於污泥農用的限制標准。袁華山等研究了經HNO3酸化後脫水污泥在電動力作用下,Cd、Zn和Cu的去除率都有明顯的提高,分別比未酸化的污泥去除率增加11%、9%和6%。電動修復技術作為一門新型的綠色環保修復技術,去除效率高,特別是對酸化污泥效果更好,能同時去除幾種重金屬,從技術層面是可行的;但對於更深層次的遷移特性及運行成本等問題仍有待進一步研究。
2.4生物淋濾法
生物淋濾技術是利用自然界的微生物通過直接作用或其他代謝產物的間接作用,產生氧化、還原、絡合或溶解作用,將固相中的某些不溶性成分如重金屬分離浸提出來的一種技術,其中應用最廣泛的是氧化亞鐵硫桿菌與氧化硫硫桿菌。
Wong等研究了在FeS2作用下,利用厭氧消化污泥分離出的嗜酸氧化亞鐵硫桿菌能使污泥中Zn的去除率達99%,Cr為65%,Cu為74%,Pb為58%,Ni為84%,效果極為顯著。也有一些學者嘗試將其它菌種用於生物濾淋中,Mulligan等從尾礦中分離出黑麴黴,其處理的最大溶出率Cu為68%,Zn為46%,Ni為34%。生物濾淋法去除污泥中重金屬的效率取決於微生物的活性和重金屬的種類與形態,因此實際應用此法時,不僅要控制好溫度、pH值、Eh值、生物的種類與濃度,還應考慮污泥的種類、濃度和重金屬種類等因素的影響,要取得顯著的處理效果,應綜合考慮多種因素並嚴格控制其工藝條件。
② 污泥處理常用哪些技術與方法
污泥處理和處置需要根據污泥情況的不同分別處理。當前主要的處置方法,有焚燒、填埋、土地利用、建材利用等。而處理方式主要包括好氧發酵、厭氧消化、干化脫水等。現在主推技術路線是厭氧消化+土地利用。
③ 土壤中的硫化物如何分析
一般土壤中的硫都是以硫酸鹽、硫化鐵以及有機硫的形式存在的。其分析方法都是將硫通過各種酸處理後與鋇鹽結合形成硫酸鋇,再用重量法計算硫的含量。具體的分析方法可以參照(煤中各形態硫的分析方法,國標)
④ 城市污水中有機物的檢測與去除方法
由於污水中污染物成份復雜,有機物有成千上萬種,一般不進行特定有機物的檢測,進行已知有機污染物的檢測除外。
一般通過用COD和BOD檢測來表明有機污染的程度,用的儀器除常規玻璃儀器外,有電爐和迴流裝置,進行BOD測定還要生化培養箱。
去除的方法有物理的——沉澱和過濾;化學的——絮凝沉澱;生物化學的——活性污泥法。
⑤ 如何判斷污泥樣品中是否含有硫化物
生化處理的原理其實很簡單的了. 除去硫化物的一般都是曝氣池裡面的細菌,或者是氧化池裡面的細菌,這些都是菌種培養優勝劣汰剩下來的適應菌,也說不明白是那一種但是一般的適應菌也有他的一個負荷的,要是s來的波你高度過大了會直接導致其休眠或者死亡,而且其他的菌種一般也會死亡的,
⑥ 硫化氫國標檢測方法
銀
廢棄物中可釋出硫化氫檢測方法 (NIEA R406.21C)
方法概要空氣中硫化氫、甲硫醇、二硫化碳、硫化甲基、及二硫化甲基以定流量采氣泵抽引流經填充含 Tenax &ndash TA 吸附劑之吸附管中捕集,再以熱脫附方式導入氣相層析-火焰光度偵測器(GC- FPD)系統,測定樣品中氣態硫化氫、甲硫醇、二硫化碳、硫化甲基、及二硫化甲基之含量;本方法亦可以采樣袋間接採集空氣樣品,再以冷凍(凝)捕集濃縮脫附方式後導入GC - FPD 系統分析。二、適用范圍本方法適用於分析大氣及周界中的硫化氫(Hydrogen-sulfide)、甲硫醇(Methanethiol)、二硫化碳(Carbon disulfide)、硫化甲基(Dimethyl sulfide﹐DMS)、及二硫化甲基(Dimethyl disulfide﹐DMDS)等五種硫化物,本方法的參考偵測極限如表一。三、干擾(一)甲硫醇在空氣中部分會轉換成二硫化甲基。(二)干擾也可能來自成分復雜的空氣樣品,以致造成層析圖中波峰的部分重疊,必要時須以氣相層析-質譜儀(GC / MS)進行確認工作。(三)吸附管、熱脫附裝置及冷凍(凝)捕集濃縮脫附裝置皆須為去活化材質,以避免樣品吸附干擾檢測結果。(四)本方法在測定硫化氫回收率時,如回收率不佳,則應檢查吸附管是否有穿透現象發生。如經分析有穿透之現象時,則該管不可用以定量,可調整采樣泵流速或采樣時間或增加吸附劑量或在 Tenax &ndash TA 吸附劑的後段接上適量的 5A 分子篩(Molecular - Sieve 5A)改善之。(五)抽取采樣袋中的空氣樣品時,應先用吹風機微微吹熱(約 40 至 50 ℃)采樣袋,以去除可能的吸附。四、設備(一)采樣及熱脫附冷凍(凝)捕集裝置1.含 Tenax - TA吸附管系先經矽烷處理之玻璃綿(Silanetreated glasswool)填塞於吸附管的底部,並以乾填的方式填充約 0.09g(一般為60/80 mesh者)之Tenax - TA吸附劑,最後再填充玻璃綿於吸附劑的上、下端,長度一般為 10 cm﹐可耐溫度 300 ℃ 以上之玻璃管。註:Tenax &ndash TA 填充量可視樣品濃度大小加以調整。2.空氣采樣袋Tedlar 材質,體積有 3 L 和 5 L 者。3.定流量空氣采樣泵泵流量可於 3 mL / min 到 5 L / min 之間調整,其前需加裝去除粒狀物過濾設備。4.熱脫附裝置槽可將吸附管樣品加熱脫附後,以電子冷卻或液氮冷凍捕集後再加熱脫附之進樣系統。5.冷凍(凝)捕集裝置可將采樣袋樣品以液氮冷凍或電子冷卻捕集後再加熱脫附之進樣系統。6.微量注射器:經體積校正合格之 10.0 &muL、50.0 &muL。(二)氣相層析設備與層析條件1.具有火焰光度偵測器(偵測波長 394 nm)之氣相層析儀。。2.層析管柱:如 GS / Q 管柱(或 PoraplotQ)或其他同級品者,參考規格為 30 m * 0.53 mmI.D.﹐3.0 &mum。3.層析管參考升溫條件:起始溫度100 ℃(維持 1 min),升溫速率 8 ℃ / min,最終溫度 220 ℃(維持 30 min)。4. 注入部參考溫度 200 ℃。5.載流氣體:氦氣,參考流量 7 mL / min。6.輔助氣體:氮氣,參考流量 45 mL / min。(三)排煙櫃具有機廢氣處理設備者。五、試劑(注 1)(一)硫化物標准氣體硫化氫:濃度約 0.1 ppm甲硫醇:濃度約 0.1 ppm二硫化碳:濃度約 0.1 ppm硫化甲基:濃度約 0.1 ppm二硫化甲基:濃度約 0.5 ppm(或約 0.1ppm)。上述標准氣體濃度可依實際需求調整,均須具可追溯至國家或國際標准者。(二)硫化物儲備標准溶液:甲硫醇、二硫化碳、硫化甲基、及二硫化甲基,分析試葯級,純度 99.9 % 以上。(三)硫化物標准溶液稀釋溶劑:苯,分析試葯級,純度 99.9 % 以上。(四)吸附劑:先經乙醇純化處理(注 2)或 230 ℃ 以上熱烘烤處理之 Tenax - TA,一般為 60 / 80 mesh 之粒徑者。(五)冷凍捕集劑:液態氮。(六)載流氣體:純度為 99.999 % 以上之氦氣。六、采樣及保存(一)采樣可攜帶幾支 Tenax - TA 吸附管或 Tedlar 采樣袋至特定采樣點,采樣點個數與采樣頻率視實際需要而定。每一采樣點同時以 2 支吸附管或 1 個Tedlar 采樣袋進行采樣。吸附管采樣流量設定於 200 mL / min 左右,采樣時間約為 8 min,每支吸附管共採集約 1.5 L 的空氣樣品。吸附管經采樣後迅速冰存,送回實驗室進行分析,並記錄采樣時之溫度及氣壓。采樣袋裝置在一個具氣密性之硬殼容器中,樣品氣體可經由容器抽真空時裝填進入采樣袋,流量設定為 0.5 L / min,每個采樣袋採集約 3 L 的空氣樣品。(二)樣品保存吸附管樣品應貯存於 4 ℃ 以下冰箱中,貯存期限不得超過 7 天。采樣袋樣品則可置於常溫中,惟應避免日照,貯存期限不得超過 24 小時。七、步驟(一)熱脫附及冷凍(凝)捕集吸附管樣品由熱脫附裝置進行熱脫附及濃縮程序後導入氣相層析儀進樣分析,一般熱脫附溫度約為 200 ℃。采樣袋樣品則經冷凍(凝)捕集濃縮程序後導入氣相層析儀進樣分析。(二)檢量線制備1.在配製硫化物標准溶液時,每一反應瓶均應經攪拌,以使濃度均勻。2.將硫化物標准溶液汽化或以氮氣將硫化物標准氣體稀釋配製成 3 種以上不同濃度(最低濃度約 10 ppb)氣體,進行采樣與分析,建立氣體濃度與波峰面積之對數關系曲線圖。如以吸附管方式捕集標准氣體則采氣流量及體積應與七、(一)樣品采樣規定一致。
⑦ 在傳統活性污泥法中解決污泥膨脹的有效方法有哪些
活性污泥法的關鍵技術是活性污泥沉降性能的好壞,它直接影響了出水水質,而污泥膨脹是惡化處理水質的重要原因。
1 污泥膨脹的概念及測定指標
1.1 污泥膨脹的概念
活性污泥是活性污泥處理系統在運行過程中出現的異常情況之一,其表觀現象是活性污泥絮凝體的結構與正常絮凝體相比要鬆散一些,體積膨脹,含水率上升,不利於污泥底物對污水中營養物質的吸收降解,並且影響後續工序的沉澱效果。
一般從以下三個方面定義污泥膨脹:沉降性能差,區域沉降速度小;污泥鬆散,不密實,污泥指數較大;由絲狀菌引起的污泥膨脹中,絲狀菌總長度大於1×104 m/g。
1.2 污泥膨脹的理論
Chudoba在1973年提出了選擇性理論,該理論以微生物生長動力學為基礎,根據不同種類微生物的最大生長速率μmax及其飽和常數Ks值的不同,分析絲狀菌與菌膠團細菌的競爭情況。該理論認為活性污泥中存在A、B兩種類型微生物種群,絲狀菌屬於A型;具有低的 Ks和μmax值,在低基質濃度時具有高的生長速率並占優勢;而菌膠團細菌屬於B 型,具有較高的Ks和μmax值,在高的基質濃度條件下生長速率大並占優勢。1980年Plam又對理論加以擴展,認為該理論對溶解氧也成立,即DO與碳源基質一樣,其濃度的高低影響著兩種類型細菌的生長速率及其優勢地位。
選擇性理論能從微生物生長動力學基礎上對污泥膨脹現象給予了合理的解釋,已被人們廣泛接受並成為污泥膨脹研究領域中主要理論。在該理論的指導下,已成功地開發出了選擇性反應器工藝來控制污泥膨脹。
1.3 測定指標
污泥沉降比:取活性污泥反應器中的混合液靜置30 min後所形成的沉澱污泥的容積占原混合液容積的百分比。正常的活性污泥靜置沉澱30 min後,一般可接近其最大密度,反映出二沉池中活性污泥的濃縮情況。
污泥容積指數:曝氣池出口處的混合液,在經過30 min靜沉後,每克干污泥所形成的沉澱污泥所佔有的容積。可表示活性污泥中菌膠團結合水率的高低。
污泥成層沉降速度:混合液靜置一段時間後,形成清晰的泥水分界線,此後進入成層沉澱階段,分界線勻速下降的速度即為污泥成層沉降速度。
絲狀菌長度:活性污泥單位體積內絲狀菌的長度,該指標用來表示絲狀菌含量。
2 污泥膨脹的類型
污泥膨脹分絲狀菌膨脹和非絲狀菌膨脹兩類。其中90%是由絲狀菌引起的,只有10%左右是由非絲狀菌引起的。活性污泥系統中的生物處於動態平衡之中,理想的絮凝體沉澱性能好,絲狀菌和菌膠團細菌之間相互競爭,相互依存,絮體中存在的絲狀菌有利於保護絮體已經形成的結構並能增加其強度。但是在污泥膨脹誘因的誘發下,絲狀菌在和菌膠團的競爭中占優,大量的絲狀菌伸出絮凝體,破壞其穩定性。
可辨識的污泥膨脹絮體有兩種類型:第一類是長絲狀菌從絮體中伸出,此類絲狀菌將各個絮體連接,形成絲狀菌和絮體網;第二類具有更開放的結構,細菌沿絲狀菌凝聚,形成細長的絮體。
3 污泥膨脹的原因
3.1 絲狀菌污泥膨脹的原因
3.1.1 進水水質
(1)原水中營養物質含量不足。活性污泥法處理污(廢)水的過程,就是污泥中的微生物種群不斷地吸收、利用水中污染物,在自身增殖的同時,將污染物加以降解的過程。隨反應的進行需要多種營養物質保證其正常的新陳代謝活動,並維持生物的動態平衡和活動。若微生物的食物不足,會使低營養型微生物絲硫細菌、貝氏硫細菌過度繁殖,在與菌膠團細菌的競爭中占優。
(2)原水中碳水化合物和可溶性物質含量高。絲狀菌與其它菌種相比有其自身的一些特點,它對高分子物質的水解能力弱,較難吸收不溶性物質。所以,當廢水中含有較多量的可溶性有機物時,有利於底物中絲狀菌的繁殖。此外,廢水中含過多量的糖類碳水化合物時,諸如球衣菌屬的絲狀菌能直接將葡萄糖、乳糖等糖類物質作為能源加以吸收利用,同時分泌出高粘性物質覆蓋在菌膠團細菌表面,從而大大提高了污泥的水結合率。
(3)硫化物含量高。正常的活性污泥中硫代謝絲狀菌含量不多,若污水中硫化物含量偏高(這種情況多存在於工業廢水中),容易引起諸如硫化菌、021N型菌、貝氏硫化菌等硫代謝絲狀菌的過量增殖,致使引發污泥膨脹。
(4)進水波動。進水波動是指進入活性污泥反應器的原水在流量以及有機物濃度、種類方面的改變。如果曝氣池中有機物濃度突然增加,就會因微生物呼吸迅速致使溶解氧含量降低,此時絲狀菌在爭奪氧中占優,大量繁殖,引起污泥膨脹。
3.1.2 反應器環境
(1)溫度。反應器底物中每種細菌都有自己的最適宜生長溫度,在最適宜生長溫度下,其繁殖旺盛,競爭力強。如果溫度較低,污水中微生物代謝速度較慢,會積貯起大量高粘性的多糖類物質,使活性污泥的表面附著水大大增加,SVI值增高,從而可能會引起污泥膨脹。溫度對絲狀菌的影響也是很普遍的,絲狀菌膨脹對溫度具有敏感性,在其它條件等同的情況下,10℃時產生嚴重的污泥膨脹現象;將反應器溫度提高到22℃,不再產生污泥膨脹。這也是大多數活性污泥在冬季時會產生污泥膨脹或者污泥膨脹更加嚴重的原因之一。
(2)溶解氧。溶解氧作為構成活性污泥混合液三要素(氣、水、泥)之一,是許多生物降解反應的必要條件。菌膠團細菌和浮游球衣菌等絲狀菌對溶解氧需要量差別比較大,菌膠團細菌是好氧菌,而絕大多數絲狀菌是適應性強的微好氧菌。因此,若溶解氧含量不足,菌膠團菌的生長受到抑制,而絲狀菌仍能正常利用有機物,在競爭中占優。
(3)pH值。pH值較低,會導致絲狀真菌的繁殖而引起污泥膨脹。活性污泥微生物最適宜的pH值范圍是6.5~8.5;pH值低於6.5時利於真菌生長繁殖;pH值低至4.5時,真菌將完全占優,活性污泥絮體遭到破壞,所處理的水質惡化[9]。
(4)BOD-污泥負荷。BOD污泥負荷是設計活性污泥反應池和控制其運行的重要指標。
3.2 非絲狀菌污泥膨脹的原因
對於非絲狀菌膨脹的研究較少,一般認為非絲狀菌膨脹是由於絮凝體生理活動的異常而發生的。
3.2.1 進水中含有毒物質
由於進水中含有較多的有毒物質,導致細菌中毒不能分泌出足夠的粘性物質,難以形成絮體,或即使形成絮體,但結構鬆散,沉降性能不好。
3.2.2 營養物質缺乏或不平衡
進水中營養物質缺乏或不平衡,除引發絲狀菌膨脹外,還會導致非絲狀菌污泥膨脹。由於進水中含有大量的溶解性有機物,使污泥負荷太高,而進水中又缺乏足夠的 N、P或溶解氧不足,細菌很快把大量有機物吸入體內,又不能及時代謝分解,向外分泌過多的糖類物質,這類物質中所含的羥基具有很強的親水性,可以使活性污泥結合水率高達400%,呈粘性的凝膠狀
4 絲狀菌引起污泥膨脹的控制方法
4.1 投加葯劑法控制污泥膨脹
污泥膨脹的早期控制方法主要是靠外加葯劑(如消毒劑)直接殺死絲狀菌或投加無機或有機混凝劑增加污泥絮體的密度來改善污泥絮體的沉降性能。目前此類方法仍運用於某些污水處理廠。
4.1.1 投加氧化劑
(1)投加Cl2或漂白粉。控制污泥膨脹採用的傳統氧化劑是Cl2。Jenkins等人的研究表明,具有氧化能力的Cl2、HOCl和次氯酸根滲入細胞後,能破壞菌體內的酶系統,導致細胞死亡。絕大程度上說的絲狀菌都可通過加氯氣加以控制。一般投加在迴流污泥中,加氯點的 Cl2、濃度應控制在小於35 mg/L,加氯量最適宜控制在10~20 mg/L·d,投加量過大反而會殺死菌膠團菌,造成絮體解體。當SVI值逐漸降低、膨脹不斷緩解時,應逐漸減少投葯量。
(2)投加H2O2。雙氧水在控制污泥絲狀菌膨脹中的應用也相當廣泛。Keller等人的研究發現,控制絲狀菌的最少投量是0.1 g/kg·d(H2O2/MLSS)時,將會破壞脫磷作用,投加一段時間後(大概10天)脫磷作用會慢慢恢復。H2O2的毒性對脫氮作用只有少量的影響,在檢測中沒有發現氨、氮和硝酸鹽氮有明顯變化。
(3)投加O3。投加臭氧也可以控制絲狀菌引起的污泥膨脹,臭氧還能有效地改善硝化作用和提高難降解有機物的去除率,臭氧的投加量在4 g/kg·d(H2O2/MLSS)左右,一般投加在好氧區。
4.1.2 投加凝聚劑
投加合成的有機聚合物、鐵鹽、鋁鹽等混凝劑均可以通過其凝聚作用來提高污泥的壓密性增加污泥的比重;投加高嶺土、碳酸鈣、氫氧化鈣等也可以通過提高污泥的壓密性來改善污泥的沉降性能。實踐證明,不設初沉池的污水廠,其SVI值都比較低,所以設有初沉池的污水廠發生污泥膨脹時,將部分污水直接送到曝氣池也是一種控制污泥膨脹的方法。
當污泥膨脹發生時,採用上述方法能較快地降低SVI值,但是沒有從根本上控制住絲狀菌的繁殖。一旦停止加葯,污泥膨脹可能又會出現。加葯改變了微生物的生長環境,無疑會對污水處理廠的穩定運行產生負面影響,因此只能作為臨時應急只用。
4.2 改善環境法控制污泥膨脹
通過對污泥膨脹機理不斷深入的研究和對絲狀菌作用的進一步了解,對於污泥膨脹的控制方法也隨之由簡單的投葯等方法發展到應用生態學的原理調節處理工藝運行條件及反應器環境條件,通過協調菌膠團菌微生物與絲狀菌共生關系,從根本上消除污泥的絲狀菌膨脹問題。
4.2.1 增設生物選擇器
早在上世紀70年代人們就發現,當曝氣池中混合液呈推流狀態並形成一個明顯的底物濃度梯度時,不易發生污泥膨脹。生物選擇器的設計原理就是使曝氣池中的生態環境有利於選擇性地發展菌膠團細菌,應用生物競爭的機制控制絲狀菌的過度增殖,從而控制污泥膨脹。我們可在曝氣池之前設一個小池,局部地提高F/M值,或把曝氣池前端設置成高負荷接觸區,選擇性地培養菌膠團細菌,使其成為優勢菌種。
選擇器可分為好氧、缺氧和厭氧三種類型。好氧選擇器的工作原理是利用菌膠團細菌能在高負荷底物濃度中迅速繁殖並貯存這些底物,而此時絲狀菌的增長速率並不能明顯地提高。高負荷接觸之後的曝氣反應中,菌膠團細菌利用貯存的底物大量繁殖生長,絲狀菌因食物缺乏而使其生長收到抑制。缺氧選擇器的工作原理是大部分菌膠團細菌能夠利用硝酸鹽中的化合態氧作氧源生長繁殖。而絲狀菌此功能較弱,所以生長受到抑制。J.Wanner等人通過對厭氧選擇器的實驗分析證實,菌膠團細菌由於放磷反應而獲取的能量得以能在厭氧條件下利用有機物進行繁殖並貯存,後續的曝氣反應中基質濃度底,使絲狀菌受到抑制,從而阻止了污泥膨脹的發生。
4.2.2 採用SBR工藝
從SBR法的反應階段其底物濃度的變化可以看出,SBR法不易發生污泥膨脹。如果把普通活性污泥法中混合液的流態用「離散度」表示,那麼它在完全混合時為無窮大,在理想推流時為零。SBR法反應階段的底物濃度變化相當於普通污泥曝氣池分格數為無窮多時的情況(因為普通污泥處理法曝氣池分格數越多越接近推流式)。這就有利於菌膠團細菌在競爭中處於優勢。此外,SBR法的優點還有:進水和反應開始階段的反應器處於厭氧狀態,有利於抑制絲狀菌的過量生長; SBR法的污泥齡短,比增值速率較小的絲狀菌不能很好地繁殖;可以省去初沉池相對減少廢水中溶解性底物的比例,同時增加了總懸浮固體量。由此可見,SBR本身就是一個很好地防止污泥膨脹的選擇器。
4.2.3 迴流污泥再生法
此法主要應用在脫氮除磷工藝中,將二沉池排出的迴流污泥排入一單獨設置的曝氣池內進行曝氣,將微生物體內貯存物質氧化,從而使菌膠團細菌具有最大吸附和貯存能力,使污泥得到充分再生並恢復活性,所以可以在與絲狀菌的競爭中獲得優勢,抑制絲狀菌的過量繁殖。
5 非絲狀菌引起污泥膨脹的控制方法
非絲狀菌膨脹又稱高粘度膨脹,在國內的研究報道很少。營養物缺乏是導致污泥膨脹的一個重要因素。高春娣等人的研究表明投加充足的氮源和磷源,並適當提高污泥負荷可以控制污泥膨脹的發生。如果是由痕量金屬的缺乏造成的,可以通過補充污水中的痕量金屬的量來消除污泥膨脹。此外,投加酶也可以控制污泥膨脹的發生。
6 結語
隨著實踐的日益深入,人們對污泥膨脹這一問題的研究不斷加深,並不斷地有新的研究成果發表,但就污泥膨脹的原因這一問題,沒有統一絕對的答案。許多研究者通過實驗得出的結論不相一致甚至相反。在工程實際中,引發污泥膨脹的誘因不可能是單一的,只有分析其產生的主要原因,才能找到解決問題的關鍵辦法。
⑧ 求污水中硫化物生化處理的原理
硫化物太多一般不用生化處理,因為它對細菌的生長有影響
微生物中的脫硫弧菌可以對硫化物起作用,但是著重微生物多了會影響其它微生物
⑨ 檢測水中硫化物含量方法
1 用Zn(Ac)_2沉澱水中 S~=,抽濾除去水中其他雜質,使沉澱在鹼性條件下被H_2O_2氧化成SO_4~=,用帶電導檢測器的離子色譜儀測定SO_4~=,換算成S~=含量。 檢出限為0.02mg/1。
2 以亞甲蘭法為基礎,顯色反應在自製的小檢測管內進行,通過與標准色列管進行比較來確定樣品中S^2-的含量。
3 在含硫污水中加入乙酸鋅,通過高速離心法進行預處理,得到硫化鋅沉澱,倒出部分上清液,再加入弱鹼性水與顯色劑反應,最後通過分光度計或比色法測定硫化物的含量。