1. 數控機床常見外部故障都有哪些處理解決措施
由於現代的數控系統可變性越來越高,故障率越來越低,很少發生故障。大部分故障都是非系統故障,是由外部原因引起的。
1、現代的數控設備都是機電一體化的產品,結構比較復雜,保護措施完善,自動化程度非常高。有些故障並不是硬體損壞引起的,而是由於操作、調整、處理不當引起的。這類故障在設備使用初期發生的頻率較高,這時操作人員和維護人員對設備都不特別熟悉。
例一、一台數控銑床,在剛投入使用的時候,旋轉工作台經常出現不旋轉的問題,經過對機床工作原理和加工過程進行分析,發現這個問題與分度裝置有關,只有分度裝置在起始位置時,工作台才能旋轉。
例二、另一台數控銑床發生打刀事故,按急停按鈕後,換上新刀,但工作台不旋轉,通過PLC梯圖分析,發現其換刀過程不正確,計算機認為換刀過程沒有結束,不能進行其它操作,按正確程序重新換刀後,機床恢復正常。
例三、有幾台數控機床,在剛投入使用的時候,有時出現意外情況,操作人員按急停按鈕後,將系統斷電重新啟動,這時機床不回參考點,必須經過一番調整,有時得手工將軸盤到非干涉區。後來吸取教訓,按急停按鈕後,將操作方式變為手動,松開急停按鈕,把機床恢復到正常位置,這時再操作或斷電,就不會出現問題。
2、由外部硬體損壞引起的故障
這類故障是數控機床常見故障,一般都是由於檢測開關、液壓系統、氣動系統、電氣執行元件、機械裝置等出現問題引起的。有些故障可產生報警,通過報答信息,可查找故障原因。
例一、一台數控磨床,數控系統採用西門子SINUMERIKSYSTEM3,出現故障報警F31「SPINDLECOOLANTCIRCUIT」,指示主軸冷卻系統有問題,而檢查冷卻系統並無問題,查閱PLC梯圖,這個故障是由流量檢測開關B9.6檢測出來的,檢查這個開關,發現開關已損壞,更換新的開關,故障消失。
例二、一台採用西門子SINUMERIK810的數控淬火機床,一次出現6014「FAULTLEVELHARDENINGLIQUID」機床不能工作。報警信息指示,淬火液面不夠,檢查液面已遠遠超出最低水平,檢測液位開關,發現是液位開關出現問題,更換新的開關,故障消除。
有些故障雖有報警信息,但並不能反映故障的根本原因。這時要根據報警信息、故障現象來分析。
例三、一台數控磨床,E軸在回參考點時,E軸旋轉但沒有找到參考點,而一直運動,直到壓到極限開關,NC系統顯示報警「EAXISATMAX.TRAVEL」。根據故障現象分析,可能是零點開關有問題,經確認為無觸點零點開關損壞,更換新的開關,故障消除。
例四、一台專用的數控銑床,在零件批量加工過程中發生故障,每次都發生在零件已加工完畢,Z軸後移還沒到位,這時出現故障,加工程序中斷,主軸停轉,並顯示F97號報警「SPINDLESPEEDNOTOKSTATION2」,指示主軸有問題,檢查主軸系統並無問題,其它問題也可導致主軸停轉,於是我們用機外編程器監視PLC梯圖的運行狀態,發現刀具液壓卡緊壓力檢測開關F21.1,在出現故障時,瞬間斷開,它的斷開表示銑刀卡緊力不夠,為安全起見,PLC使主軸停轉。經檢查發現液壓壓力不穩,調整液壓系統,使之穩定,故障被排除。
還有些故障不產生故障報警,只是動作不能完成,這時就要根據維修經驗,機床的工作原理,PLC的運行狀態來判斷故障。
例五、一台數控機床一次出現故障,負載門關不上,自動加工不能進行,而且無故障顯示。這個負載門是由氣缸來完成開關的,關閉負載門是PLC輸出Q2.0控制電磁閥Y2.0來實現的。用NC系統的PC功能檢查PLCQ2.0的狀態,其狀態為1,但電磁閥卻沒有得電。原來PLC輸出Q2.0通過中間繼電器控制電磁閥Y2.0,中間繼電器損壞引起這個故障,更換新的繼電器,故障被排除。
例六、一台數控機床,工作台不旋轉,NC系統沒有顯示故障報警。根據工作台的動作原理,工作台旋轉第一步應將工作台氣動浮起,利用機外編程器,跟蹤PLC梯圖的動態變化,發現PLC這個信號並未發出,根據這個線索繼續查看,最後發現反映二、三工位分度頭起始位置檢測開關I9.7、I10.6動作不同步,導致了工作台不旋轉。進一步確認為三工位分度頭產生機械錯位,調整機械裝置,使其與二工位同步,這樣使故障消除。
發現問題是解決問題的第一步,而且是最重要的一步。特別是對數控機床的外部故障,有時診斷過程比較復雜,一旦發現問題所在,解決起來比較輕松。對外部故障的診斷,我們總結出兩點經驗,首先應熟練掌握機床的工作原理和動作順序。其次要熟練運用廠方提供的PLC梯圖,利用NC系統的狀態顯示功能或用機外編程器監測PLC的運行狀態,根據梯圖的鏈鎖關系,確定故障點,只要做到以上兩點,一般數控機床的外部故障,都會被及時排除。
2. 數控機床常見故障分類及處理方法是什麼
由於數控機床自動化程度高,結構復雜,所以故障率也較普通機床設備高,維修難度也較大,同時對數控機床維修人員的素質要求也越來越高,要求機床出現故障後,能盡快排除。數控機床維修技術不僅能夠保障數控設備正常運行,而且對數控技術的發展和完善也有一定的推動作用,因此,研究和診斷數控機床故障,以及常規處理是具有非常意義的。
一、前言
為了使數控機床應有的功效發揮出來,數控機床的正常運行佔主導地位,在數控設備出現問題時,及時去排除故障就顯得特別重要。但是相對於接觸機床不多的維修人員來說,機床出現故障,往往不知從何下手,而延誤維修時間。這時如果我們藉助數控系統本身具備的自診斷功能的話,對我們的維修會產生很大幫助。同時,作為維修人員當數控機床發生故障後,我們需要向操作者了解故障發生的具體症狀,產生的道程序及時間,操作方法正確與否,才能及時發現問題,以免隱患過大,造成不必要的損失。還有就是要檢查按鈕、熔斷器,接線端子等元件,在接線時螺釘、航空插頭和插座、電路板上的插頭是否擰緊,每個撥把開關,操作方式是否正確等。還要根據機械故障較易察覺的特點,當發生機床過載或者過熱報警時,應首先檢查滑板的鑲條是否裝過緊,滑板和床身導軌之間摩擦力是否增大,從而使電機運轉難度大,還有滾珠絲杠和托架之間是否同心,如絲杠中滾珠磨損造成絲杠過緊,也可使電機過載、過熱,從而導致電氣故障。因此我們在數控機床的正常維修當中,認真做好上面幾項工作,共同配合,就可以少走彎路,較快排除故障,減少數控機床的停機時間,增強數控機床的使用率,使生產實踐得以順利進行,完成學生實習的進度。
二、常見故障的分類
數控機床由於自身原因不能正常工作,就是產生了故障。產生的原因也比較復雜,但很大一部分故障是由於操作人員操作機床不當引起的。
機床故障可分為以下幾種類型。
(一)系統故障和隨機故障
按故障的出現的必然性和偶然性,分為系統性故障和隨機性故障。系統性故障是指機床和系統在某一特定條件下必定會出現的故障,隨機性故障是指偶然出現的故障。因此,隨機性故障的分析和排除比系統性故障困難的多。通常隨機性故障往往會因為機械結構局部松動、錯位、控制系統中元器件出現工作特性飄移,電器元件工作可靠性下降等原因造成,需經反復試驗和綜合判斷才能排除。
(二)診斷顯示故障和無診斷顯示故障
按故障出現時有無自診斷顯示,可以分為有診斷顯示故障和無診斷顯示故障兩種。如今的數控系統有比較豐富的自診斷功能,出現故障時會停機、報警而且會自動顯示相應報警的參數號,這樣可以讓維護人員很快找到故障原因。而無診斷顯示故障,一般是機床停在某一位置不能動,手動操作也沒法,維護人員只能根據出現故障前後現象來分析判斷,排除故障難度就比較大。
(三)破壞性故障和非破壞性故障
以故障有無破壞性,分為破壞性故障和非破壞性故障。對於破壞性故障就像伺服失控造成撞車,短路燒斷熔絲等,維護難度較大,有一定危險,修後這些現象是不能重復出現的。而非破壞性故障可經過多次反復試驗至排除,就不會對機床造成危害。
(四)機床運動特性質量故障
此類故障發生後,機床會照常運行,不會有報警顯示,但加工出的工件不合格。對於這些故障,必須在檢測儀器配合下,對機械、控制系統、伺服系統等採取一些綜合措施。
(五)硬體故障和軟體故障
按發生故障的部位分為硬體故障和軟體故障。硬體故障只要通過更換某些元器件就可以排除,但是軟體故障是編程錯誤導致的,因此需要修改程序內容或修訂機床參數來排除。
(六)數控機床常見的操作故障
1、防護門未關,機床不能運轉。2、機床未回參考點。3、主軸轉速S超過最高轉速限定值。4、程序內沒有設置F或S值。5、進給修調F%或主軸修調S%開關設為空擋。6、回參考點時離零點太近或參考點速度太快,引起超程。7、程序中G00位置超過限定值。8、刀具補償測量設定錯誤。9、刀具換刀位置不正確。10、G40撤銷不當,引起刀具切入已加工表面。11、程序中使用了非法代碼。12、刀具半徑補償方向錯誤。13、切入、切出方式不當。14、切削用量太大。15、刀具鈍化。16、工件材質不均勻,引起振動。17、機床被鎖定(工作台不動)。18、工件未夾緊。19、對刀位置不正確,工件坐標系設置錯誤。20、使用了不合理的G功能指令。21、機床處於報警狀態。22、斷電後或報過警的機床,沒有重新回參考點或復位。
三、故障常規處理方法
加工中心出現故障,除少量自診斷功能可以顯示故障外(如存儲器報警,動力電源電壓過高報警等),大部分故障是由綜合因素引起,往往不能確定其具體原因。
數控機床出現故障後,不能盲目處理,首先要檢查故障記錄,向操作人員了解故障出現的全過程。在確認通電對機床和系統無危險的情況下再進行觀察,特別要確定以下故障信息:
1、故障發生時,報警號和報警提示是什麼?哪盞指示燈或發光管發光?提示的警報內容是什麼?2、如無報警,系統處於何種工作狀態?系統的工作方式診斷結果是什麼?3、故障發生在哪個程序段?執行何種指令?故障發生前執行了何種操作?4、故障發生在何種速度下?軸處於什麼位置?與指令值的誤差量有多大?5、以前是否發生過類似故障?現場是否有異常情況?故障是否重復發生?我們可以採用歸納法和演繹法,對上面的5個部分故障信息進行有效的歸納與演繹。歸納法是從故障原因出發,摸索其功能,調查原因對結果的影響,也就是說根據可能產生該種故障的原因分析,看最後是否與故障現象的符合程度來確定故障點。演繹法是指從現象出發,對故障現象原因進行分割分析法。即從故障現象開始,根據故障機理,列出該故障產生的種種原因,然後,對這些原因逐點進行分析,排除不正確的,最後確定故障點。
同時,在故障診斷過程中通常要按先外後內、先機後電、先靜後動、現公用後專用、先簡單後復雜、先一般後特殊的原則進行。
在分析好以上5個部分的故障之後,一般可以按以下步驟進行常規處理:
(一)充分調查故障現場
機床發生故障後,維護人員應仔細觀察寄存器和緩沖工作寄存器尚存內容,了解已執行程序內容,向操作者了解現場情況和現象。當有診斷顯示報警時,打開電器櫃觀察印製電路板上有無相應報警紅燈顯示。做完這些調查後,就可以按動數控機床上的復位鍵,觀察系統復位後報警是否消除,消除的話屬於軟體故障,否則即為硬體故障。對於非破壞性故障,可讓機床再重新運行,仔細觀察故障是否再現。
(二)將可能造成故障的原因全部列出
加工中心上造成故障的原因多種多樣,有機械的、電氣的、控制系統的等等。此時,要將可能發生的故障原因全部列出來,以便排查。
(三)逐步選擇確定故障產生的原因
根據故障現象,參考機床有關維修使用手冊羅列出的因素,經過選擇及綜合判斷,找出導致故障的確定因素。
(四)故障的排除
找到造成故障的確切原因後,就可以「對症下葯」修理、調整和更換有關原件。
四、常見機械故障的排除
(一)進給傳動鏈故障
由於導軌普遍採用滾動摩擦副,因此運動質量下降是導致進給傳動故障的重要因素,如機械部件沒有達到規定位置、運行中斷、定位精度下降、反向間隙過大等,出現這些都是可調整各運動副預緊力、調整松動環節、提高運動精度及調整補償環節。
(二)機床回零故障
機床在返回基準點時發生超程報警,無減速運動。此類故障一般是減速信號沒有輸入到CNC系統,一般可檢查限位擋塊及信號線。
(三)自動換刀裝置故障
此類故障較為常見,故障表現為:刀鋸庫運動故障、定位誤差大、換刀動作不到位、換到動作卡位、整機停止工作等,此類故障的排除一般可通過檢查氣缸壓力、調整各限位開關位置、檢查反饋信號線、調整與換刀動作相關的機床參數來排除。
(四)機床不能運動或加工精度差
這是一些綜合故障,出現此類故障時,可通過重新調整和改變間隙補償、檢查軸進給時有無爬行等方法來排除。
五、數控機床的安全操作
數控機床的操作,一定要做到規范操作,以避免發生人身、設備、刀具等的安全事故。為此,數控機床在操作的過程中一定要嚴格按照數控機床的規范操作來完成,防止機床故障,從而保證機床正常運行。
主要體現在以下四個方面:
1、操作前的安全工作。
2、機床操作過程中的安全操作。
3、與編程相關的安全操作。
4、關機時的注意事項。
3. 數控系統有哪些常見故障
數控系統常見故障:
1、位置環
這是數控系統發出控制指令,並與位置檢測系統的反饋值相比較,進一步完成控制任務的關鍵環節。它具有很高的工作頻度,並與外設相聯接,所以容易發生故障。
常見的故障有:①位控環報警:可能是測量迴路開路;測量系統損壞,位控單元內部損壞。②不發指令就運動,可能是漂移過高,正反饋,位控單元故障;測量元件損壞。③測量元件故障,一般表現為無反饋值;機床回不了基準點;高速時漏脈沖產生報警可能的原因是光柵或讀頭臟了;光柵壞了。
2、伺服驅動系統
伺服驅動系統與電源電網,機械繫統等相關聯,而且在工作中一直處於頻繁的啟動和運行狀態,因而這也是故障較多的部分。
3、電源部分
電源是維持系統正常工作的能源支持部分,它失效或故障的直接結果是造成系統的停機或毀壞整個系統。一般在歐美國家,這類問題比較少,在設計上這方面的因素考慮的不多,但在中國由於電源波動較大,質量差,還隱藏有如高頻脈沖這一類的干擾,加上人為的因素(如突然拉閘斷電等)。這些原因可造成電源故障監控或損壞。另外,數控系統部分運行數據,設定數據以及加工程序等一般存貯在RAM存貯器內,系統斷電後,靠電源的後備蓄電池或鋰電池來保持。因而,停機時間比較長,拔插電源或存貯器都可能造成數據丟失,使系統不能運行。
數控系統是數字控制系統的簡稱,英文名稱為(NumericalControlSystem),根據計算機存儲器中存儲的控製程序,執行部分或全部數值控制功能,並配有介面電路和伺服驅動裝置的專用計算機系統。通過利用數字、文字和符號組成的數字指令來實現一台或多台機械設備動作控制,它所控制的通常是位置、角度、速度等機械量和開關量。
4. 數控車床常見故障
常見的數控機床的排除故障的經驗總結如下,以供讀者參考。
一、 操作數控機床的直線軸的正負方向時,直線軸都向一個方向移動
在數控機床的維修中,無論數控機床採用什麼品牌的數控系統,很多維修人員都遇到過如下一種故障,即數控機床的直線軸,無論開正、負方向,直線軸都向沿著撞壞機械的方向運動。以數控車床的X軸為例,具體說明一下。數控車床的X軸運動至+X方向的限位附近時,無論你按+X還是-X方向,X軸都向著+X方向運動。
出現這種故障時,一般顯示單元沒有報警,原因是由於機床X軸慣性等原因,X軸的位置處於+X軸的軟限位與硬限位之間。
解決此類故障的方法是:將X軸的正、副軟限位修改為大於硬限位的數值(如X軸的正負硬限位坐標為100,-800,可將軟限位暫時設定為1000,-1000),用手動將X軸開向偏離X軸故障方向的方向(如上述舉例所示的-X方向),感覺X軸的坐標處於+X和-X之間時,重新設置X軸的軟限位,並回參考點後,故障即消除。
二、光柵尺作為數控機床的直線軸的位置檢測元件時常見的幾種故障
1、直線軸在回參考點中,找不到零脈沖。在表現形式上就是該軸在回參考點時一直運行直到撞到該軸的限位。
這種故障發生的原因一般是讀數頭或光柵尺骯了。
解決此類故障的方法是:把讀數頭卸下來用無水乙醇沖洗干凈,用絲綢布沾上無水乙醇把帶有刻度部分清潔干凈即可。
2、數控機床的直線軸在運行中出現報警。
數控機床在運行中,如果採用西門子840D或德國力士樂數控系統的某個直線軸,出現報警「硬體編碼器錯誤」;如果採用西班牙FAGOR數控系統的某個直線軸,出現報警「跟隨誤差超界」。這時候一般是作為機床直線軸的位置檢測元件的光柵尺出故障了。
這種情況下,由於震動或其它原因,一般是機床在使用中使讀數頭與光柵刻度尺的距離遠了,數控系統誤認為光柵尺壞了。處理該故障的方法是按光柵尺說明書的要求調整讀數頭與光柵尺的距離。讀數頭與光柵尺尺身之間的間距為1~1.5mm左右,最好別超過2mm.。
出現上述故障的另外一種原因是光柵尺的安裝位置不合適,如安裝在油池附近,油氣等將光柵尺污染,這時候就要把光柵尺的「定尺」和「動尺」分別進行清潔,然後再安裝之後進行光柵尺的調試才可使用。
還有一種故障情況也會出現上述報警,那就是由於讀數頭的位置安裝不合適,造成讀數頭損壞,更有甚者,光柵尺定尺內出現鋁合金碎屑,光柵刻線出現損壞,造成光柵尺定尺的徹底報廢。
3、數控機床的直線軸出現暴走
當數控機床的直線軸安裝有光柵尺時,如果該直線軸出現暴走,一般情況下是該直線軸的位置檢測元件————光柵尺被污染,需要對光柵尺的光柵或讀數頭進行保潔才可消除故障。
在多年的數控機床維修中,我們發現光柵尺作為數控系統的位置檢測元件,在機床的機械部分良好的情況下,可以提高機床直線軸的定位精度。除此之外,光柵尺還可以檢測機床機械部分存在的隱患或問題,下面就幾個維修案例進一步說明。
4、HG3018美國CAPCO磨床機床顫抖
從美國CAPCO公司進口的HG3018軋輥數控磨床,採用德國BOSCH CC220數控系統, X軸為全閉環控制方式,位移檢測元件採用德國海德漢玻璃光柵尺。當機床操作者無意中拿木條輕輕擊打機床砂輪架外殼體時,人站在工作台上,感覺機床產生劇烈的顫動。
從這個現象看,該故障的產生,肯定帶有機床本身的一些動作,絕對不是純粹的機床某個零部件鬆了,人拿木頭條輕輕「砸」機床外殼導致的結果。經查證,是X軸的滾珠絲杠背冒松造成的:當人拿木條輕輕砸機床砂輪架外殼時,因為X軸的驅動依靠滾珠絲杠來實現,很輕便,由於X軸滾珠絲杠背冒松動,故砂輪架會有一個微小的移動。這時候,數控系統檢測到在沒有發出X軸移動信號的情況下,X軸移動了,肯定是「非法的」,這時候數控系統會發出與砂輪架移動方向反向的「給定」信號,使砂輪架反向移動。由於滾珠絲杠背冒的松動,X軸反向移動時會走過頭,此時砂輪架在數控系統的指揮下,又向與之前移動方向反向移動。。。。。如此往復,造成砂輪架的震動。
在長期對數控機床的維修中,我們發現,光柵尺不僅僅作為位置環的檢測元件,還能成為機床直線軸的「監督」元件。當機械存在故障隱患時,如果該軸採用光柵尺控制,該故障隱患會通過光柵尺將隱患「放大」,以故障的形式表現出來。沒有採用光柵尺的機床,出現機械故障隱患時,往往不容易表現出來,直至故障隱患擴大化,變成硬性故障。
5、C61200數控車床加工軋輥輥身時出現X軸前後竄動
我公司從武重購買的C61200車床經過數控化改造後,採用西班牙FAGOR 8055TC數控系統。該機床有一天在加工軋輥時,由於軋輥的輥身比較偏,正常情況下,軋輥輥身應該是圓柱形,但由於澆注原因,該軋輥輥身各部直徑尺寸不一,呈現橢圓形。致使當機床的刀具吃上輥身尺寸較大的地方時,在無X軸移動指令的情況下,X軸自行往遠離軋輥的方向移動。當刀具接觸上軋輥輥身尺寸比較「瘦」的地方時,X軸自行向靠近軋輥的方向移動,造成X軸的前後竄動.
其原因如下:我們首先對該機床的數控系統進行檢查,發現X軸在加上「使能」信號的情況下,其交流伺服電機加上了自鎖力。當把X軸的位置檢測元件屏蔽掉後,改成半閉環,再進行吃刀加工,發現之前的X軸前後竄動的現象消失了。 看到這種現象後,有人判斷認為是光柵尺出了問題,而我認為恰恰是X軸光柵尺完好無損,才可以發現機械存在的隱患。通過檢查X軸滾珠絲杠,發現是滾珠絲杠的背帽鬆了。正因為X軸滾珠絲杠的背帽鬆了,在軋輥旋轉中,由於輥身是橢圓形,在刀具接觸上軋輥輥身尺寸比較大的地方時,由於軋輥輥身對X軸有一個「向遠離軋輥直徑方向的頂力」,X軸被「頂」向遠離軋輥直徑的方向,此時X軸的移動不是機床數控指令所致。但用於檢測X軸的位置的光柵尺發現在沒有數控系統發出指令的情況下,X軸向「+X」方向(遠離軋輥輥身直徑的方向)移動,光柵尺的作用是,通過檢測直線軸在數控指令的作用下,該直線軸移動是否准確,如果該直線軸移動不準確,通過數控系統的干預,使該直線軸定位至准確位置。因此當刀具接觸上軋輥輥身尺寸比較「瘦」的地方時,刀具與軋輥輥身有了一定間隙,通過光柵尺的作用,使X軸向靠近軋輥直徑的方向移動,定位至由數控系統發出的X軸坐標位置。這樣軋輥每轉一周,在X軸沒有數控指令移動的情況下,X軸就出現「遠離軋輥直徑方向」和「靠近軋輥直徑方向」的交替移動。故加工偏輥時,X軸由於滾珠絲杠背帽的松動使其產生來回竄動。
6、 齊重RT125數控車床移動Z軸時出現震動
我們從齊重購買的RT125數控車床,有一天在移動Z軸時出現震動,我們原認為是光柵尺出了問題,後來經檢查發現該車床的導軌上表面被鐵屑劃出痕跡所致。
驗證自己判斷故障產生的原因是否正確的方法是,將該軸的控制方式改為半閉環即將光柵尺屏蔽掉,這種震動即可消失或減輕了很多。此時有人會說那就乾脆屏蔽掉光柵尺後使機床工作吧。這只是臨時措施,該軸屏蔽掉光柵尺後的加工精度肯定比以前要降低很多。
在十幾年的數控機床維修中,我們遇到了無數的和光柵尺有關聯的故障,基本上都是機械本身出現了問題。這說明光柵尺還可以把數控機床潛在的機械存在的問題檢測出來,並以故障的形式表現出來。
7、 數控機床直線軸採用全閉環時出現故障而採用半閉環時「貌似」故障消除的現象
數控機床的某個直線軸採用全閉環時出現電機抖動、軸震盪等現象,而將位置檢測元件屏蔽掉,這種不正常的現象消失,一般情況下,處理該類故障的方法如下:
首先檢查位置檢測元件,如光柵尺及讀數頭是否清潔,讀數頭的安裝位置是否合理,排除掉位置檢測元件不正常的因素。
如果能保證位置檢測元件良好的情況下,一般情況下就是該直線軸的機械傳動鏈出現了問題,此時應檢查直線軸的機械傳動鏈是否有部件松動現象、機械部件是否有磨損、機械傳動鏈的相關潤滑是否良好。
三、 與伺服電機編碼器相關的故障
編碼器作為伺服電機的速度反饋元件,無論該直線軸是否有位置檢測元件,只要伺服電機的編碼器或其線路有虛接的地方,都會使該直線軸暴走。有時候檢查編碼器線虛接也不是很容易的事:插頭的針是否有短的,插頭各針腳是否有歪斜的,插頭焊接的信號線及電源線是否有接觸不良的,在校線中一定要用數字萬用表。下面以一個具體例子說明一下校線的不易及注意事項。
TS6916落地式雙面鏜銑床是齊二機床廠產品。2004年10月之前為帶FAGOR數顯裝置的機床,但各個直線軸的機械按數控機床所需配置,各個直線軸的電機採用西班牙FAGOR公司FXM系列交流伺服電機,直線軸的控制裝置採用FAGOR公司AXD系列驅動裝置。主軸電機採用南洋交流變頻電機,主軸控制系統採用西門子6SE70變頻器。2004年10月改造為數控機床,增加西班牙FAGOR 8055M數控系統;直線軸和主軸仍採用之前的產品。
2004年5月至2004年10月 這段時間出現過大約十幾次同樣的滑枕相向暴走故障。當時對FAGOR數控系統不是十分熟悉,都認為是因為電磁干擾引起的故障。當時的說法是,主軸電機的電源線採用普通電纜,沒有採用屏蔽線,影響了Z軸的運行,偶爾干擾,產生Z軸暴走。這只是猜想,所以當時為了屏蔽干擾信號,在電櫃的四周拉上銅線網。這樣處理之後,果真故障次數少了(後來證實這是巧合),但仍不時間隔一個月出現一次同樣現象的故障。
當時大家都認為主軸電機的電源線採用屏蔽電纜就可以消除該故障。2004年10月進行數控化改造時將主軸電機電源線換成了屏蔽電纜線。各個伺服軸的電源線和編碼器電纜採用國外原裝、高柔電纜。改造完成半年後,沒有出現過一次故障。所以大家更加相信,數控改造之前出現滑枕暴走現象是因為主軸電機沒有採用屏蔽線造成信號干擾所致。2005年5月連續5次出現以前同樣的故障現象,打破了人們以前對造成該故障原因的認識。人們對以前形成的觀念開始發生動搖。
當時把發生暴走的滑枕電機的控制裝置送到我們的電氣實驗室進行試驗,發現經常性的出現暴走,通過對線路的查找,在沒有發現線路有問題的前提下,我們將驅動裝置送到北京FAGOR公司修理。經過檢查和測試,沒有發現驅動裝置有問題。
將該驅動器拿回我們的電氣實驗室進行試驗仍然不時出現暴走現象。重新對線路檢查,仍然沒有發現線路有問題。注意:後來證實,編碼器電纜的第12角虛接。我們在檢查線路時比較容易犯錯誤的地方在線路的兩頭,這次我發現通向驅動器側的接線插頭內的線松動了。當時校線時手拿著插頭,忽視了插頭本身出現了焊點開了,但有其它線在插頭內掖著,第12角線不至於徹底離開12角。
將原驅動器重新裝到機床上,對該編碼器的電纜進行檢查和測試,沒有發現線路有問題。機床送電後開始正常工作。當天晚上後夜出現了滑枕暴走的故障。由於對夜班維修人員有交代,所以趕緊對Z軸編碼器線用萬用表進行測量,當時用的指針表,測量編碼器的各個角的線路都通。早晨上班後,看了看測量後送電試機床,發現仍然暴走。趕緊用數字萬用表對Z軸編碼器的各個角的線路的阻值進行測量,發現除了12角為0.6歐姆外,其它角為0.3歐姆,看來問題就出現在0.6歐姆上。對傳統意義的電氣系統測量,一般用指針表測通斷,對數控系統內的測量要用數字表,0.6歐姆的意思是:數控系統認為該角斷路。至此造成該故障的原因基本明了。
那為什麼以前偶爾出現故障,出現故障後再重新送電機床又恢復正常了呢?
我們知道一段導線的阻值計算公式為R=ρ*L / S
公式中 R為一段導線的阻值
ρ為電阻率,其數值與導線的材料有關,材料不變,ρ值不變。.
L 為導線的長度
S為導線的截面積
我分析在機床運轉中, Z軸編碼器的電纜線敷設在兩段坦克鏈內,經過的線路比較長,當某時間,偶爾出現坦克鏈對電纜線拉伸時,該電纜線在長度上沒多大變化,在直徑上變細,其電阻值就變大,從而出現滑枕暴走現象。在滑枕暴走的時候,機床發生劇烈顫抖,又使電纜線復原,從而在重新送電後機床又恢復正常。
更換Z軸編碼器電纜線,排除故障。
四、 數控車床床頭箱異響
新購青海重型機床廠的CK84140軋輥車床,主軸箱有兩個檔位,機床操作人員反應,在使用高速檔時,主軸箱內有齒輪擊打的聲音。當時機械修理技師要拆主軸箱大蓋,我讓他暫停。我認為,如果真像機床操作人員說的那樣,只有在主軸一個檔位時,旋轉主軸,主軸箱內發出擊打齒輪的異響,那肯定是機械的原因造成的。我需要核對機床操作人員反饋來的信息是否正確。結果發現,在主軸兩個檔位的低速段,旋轉主軸,主軸箱內都發出齒輪擊打的聲音。操作者沒有正確反應信息,原因是主軸處於慢檔的低速段時,轉速范圍很短,一不留神,用電位器調速就調過去了。
既然主軸在兩個檔位的低速段,旋轉主軸,主軸箱內出現異響,首先要核對主軸電機在這個速度段,旋轉是否平穩。該主軸控制系統採用西門子6SE70變頻器,在變頻器的顯示器上,用只讀參數r19診斷主軸電機的轉速發現,主軸轉速在這個速度段運行不平穩。經過對主軸調速系統的調試和帶載優化,主軸速度平穩了,就不會出現由於主軸電機運行不平穩從而出現齒輪在轉動中,嚙合齒輪之間不能勻速轉動,出現的齒輪擊打聲。
五、 數控磨床磨削錐面產品異常
數控磨床在磨削錐面產品或修正錐面砂輪時,需要X、Z軸聯動時,有時會出現:Z軸一個方向運動時,吃刀大;Z軸往另一個方向運動時,吃刀很小或吃刀斷斷續續。這種現象在磨削錐面產品時,Z軸在往復運動中,吃刀大的一個方向,磨削的火花大,吃刀小的一個方向,磨削的火花很小。若在修復錐面砂輪時,出現上述現象,可從金剛石筆與砂輪接觸的「沙沙」聲的大小判斷。
遇到這種情況,說明數控磨床的磨削程序雖然按照砂輪或產品的指定的錐面編制,但X、Z軸的聯動速度沒有在同一時間內達到十分「合拍」。為什麼按照指定的磨削路徑編制數控加工程序,而未能達到理想境界呢?這種沒有機床報警的故障很難處理,處理方法如下:
1、 檢查數控磨床的尾座上砂輪修整用的金剛石筆座在尾座上把合的是否牢靠及金剛石筆是否松動。
2、 無論數控磨床採用的數控系統是西門子系列還是發格、博世力士樂及發那科系列等,一般情況下,調整X、Z軸的軸參數中的「比例系數」參數至同一數值。此時上述磨削中,Z軸在往復磨削中,由於X、Z軸的響應特性一樣,兩軸聯動效果會很好。
六、 數控磨床磨削產品出現振紋及螺旋紋等的原因
數控磨床在磨削產品時,若磨削的產品表面出現振紋或螺旋紋,其原因是可能是多種多樣的,可依據如下情況查找:
1、 金剛石筆是否松動
如果修正砂輪的金剛石筆出現松動,修整的砂輪表面自然會凹凸不平,磨削的產品出現表面質量是在所難免的。
2、 砂輪主軸和工件主軸轉速是否平穩
檢查砂輪主軸和工件主軸的轉速是否平穩:在診斷主軸轉速的時候,,讓所查看的主軸給定至一個速度,可以從主軸控制器的診斷參數中查看其是否在變化,變化的多少是多少。也可以用轉速儀測速。如果主軸轉速不穩,磨削的工件表面就會出現楞狀。
3、 砂輪主軸及工件主軸電機的散熱風機是否有震動
主電機的散熱風機有震動直接影響磨削產品的表面質量。
4、 磨頭的檢查
測磨頭的徑跳和軸向竄動,若超標,就要採取技術措施。若磨頭的徑跳超出標准值,在無法更換磨頭的情況下,可以將磨頭主軸油的粘度提高,來緩解磨頭的劣勢對磨削產品的影響。
5、 床頭箱撥爪及自位板
在磨削的工件旋轉中,如果床頭箱的撥爪與磨削的工件有相對位移;如果床頭箱的自位板在工件旋轉中間歇地滑動,磨削的工件的表面質量會受到很大的影響。
七、 數控機床手脈常見故障
手持單元是數控機床必不可少的手動操作部件,其可以很方便機床操作人員對刀。在多年的數控機床維修中,經常遇到的手持單元故障及方便操作人員使用機床時需要注意的事項如下:
1、 數控機床直線軸的自行移動
如果採用西門子數控系統的數控機床在手動界面下,在機床操作人員不施加指令的情況下,出現直線軸的緩慢移動;如果採用FAGOR數控系統的數控機床在手動界面下,在機床操作人員不施加指令的情況下,出現直線軸的快速移動。此時手持單元處於X軸激活狀態,X軸就出現非法移動,如果手持單元的Z軸處於激活狀態,Z軸就出現非法的移動。此時故障的根源是手持單元的0伏線松動或虛接所致。
2、用手持單元操作時,出現軸的選擇軸混亂
如果用手持單元選擇手動操作機床時,如果選擇X軸,在X軸運行中偶爾出現X軸不運行而其它軸(比如Z軸)運行,一般情況下,手持單元及手持單元至操作站的手脈插頭間的導線不會出現問題,真正的故障源在操作站與電櫃之間的手持單元的相關線路出現了導線外皮裸露。
3、避免產品事故或設備事故的幾個改進
在日常的工作中,偶爾遇到數控機床操作人員在對刀或用手持單元移動中,發生刀具扎刀或刀具碰產品的質量事故,究其原因,一般是採用的速度太快或誤操作所致,為此針對這些情況,可以採取如下的防錯糾錯措施。
快速移動時,採用數控面板上的操作。對刀時或近距離的移動時可以採用手持單元,此時可以將手持單元上的「X100」倍率封鎖住,方法是:將手持單元上的「X100」線拆掉或者修改PLC程序,使「X100」倍率不起作用。
八、 數控機床不能正常上電開機
無論採用何種數控系統,數控機床在重新開機時,出現顯示單元不能運行到正常的操作界面即出現報警提示,這種情況下,一般是操作系統出現文件缺失或損壞,要想恢復機床的正常運行,就只有重新安裝數控的操作系統了。針對這種情況,作為機床維護人員,要在機床處於良好狀態時就做硬碟備份,若數控系統為經濟型或無硬碟時,前提聯系廠家,掌握故障一旦出現時的處理方法。
九、 數控機床直線軸電機或驅動型號改變時的調整方法
對於數控機床的直線軸的伺服電機或其控制裝置出現故障,需要更換電機或控制裝置時,若無現成的同型號的備件,一般要採取如下的步驟才能使機床恢復正常。
1、 在更換損壞的電機或驅動裝置之前,在原機床的顯示單元上抄錄該機床的傳動比及螺距參數。
2、 運用相應的驅動軟體重新按照現有的條件進行參數配置,並按照傳動比及螺距參數進行設置。
3、 由於電機及驅動裝置的導線不變,在參數化配置好之後,按照原有的電機及驅動裝置的導線的線徑,在軟體中進行電流限制,以防止新更換的電機或驅動裝置啟動或運行電流大導致導線燒毀。
十、 數控機床的直線軸的定位精度不準
一些機床在運行一段時間後,可能出現直線軸的定位精度和重復定位精度準的情況,這種情況,一般是機床使用幾年後,機械磨損所致。遇到這種情況,可以按照如下步驟進行調節機床。
1、 以前直線軸上的傳動比是剛出廠時的數值,使用幾年後,由於機械等部件出現磨損,要根據實際情況修改傳動比以矯正該直線軸的定位精度。可以使用一些測量直線軸定位精度的標准桿等測量工具,通過比對數控系統的指令值和實際所移動的長度數值,可以在以前的數控參數中微調傳動比參數,尤其是在經常使用段附近進行校核,以便直線軸的實際移動數值徹底接近指令數值。
2、 在矯正定位精度准確的基礎上,若直線軸的重復定位精度仍比較差,可以在直線軸的常用段測試反向間隙,通過數控系統的軸參數將反向間隙通過相應的參數補償進去,使得常用段的重復定位精度滿足機床使用要求。
十一、 數控系統等一些散熱方面的故障
數控機床的使用現場如果粉塵大,維修人員點巡檢差或其他原因,經常出現如下一些涉及散熱方面的故障。
1、若數控系統報類似數控系統或驅動單元過熱,一般故障原因是報警所指的數控系統的NC 、驅動裝置的散熱風扇不轉造成系統內部散熱不良所致,此時修理或更換風扇使得數控系統的散熱良好,即解除機床報警。
2、若數控系統報警某系統接地,通過拆檢並觀察,若外觀良好,此時應重點檢查該系統的內部元件有無松動、螺絲或墊片散落在系統中,一般情況下,通過仔細檢查一般能修理好。
3、若顯示部分報警過熱等,一般情況下,是顯示單元封閉太嚴所致。
4、數控機床的主軸電機出現過熱現象,一般由如下情況造成:
直流電機的磁場繞組送電,而電機不旋轉,使得磁場繞組的能量無法轉化成機械能,只能轉化成熱能散發到電機中。
數控機床的主軸電機雖然沒有旋轉,但機床操作人員沒有按「主軸停止「按鈕,而是將主軸倍率開關旋至0,此時主軸電機的電流比正常旋轉時還大,接近額定電流。由於主軸電機不旋轉,主電機的電磁能無法轉化為機械能,只能轉化成熱能,散在電機中,使得電機的溫升急劇提高,時間長點,可能會造成電機損壞。
十二、驅動單元或變頻器優化不良及數控保護參數設置不當引起的故障
在數控機床的維修中經常遇到變頻器、直流調速系統、驅動單元優化不良或根本無優化造成的「貌似」機械故障實質是電氣故障的現象。在優化時要遵循其調試手冊的要求和步驟,必要時要帶載優化。如控制數控機床的主軸旋轉的變頻器沒有經過優化、啟動及制動時間設置時間過短,都有可能造成主軸旋轉不平穩。驅動單元的「比例增益系數」設置過大,「積分時間」設置過小,「加速度」參數設置過大都有可能造成直線軸運行中啟動、停止時的震動。
數控機床的直線軸有時出現機械部件的損壞,排除完機床操作者誤操作及碰撞之外,要檢查直線軸的數控保護參數是否設置合理。以FAGOR 8055數控系統為例進行說明。用驅動調試軟體進行配置後,要檢查驅動參數CP20(電流的極限值)的設置數值,該數值一般不大於驅動單元所控制的伺服電機的額定電流值。另外再設置一個保護參數,即「軸參數」的P21(動態運動時的跟隨誤差)。該參數的設定值一般略大於通過正常運行該直線軸時,觀察到的跟隨誤差的數值。對於其它類型的數控系統,可參照執行。
上述參數設置不合理,有時在加工工件時,尤其是兩軸聯動時,會出現加工的產品出現問題或報廢,究其原因是在機床加工中,機械傳動鏈出現了松動,而數控保護參數設置不合理,機床不出現報警所致。
十三、輪廓監控或跟隨誤差超界故障
數控機床在運行中,如果西門子系列數控系統或歐洲生產的一些數控系統出現「輪廓監控」報警,西班牙發格數控系統出現「跟隨誤差超界「報警。一般情況下不要將相應的輪廓監視參數的數值隨意設置過大,如此的話會掩蓋機床機械存在的隱患或故障,容易使萌芽中的故障擴大化,而應檢查該直線軸的機械傳動鏈是否有松動、裝配不合理、潤滑不良等問題,只有把這些問題處理好後,再運行該直線軸時,一般情況下就不會出現報警。
還有一種情況也會出現這種報警,即機床的參數設置合理,機械傳動鏈良好,在加工工件時,吃刀量超過了工藝要求的數值、工藝路線不合理、工藝制定有問題或機床的剛性差不足以維持目前的軸的運行速度下的吃刀量。解決的辦法是,降低軸的運行速度,減少吃刀量。
十四、數控機床貌似設備故障的一些案例
在數控機床的使用中,經常遇到如下一些機床報警或機床操作者的報修,遇到如下情況,要考慮周全,
1、 若出現「XXX字元」不可能的報警字樣,說明加工程序的一些字元不符合規范,屬於「非法「指令,修改成合乎該數控系統的合法指令即消除機床報警。
2、 在數控機床的長期維護中,若出現產品受損或報廢等,此時判定機床是否存在故障,之前的故障、操作信息一定要准確。此時可能會出現某些人為了自身利益,發生不講實話的現象。若出現1毫米以下的尺寸誤差可能是機床精度所致,若出現幾毫米以上的誤差一般是誤操作所致。
3、 數控磨床磨削的產品的圓度差,要檢查頭、尾架主軸的頂尖,檢查頂尖的後錐及端面、主軸內錐孔是否清潔。若更換頂尖時,不對頂尖的後錐及端面、主軸內錐孔用干凈的布進行擦拭,往往會造成磨削的產品的圓度超差。
4、 鏜銑床在更換刀盤時,同樣也要對主軸的內錐孔用干凈布進行擦拭。不擦拭可能造成刀具夾不緊,並且容易造成主軸內錐孔的研傷。
5、 有些數控系統,比如日本FANUC 0TD數控系統,當機床操作人員執行加工程序之前,少摁某個鍵時,加工程序的第二句會跳過不執行,造成產品質量事故。
5. 怎麼排除數控機床的常見故障
數控系統故障維修通常按照:現場故障的診斷與分析、故障的測量維修排除、系統的試車這三大步進行。
1、數控機床故障診斷
在故障診斷時應掌握以下原則:
1.1 先外部後內部
現代數控系統的可靠性越來越高,數控系統本身的故障率越來越低,而大部分故障的發生則是非系統本身原因引起的。由於數控機床是集機械、液壓、電氣為一體的機床,其故障的發生也會由這三者綜合反映出來。維修人員應先由外向內逐一進行排查。盡量避免隨意地啟封、拆卸,否則會擴大故障,使機床喪失精度、降低性能。系統外部的故障主要是由於檢測開關、液壓元件、氣動元件、電氣執行元件、機械裝置等出現問題而引起的。
1.2 先機械後電氣
一般來說,機械故障較易發覺,而數控系統及電氣故障的診斷難度較大。在故障檢修之前,首先注意排除機械性的故障。
1.3 先靜態後動態
先在機床斷電的靜止狀態,通過了解、觀察、測試、分析,確認通電後不會造成故障擴大、發生事故後,方可給機床通電。在運行狀態下,進行動態的觀察、檢驗和測試,查找故障。而對通電後會發生破壞性故障的,必須先排除危險後,方可通電。
1.4 先簡單後復雜
當出現多種故障互相交織,一時無從下手時,應先解決容易的問題,後解決難度較大的問題。往往簡單問題解決後,難度大的問題也可能變得容易。
2、數控機床的故障診斷技術
數控系統是高技術密集型產品,要想迅速而正確的查明原因並確定其故障的部位,要藉助於診斷技術。隨著微處理器的不斷發展,診斷技術也由簡單的診斷朝著多功能的高級診斷或智能化方向發展。診斷能力的強弱也是評價CNC數控系統性能的一項重要指標。目前所使用的各種CNC系統的診斷技術大致可分為以下幾類:
2.1 起動診斷
起動診斷是指CNC系統每次從通電開始,系統內部診斷程序就自動執行診斷。診斷的內容為系統中最關鍵的硬體和系統控制軟體,如 CPU、存儲器、I/O 等單元模塊,以及MDI/CRT單元、紙帶閱讀機、軟盤單元等裝置或外部設備。只有當全部項目都確認正確無誤之後,整個系統才能進入正常運行的准備狀態。否則,將在CRT畫面或發光二極體用報警方式指示故障信息。此時起動診斷過程不能結束,系統無法投入運行。
2.2 在線診斷
在線診斷是指通過CNC系統的內裝程序,在系統處於正常運行狀態時對CNC系統本身及CNC裝置相連的各個伺服單元、伺服電機、主軸伺服單元和主軸電動機以及外部設備等進行自動診斷、檢查。只要系統不停電,在線診斷就不會停止。
在線診斷一般包括自診斷功能的狀態顯示有上千條,常以二進制的0、1來顯示其狀態。對正邏輯來說,0表示斷開狀態,1表示接通狀態,藉助狀態顯示可以判斷出故障發生的部位。常用的有介面狀態和內部狀態顯示,如利用I/O介面狀態顯示,再結合PLC梯形圖和強電控制線路圖,用推理法和排除法即可判斷出故障點所在的真正位置。故障信息大都以報警號形式出現。一般可分為以下幾大類:過熱報警類;系統報警類;存儲報警類;編程/設定類;伺服類;行程開關報警類;印刷線路板間的連接故障類。
2.3 離線診斷
離線診斷是指數控系統出現故障後,數控系統製造廠家或專業維修中心利用專用的診斷軟體和測試裝置進行停機(或離線)檢查。力求把故障定位到盡可能小的范圍內,如縮小到某個功能模塊、某部分電路,甚至某個晶元或元件,這種故障定位更為精確。
2.4 現代診斷技術
隨著電信技術的發展,IC和微機性價比的提高,近年來國外已將一些新的概念和方法成功地引用到診斷領域。
(1) 通信診斷
也稱遠程診斷,即利用電話通訊線把帶故障的CNC系統和專業維修中心的專用通訊診斷計算機通過連接進行測試診斷。如西門子公司在CNC系統診斷中採用了這種診斷功能,用戶把CNC系統中專用的「通信介面」連接在普通電話線上,而兩門子公司維修中心的專用通迅診斷計算機的「數據電話」也連接到電話線路上,然後由計算機向 CNC系統發送診斷程序,並將測試數據輸回到計算機進行分析並得出結論,隨後將診斷結論和處理辦法通知用戶。
通訊診斷系統還可為用戶作定期的預防性診斷,維修人員不必親臨現場,只需按預定的時間對機床作一系列運行檢查,在維修中心分析診斷數據,可發現存在的故障隱患,以便及早採取措施。當然,這類CNC系統必須具備遠程診斷介面及聯網功能。
(2) 自修復系統
就是在系統內設置有備用模塊,在CNC系統的軟體中裝有自修復程序,當該軟體在運行時一旦發現某個模塊有故障時,系統一方面將故障信息顯示在CRT上,同時自動尋找是否有備用模塊,如有備用模塊,則系統能自動使故障離線,而接通備用模塊使系統能較快地進入正常工作狀態。這種方案適用於無人管理的自動化工作場合。
需要注意的是:機床在實際使用中也有些故障既無報警,現象也不是很明顯,對這種情況,處理起來就不那樣簡單了。另外有此設備出現故障後,不但無報警信息,而且缺乏有關維修所需的資料。對這類故障的診斷處理,必須根據具體情況仔細檢查,從現象的微小之處進行分析,找出它的真正原因。要查清這類故障的原因,首先必須從各種表面現象中找山它的真實故障現象,再從確認的故障現象中找出發生的原因。全面地分析一個故障現象是決定判斷是否正確的重要因素。在查找故障原因前,首先必須了解以下情況:故障是在正常工作中出現還是剛開機就出現的;山現的次數是第一次還是已多次發生;確認機床加工程序的正確性;是否有其他人
3、數控機床的常見故障排除方法
由於數控機床故障比較復雜,同時數控系統自診斷能力還不能對系統的所有部件進行測試,往往是一個報警號指示出眾多的故障原因,使人難以入手。下面介紹維修人員任生產實踐中常用的排除故障方法。
3.1直觀檢查法
直觀檢查法是維修人員根據對故障發生時的各種光、聲、味等異常現象的觀察,確定故障范圍,可將故障范圍縮小到一個模塊或一塊電路板上,然後再進行排除。一般包括:
a.詢問:向故障現場人員仔細詢問故障產生的過程、故障表象及故障後果等;
b.目視:總體查看機床各部分工作狀態是否處於正常狀態,各電控裝置有無報警指示,局部查看有無保險燒斷,元器件燒焦、開裂、電線電纜脫落,各操作元件位置正確與否等等;
c.觸摸:在整機斷電條件下可以通過觸摸各主要電路板的安裝狀況、各插頭座的插接狀況、各功率及信號導線的聯接狀況以及用手摸並輕搖元器件,尤其是大體積的阻容、半導體器件有無松動之感,以此可檢查出一些斷腳、虛焊、接觸不良等故障;
d.通電:是指為了檢查有無冒煙、打火,有無異常聲音、氣味以及觸摸有無過熱電動機和元件存在而通電,一旦發現立即斷電分析。如果存在破壞性故障,必須排除後方可通電。
例:一台數控加工中心在運行一段時間後,CRT顯示器突然出現無顯示故障,而機床還可繼續運轉。停機後再開又一切正常。觀察發現,設備運轉過程中,每當發生振動時故障就可能發生。初步判斷是元件接觸不良。當檢查顯示板時,CRT顯示突然消失。檢查發現有一晶振的兩個引腳均虛焊松動。重新焊接後,故障消除。
3.2 初始化復位法
一般情況下,由於瞬時故障引起的系統報警,可用硬體復位或開關系統電源依次來清除故障。若系統工作存貯區由於掉電、撥插線路板或電池欠壓造成混亂,則必須對系統進行初始化清除,清除前應注意作好數據拷貝記錄,若初始化後故障仍無法排除,則進行硬體診斷。
例:一台數控車床當按下自動運行鍵,微機拒不執行加工程序,也不顯示故障自檢提示,顯示屏幕處於復位狀態(只顯示菜單)。有時手動、編輯功能正常,檢查用戶程序、各種參數完全正確;有時因記憶電池失效,更換記憶電池等,系統顯示某一方向尺寸超量或各方向的尺寸都超最(顯示尺寸超過機床實斤能加工的最大尺寸或超過系統能夠認可的最大尺寸)。排除方法:採用初始化復位法使系統清零復位(一般要用特殊組合健或密碼)。3.3 自診斷法
數控系統已具備了較強的自診斷功能,並能隨時監視數控系統的硬體和軟體的工作狀態。利用自診斷功能,能顯示出系統與主機之間的介面信息的狀態,從而判斷出故障發生在機械部分還是數控部分,並顯示出故障的大體部位(故障代碼)。
a.硬體報警指示:是指包括數控系統、伺服系統在內的各電氣裝置上的各種狀態和故障指示燈,結合指示燈狀態和相應的功能說明便可獲知指示內容及故障原因與排除方法;
b.軟體報警指示:系統軟體、PLC程序與加工程序中的故障通常都設有報警顯示,依據顯示的報警號對照相應的診斷說明手冊便可獲知可能的故障原因及排除方法。
功能程序測試法是將數控系統的G、M、S、T、F功能用編程法編成一個功能試驗程序,並存儲在相應的介質上,如紙帶和磁帶等。在故障診斷時運行這個程序,可快速判定故障發生的可能起因。
功能程序測試法常應用於以下場合:
a.機床加工造成廢品而一時無法確定是編程操作不當、還是數控系統故障引起;
b. 數控系統出現隨機性故障,一時難以區別是外來干擾,還是系統穩定性個好;
c. 閑置時間較長的數控機床在投入使用前或對數控機床進行定期檢修時。
例:一台FANUC9系統的立式銑床在自動加工某一曲線零件時出現爬行現象,表面粗糙度極差。在運行測試程序時,直線、圓弧插補時皆無爬行,由此確定原因在編程方面。對加工程序仔細檢查後發現該曲線由很多小段圓弧組成,而編程時又使用了正確定位外檢查C61指令之故。將程序中的G61取消,改用G64後,爬行現象消除。
3.5 備件替換法
用好的備件替換診斷出壞的線路板,即在分析出故障大致起因的情況下,維修人員可以利用備用的印刷電路板、集成電路晶元或元器件替換有疑點的部分,從而把故障范圍縮小到印刷線路板或晶元一級。並做相應的初始化起動,使機床迅速投入正常運轉。
對於現代數控的維修,越來越多的情況採用這種方法進行診斷,然後用備件替換損壞模塊,使系統正常工作。盡最大可能縮短故障停機時間,使用這種方法在操作時注意一定要在停電狀態下進行,還要仔細檢查線路板的版本、型號、各種標記、跨接是否相同,若不一致則不能更換。拆線時應做好標志和記錄。
一般不要輕易更換CPU板、存儲器板及電地,否則有可能造成程序和機床參數的丟失,使故障擴大。
例:一台採用西門子SINUMERIK SYSTEM 3系統的數控機床,其PLC采川S5—130w/B,一次發生故障時,通過NC系統PC功能輸入的R參數,在加工中不起作用,不能更改加上程序中R參數的數值。通過對NC系統工作原理及故障現象的分析,認為PLC的主板有問題,與另一台機床的主板對換後,進一步確定為PLC主板的問題。經專業廠家維修,故障被排除。
3.6 交叉換位法
當發現故障板或者個能確定是否是故障板而又沒有備件的情況下,可以將系統中相同或相兼容的兩個板互換檢查,例如兩個坐標的指令板或伺服板的交換,從中判斷故障板或故障部位。這種交叉換位法應特別注意,不僅要硬體接線的正確交換,還要將一系列相應的參數交換,否則不僅達不到目的,反而會產生新的故障造成思維混亂,一定要事先考慮周全,設計好軟、硬體交換方案,准確無誤再行交換檢查。
例:一台數控車床出現X向進給正常,Z向進給出現振動、噪音大、精度差,採用手動和手搖脈沖進給時也如此。觀察各驅動板指示燈亮度及其變化基本正常,疑是Z軸步進電動機及其引線開路或Z軸機械故障。遂將Z軸電機引線換到X軸電機上,X軸電機運行正常,說明Z軸電動機引線正常;又將X軸電機引線換到Z軸電機上,故障依舊;可以斷定是Z軸電動機故障或Z軸機械故障。測量電動機引線,發現一相開路。修復步進電動機,故障排除。
3.7 參數檢查法
系統參數是確定系統功能的依據,參數設定錯誤就可能造成系統的故障或某功能無效。發生故障時應及時核對系統參數,參數一般存放在磁泡存儲器或存放在需由電池保持的 CMOS RAM中,一旦電池電量不足或由於外界的干擾等因素,使個別參數丟失或變化,發生混亂,使機床無法正常工作。此時,可通過核對、修正參數,將故障排除。
例:一台數控銑床上採用了測量循環系統,這一功能要求有一個背景存貯器,調試時發現這一功能無法實現。檢查發現確定背景存貯器存在的數據位沒有設定,經設定後該功能正常。
又如:一台數控車床數控刀架換對突然出現故障,系統無法自動運行,在手動換刀時,總要過一段時間才能再次換刀。遂對刀補等參數進行檢查,發現一個手冊上沒有說明的參數P20變為20,經查有關資料P20是刀架換刀時間參數,將其清零,故障排除。
有時由於用戶程序和參數錯誤亦可造成故障停機,對此可以採用系統的程序自診斷功能進行檢查,改正所有錯誤,以確保其正常運行。
3.8 測量比較法
CNC系統生產廠在設計印刷線路板時,為了調整和維修方便,在印刷線路板上設計了一些檢測端子。維修人員通過測量這些檢測端子的電壓或波形,可檢查有關電路的工作狀態是否正常。但利用檢測端子進行測量之前,應先熟悉這些檢測端子的作用及有關部分的電路或邏輯關系。
3.9 敲擊法
當系統故障表現為有時正常有時不正常時,基本可以斷定為元器件接觸不良或焊點開焊,利用敲擊法檢查時,當敲擊到虛焊或接觸不良的故障部位時,故障就會出現。
3.10 局部升溫法
數控系統經過長期運行後元件均要老化,性能變壞。當它們尚未完全損壞時,出現的故障就會時有時無。這時用電烙鐵或電吹風對被懷疑的元件進行局部加溫,會使故障快速出現。操作時,要注意元器件的溫度參數等,注意不要損壞好的元器件。
3.11 原理分析法
根據數控系統的組成原理,可從邏輯上分析各點的邏輯電平和特性參數,如電壓值和波形,使用儀器儀表進行測量、分析、比較,從而確定故障部位。
除以上常用的故障檢測方法之外,還可以採用拔插板法、電壓拉偏法、開環檢測法等。總之,根據不同的故障現象,可以同時選用幾個方法靈活應用、綜合分析,才能逐步縮小故障范圍,較快地排除故障。
4、數控機床維修後的開機調試
機床的故障排除後通常分兩大步進行通電試車:
4.1 自動狀態試驗
將機床鎖住,用編制的程序進行空運轉試驗,驗證程序的正確性,然後放開機床,分別將進給倍率開關、快速超凋開關、主軸速度超調開關進行多種變化,使機床在上述各開關的多種變化的情況下進行充分地運行,後將各超調開關置於100%處,使機床充分運行,觀察整機的工作情況是否正常。
4.2 正常加工試驗
夾裝好工件按正常程序進行加工,加工後檢查工件的加工精度是否符合標准要求
5、維修調試後的技術處理
在現場維修結束後,應認真填寫維修記錄,列出有關必備的備件清單,建立用戶檔案。對於故障時間、現象、分析診斷方法、採用排故方法,如果有遺留問題應詳盡記錄,這樣不僅使每次故障都有據可查,而且也可以不斷積累維修經驗。
6. 數控車床手工編程中幾個常見問題的處理
隨著數控技術的不斷發展,數控機床的使用量越來越多,尤其在中小型企業和大型企業的修配車間,數控車床單件小批生產的情況也越來越多。而目前這些企業或車間生產零件往往是採用手工編程,刀具也往往是通用硬質合金或高速鋼材料,其耐磨性相對不理想;操作人員在工作過程中大都要進行多次對刀、多次測量,從而多次設定刀補,工作量很大;對於一個零件多次裝夾才能加工完成的,往往要使用多個程序,佔用了系統的內存量;有的數控車床系統指令長時間不用,電器元件老化等原因造成到使用時可能會出現不能用的現象,也影響其使用壽命;編程人員對工件坐標系建立不當,加工質量有時難以得到保證;我在此僅根據自己多年的授課感受和在企業了解的情況,發現了一些關於數控車床編程中常見的幾個問題,並總結出了一點相關規律,現陳述如下。
一、工藝問題
零件加工工藝的合理與否,直接反映和影響其加工質量,也要影響其生產率。不同的零件,其工藝不一樣。例如加工順序問題,如圖所示零件,其基本加工順序應為:
1.夾持右端(夾持長度50mm)車左端?25、?40及倒角達到要求;
2.以?25外圓和?40左端面定位車右端達到要求。
這樣,滿足了基準重合,既容易保證軸向尺寸要求,也容易滿足同軸度要求。
其它工藝問題,這里不再贅述。
二、巧用G50(G92)與M00
靈活和巧妙使用G50(G92)與M00,既可以減少對刀次數,又可以減少程序數量,從而少用系統內存,也提高了生產率 。
如上圖所示零件,車小端對刀端面Z坐標若設定為2(留2mm車端面),當車完後刀具走到(X50 Z37)點(第二對刀點)後使用M00,掉頭可用G50(G92)設對刀點坐標:
G50(G92) X50 Z80
即可按下循環啟動,無需再對刀,節約時間,以提高生產率,且只需一個程序就行了。如果中途不使用 G50(G92)與M00 或其它坐標設定,則需要兩個程序才行。
下面談談第二對刀點Z坐標如何確定:
1.確定第一次裝夾後,車了端面的露出總長度L1
2.確定第二次裝夾厚露出總長度L2
3.計算L=L2-L1+a(a是刀具在對刀點處與工件間的安全距離)
4.第一次裝夾後的坐標系中的Z坐標Z1+L即為第二對刀點在第一次裝夾加工後應移動到的坐標值(Z1:第一對刀點的坐標值)
5.根據第二次裝夾後的基準確定其G50的坐標值,如工件右端面為編程基準,Z為a;如卡盤端面為編程基準,Z為L2+a.,以此類推。
三、編程中基準的問題
編程基準應與設計基準重合,避免出現基準不重合誤差,從而不進行尺寸鏈計算。
如上圖所示零件,車右端應該以?40左端面為軸向(Z坐標)基準,否則除螺紋面和錐面兩個長度尺寸以外,均需要進行尺寸鏈計算,有的尺寸很難達到圖紙要求!
四、編程中絕對坐標與增量坐標的使用問題
合理使用絕對坐標與增量坐標可以在編程中簡化計算和便於保證質量。
如上圖所示零件,螺紋面與錐面的長度尺寸如果採用絕對坐標編程,需要進行尺寸鏈計算,增加了計算工作量,且難達到圖紙要求,採用增量坐標就不需進行尺寸鏈計算了,也很容易達到要求。
五、編程中徑向尺寸的確定
編程中徑向尺寸的確定準確與否,在數控加工的手工編程過程中有著非常重要的意義。一方面影響操作人員的工作量,一方面又要影響生產率。我認為如果採用下述方法確定既可以減少因刀具磨損使操作人員多次進行刀補設定的工作量,又可以提高生產率。
1.如為自由公差,按基本尺寸計算坐標;
2.如有公差,按最小實體尺寸原則計算坐標;
1)外輪廓尺寸,按最小極限尺寸計算;
2)內輪廓尺寸,按最大極限尺寸計算。
六、系統中的指令代碼問題與螺紋加工切入點問題
系統中每一個指令都有其特殊含義,在編程中,應根據加工性質採用合理的加工指令和合理的切入點(特別是螺紋加工的切入點),這對保證加工質量有著很重要的意義,這里就不多說了,下面以一個具體實例說明之。
綜上所述,數控車床在單件小批生產中,只要把工藝解決好、編程基準選擇好、基點坐標計算準確、絕對/增量坐標使用得當、對刀點指令使用靈活,既可以減輕操作人員的工作量,提高生產率,又可以使工件質量容易得到保證;編程時根據加工要求和系統指令特點,合理使用指令,既可以使加工質量容易得到保證,提高生產率,又可以使數控系統中的電器元件在工作中得到保養,提高其使用壽命。
7. 數控加工中心常見的問題與對策各是什麼
1、參數突然丟失(0MD系統)
FANUC專家您好:我公司一台卧式加工中心在運行中出現930AL和CRT顯示條形亂碼,重新關機開機後所有參數丟失.然後在開機狀態下輸入參數機床可以正常運行.不知這是為什麼?煩請您給予支持與幫助.在此表示感謝!
答:參數突然丟失,可能與存儲板、電池或外部干擾有關,930也說明外部可能有干擾導致CPU工作不正常,出現系統報警。也不排除主板或其他PCB故障。
2、926報警(18i)
感謝貴公司對我前兩次疑問的回復。現另一加工中心出現了926報警,之後控制系統的LCD上除報警信息外,無任何顯示(當時電控櫃內溫度較高),不知何故,盼解答。謝謝!
答:926報警(FSSB報警)原因和處理連接CNC和伺服放大器的FSSB(伺服串列匯流排)發生故障。如果連接軸控制卡的FSSB,光纜和伺服放大器出現問題,就會發生此報警。??確認故障位置使用伺服放大器上的LED判斷。使用伺服放大器上的7段LED可以確認故障的位置??伺服放大器的電源如果某個伺服放大器的電源出現故障,就發生FSSB報警。由於放大故障器控制電源電壓下降,或編碼器電纜的+5V接地,或其他原因造成電源故障,引發FSSB報警。??更換軸控制卡如果由以上措施診斷出軸控制卡存在故障,就更換主CPU板上的軸控制卡。
3、報警(0imate-B)
你好:非常感謝貴公司的產品給我們的生產帶來了放便,最近我公司的一台車床經常出現920,911,930報警,其中930最多,請提供技術支持.我將不勝感激.地址;山東省濱洲市惠民縣活塞公司
答:911SRAMPARITY:(BYTE1)在部分程序存儲RAM中發生奇偶校驗錯誤。全清RAM,或更換SRAM模塊或主板。然後重新設定參數和數據。920SERVOALARM(1-4AXIS)這是伺服報警(第一到第四軸)。出現了監控報警或伺服模塊內RAM奇偶錯誤。請更換主板上的伺服控制模塊930CPUINTERRUPTCPU報警非正常中斷。主板或CPU卡不良。可以通過交換部件的方法確認故障部件,另外機床接地,外部干擾也必須引起注意
4、參數不可改寫(BJ-FANUCOi-MB)
你好,我公司有一台新機為台灣產的遠東機,新機裝好後,試機,發現B軸不能回零,當B軸轉到回零開關處開始減速,但轉沒多久就會出現90號報警,不能回零,不知是什麼原因,請幫忙!多謝!
答:90號報警說明:當不滿足?在返回參考點的方向上,以相當於位置偏差量(DGN.300)大於128個脈沖的速度返回參考點時,CNC至少有一次收到了1轉信號的條件,進行返回參考點時,出現此報警。檢查:1.回零速度.2.一轉信號?
5、加工中心(FANUC-18iM)
機床在停用一段時間後開機,出現報警:701:OVERHEAT:FANMOTOR經查該報警為CNC系統冷卻風扇故障,但是檢查後發現風扇運轉正常,報警一直不能消除掉。最後只有將參數8901的#0由」0」改為」1」,屏蔽掉該報警。希望能夠幫助解決,謝謝!
答:風扇壞了,但還可以轉動,只能購買一個新的更換。
常見故障問答
6、機床報警(FANUC-18)
在主軸過載後機床報警,報警號為751,主軸伺服模塊報警號為AL-73請問怎樣修理。
答:電機感測器信號斷線。(1)電機勵磁關閉時發生報警的情形(a)參數設定有誤確認感測器設定參數。(b)電纜斷線請更換電纜。(c)感測器調整故障請進行感測器信號的調整。無法調整時或信號觀測不到時,請更換連接電纜及感測器。(d)SPM故障請更換SPM或SPM控制印製電路板。(2)觸動電纜時(主軸運行等)發生報警可能是導線斷線,請更換電纜。有切削油侵入連接器部分時,請進行清洗(3)電機旋轉時發生報警的情形(a)感測器與SPM之間的電纜屏蔽處理故障確認電纜屏蔽處理。(b)與伺服電機的動力線綁扎到了一起如果從感測器到SPM之間電纜與伺服電機動力線綁扎到了一起,請分別綁扎。
7、351報警(Oi-M)
一加工中心,OI-M系統,NC控制X,Y,Z,B4軸,B軸為回轉軸。故障現象:在加工中,出現351報警,且均在N5H6Z344.2程序段處,但此段並沒有B軸工作指令。出現故障後,4軸模塊均出現」-」顯示。重新上電後正常,工作一段時間後,又出現此故障。現平均每班出現2-3回。解決:通過診斷畫面0203#5#6為1,故障范圍為1:信號電纜連接不良;2編碼器,主板,伺服模塊硬體不良。因為重起一遍後可以暫時排除故障,可以排除1。針對2,我們把編碼器,主板,伺服模塊的插頭重插了一遍,沒什麼效果,故障還是有。請您分析一下,我們下一步該怎麼做
答:主要從1處查,和信號電纜有關,檢查報警的軸的信號電纜線,看在什麼時候有移動(往往在其他軸移動式,這個軸的電纜被拖動)。電纜線如果長期被折過來折過去,就會接觸不好,報警就會不定期出現。這時候只能更換新的電纜了。
8、408#和409#同時報警處理(FANUC0MD)
機床出現408和409報警的原因有幾種,請指教
答:一般不太可能同時出現408,409報警。408是通信不良,就是主軸放大器和系統(存儲板)之間不能通信。一般是主軸放大器沒有電,或介面壞了409報警,是主軸放大器出現了報警號碼。具體的報警號碼在放大器上顯示。
9、風扇(0i-mate-TB)
系統出現」611,9113」號報警後,經檢查電源模塊冷卻片風扇不轉,更換另一台正常運轉的風扇後正常工作。確認風扇壞。購買同一類型的的風扇更換後仍舊出現上述報警(風扇正常運轉),經檢查發現此風扇雖然同一廠家生產但電流較之原來的0.1A大了0.03A,再將之與主軸驅動模塊上的風扇實施對調,不再出現」611,9113」號報警,但在CRT上出現」FAN」閃爍,不影響加工。問是否風扇的檢測並不以來熱敏電阻之類的檢測元件,而僅僅是電流大小的檢測而已?
答:最好購買同型號的風扇CRT上出現」FAN」閃爍是因為主軸驅動模塊散熱片上還有一個外部風扇有問題
10、971報警!(BJFANUC0i-MateTB)
該機床為沈陽機床廠生產的CAK6150D數控車,在自動運行過程中經常出現971號報警,關閉CNC後再開啟,報警消除!請指導維修~!
答:可能是I/O卡的電源或連接線松動。
11、請問FS21T系統的506,507報警表示什麼(FS21T)
我公司的一台FS21T系統的數控車床開機即報警506、507,請問FS21T系統的506、507報警表示什麼,怎樣解決?
答:506OVERTRAVEL:+nExceededthen-thaxis+sidehardwareOT.507OVERTRAVEL:-nExceededthen-thaxis-sidehardwareOT.硬體超程是否同時出現?
12、位置顯示(FANUC-0M)
位置顯示故障,位置顯示由原來小數點後三位變為四位答:參數修改:No.0001#0SCW1改為0即可
追問: 在找點。。。。太少了。。。回答:
1、採用適當合理的對刀方法
刀具安裝後,在執行加工程序前首先要進行對刀以確定起始點位置。而對刀常常是操作者頗感頭疼的事(經濟型數控無自測裝置),費工費時,特別是多刀加工時,還需測刀補值。通常,常用的對刀方法有:
點動對刀法
按住控制面板上點動鍵,將刀尖輕觸被加工件表面(X和Z兩個方向分兩次進行點動),計數器清零,再退到需設定的初始位置(X、Z設計初值),再清零,得到該刀初始位置。依次確定每把刀的初始位置,經試加工後再調整到准確的設計位置(起始點)。這種方法無須任何輔具,隨手就可操作,但時間較長,特別是每修磨一次刀具就必須重新調整一次。
該方法適合於簡單工序或初次安裝調試。
採用對刀儀法 機床選配的對刀儀有採用自測裝置,但操作復雜,仍須花費一定的准備時間。適合多刀測量時使用。
採用數控刀具
刀具安裝經初次定位後,在經過一段時間切削後產生磨損而需要刃磨,普通刀具刃磨後重新安裝時的刀尖位置發生了變化,需要重新對刀。而數控刀具的特點是刀具製造精度高,刀片轉位後重復定位精度在0.02mm 左右,大大減少了對刀時間:同時,刀片表面上塗有耐磨層(SiC、TiC等),使其耐用度大大提高(3~5倍),但成本較高。
採用自製對刀塊法
用塑料、有機玻璃等製成簡易對刀塊,可方便地實現刀具刃磨後的重復定位,但定位精度較差,通常在0.2~0.5mm,但仍不失為一種快速定位方法,再次調整就很快很方便了。
2、加工球面易產生形狀誤差的消除方法
在加工球面尤其是加工過象限的球、曲面時,由於調整不當,很容易產生凸肩、鏟背等情況。其原因主要有:
系統間隙造成
在設備傳動副中,絲杠與螺母之間存在著一定的間隙,隨著設備投入運行時間的增長,該間隙因磨損而逐漸增大,因此,對反向運動時進行相應的間隙補償是克服加工表面產生凸肩的主要因素。間隙測量通常采有百分表測量法,誤差控制在0.01~0.02mm之內。這里要指出的是表座和表桿不應伸出過高過長,因為測量時由於懸臂較長,表座易受力移動,造成計數不準,補償值也就不真實了。
工件加工餘量不均造成
在實現零件設計表面之前,待加工表面的加工餘量是否均勻也是造成成型表面能否達到設計要求的一個重要原因,因為加工餘量不均易造成「復映」誤差。因此,對表面形狀要求較高的零件,在成型前應盡可能做到加工餘量均勻或者通過多加工一道型面的方法以達到設計要求。
刀具選擇不當造成
刀具在切削中是通過主切削刃來去除材料的。但在圓弧加工過象限後,圓弧與刀具副切削刃(副後面與基面的交線)相切之後,此後副切削刃就可能參與了切削(也就是鏟背)。因此在選擇或修磨刀具時,一定要考慮好刀具的楔角。
3、合理設計加工工藝
使用數控加工設備進行加工,效率高、質量好,但如果工藝設計安排不當,則不能很好地體現它的優勢。從一些廠家加工使用來看,存在著如下一些問題:
工序過於分散
產生這個問題的原因在於怕繁(指准備時間),編程簡單、簡化操作加工,使用一把刀加工易調整對刀、習慣於普通加工。
這樣就造成了產品質量(位置公差)不易保證,生產效率不能很好地發揮。因此,工藝人員和操作者應全面熟悉數控加工知識,多進行嘗試,以掌握相關知識,盡可能採用工序集中的方法進行加工,多用幾次,自然會體現它的優勢。採用工序集中後,單位加工時間增長,我們將兩台設備面對面布置,實現了一人操作兩台設備,效率得到大幅提高,質量也得到了很好的保證。
加工順序不合理
有些操作者考慮到准備上的一些問題,常把加工順序安排得極不合理。數控加工通常按一般機械加工工藝編制的要求進行加工,如先粗後細(換刀),先里後外,合理選擇切削參數等,這樣,質量和效率才能提高。
慎用G00(G26、G27、G29)快速定位指令
G00指令給編程和使用帶來了很大方便。但如果設置和使用不當,常常會造成因速度設置過大產生回零時過沖、精度下降、設備導軌面拉傷等不良後果。回零路線不注意,易產生碰撞工件和設備的安全事故。因此,在考慮使用G00
指令時,應考慮周全,不可隨意。
在數控加工中,尤其還應注意加強程序的檢索和試運行。在程序輸入控制系統後,操作者應當利用SCH
鍵及↑、↓、←、→移動鍵進行不確定和確定檢索,必要時對程序進行修改,保證程序的准確性。同時,在正式執行程序加工前,必須經過程序試運行(打開功放),以確認加工路線是否與設計路線一致。
以上是使用數控加工設備時的一些常見問題與解決辦法。在實際工作中可能還會遇到其他一些問題,但只要工程技術人員和操作者集思廣益,認真掌握有關數控方面的知識和技巧,數控設備就能夠很好地為企業發揮最大的效益。 一、問:如何對加工工序進行劃分?答:數控加工工序的劃分一般可按下列方法進行:(1)刀具集中分序法
就是按所用刀具劃分工序,用同一把刀具加工完零件上所有可以完成的部位。在用第二把刀、第三把完成它們可以完成的其它部位。這樣可減少換刀次數,壓縮空程時間,減少不必要的定位誤差。(2)以加工部位分序法
對於加工內容很多的零件,可按其結構特點將加工部分分成幾個部分,如內形、外形、曲面或平面等。一般先加工平面、定位面,後加工孔;先加工簡單的幾何形狀,再加工復雜的幾何形狀;先加工精度較低的部位,再加工精度要求較高的部位。(3)以粗、精加工分序法
對於易發生加工變形的零件,由於粗加工後可能發生的變形而需要進行校形,故一般來說凡要進行粗、精加工的都要將工序分開。綜上所述,在劃分工序時,一定要視零件的結構與工藝性,機床的功能,零件數控加工內容的多少,安裝次數及本單位生產組織狀況靈活掌握。另建議採用工序集中的原則還是採用工序分散的原則,要根據實際情況來確定,但一定力求合理。二、問:加工順序的安排應遵循什麼原則?答:加工順序的安排應根據零件的結構和毛坯狀況,以及定位夾緊的需要來考慮,重點是工件的剛性不被破壞。順序一般應按下列原則進行:(1)上道工序的加工不能影響下道工序的定位與夾緊,中間穿插有通用機床加工工序的也要綜合考慮。(2)先進行內形內腔加工序,後進行外形加工工序。(3)以相同定位、夾緊方式或同一把刀加工的工序最好連接進行,以減少重復定位次數,換刀次數與挪動壓板次數。(4)在同一次安裝中進行的多道工序,應先安排對工件剛性破壞小的工序。三、問:工件裝夾方式的確定應注意那幾方面?答:在確定定位基準與夾緊方案時應注意下列三點:(1)力求設計、工藝、與編程計算的基準統一。(2)盡量減少裝夾次數,盡可能做到在一次定位後就能加工出全部待加工表面。(3)避免採用占機人工調整方案。(4)夾具要開暢,其定位、夾緊機構不能影響加工中的走刀(如產生碰撞),碰到此類情況時,可採用用虎鉗或加底板抽螺絲的方式裝夾。四、問:如何確定對刀點比較合理?工件坐標系與編程坐標系有什麼關系?1、對刀點可以設在被加工零件的上,但注意對刀點必須是基準位或已精加工過的部位,有時在第一道工序後對刀點被加工毀壞,會導致第二道工序和之後的對刀點無從查找,因此在第一道工序對刀時注意要在與定位基準有相對固定尺寸關系的地方設立一個相對對刀位置,這樣可以根據它們之間的相對位置關系找回原對刀點。這個相對對對刀位置通常設在機床工作台或夾具上。其選擇原則如下:
1)找正容易。 2)編程方便。 3)對刀誤差小。 4)加工時檢查方便、可靠。 2、工件坐標系的原點位置是由操作者自己設定的,它在工件裝夾完畢後,通過對刀確定,它反映的是工件與機床零點之間的距離位置關系。工件坐標系一旦固定,一般不作改變。工件坐標系與編程坐標系兩者必須統一,即在加工時,工件坐標系和編程坐標系是一致的。
五、問:如何選擇走刀路線? 走刀路線是指數控加工過程中刀具相對於被加工件的運動軌跡和方向。加工路線的合理選擇是非常重要的,因為它與零件的加工精度和表面質量密卻相關。在確定走刀路線是主要考慮下列幾點:
1)保證零件的加工精度要求。 2)方便數值計算,減少編程工作量。 3)尋求最短加工路線,減少空刀時間以提高加工效率。 4)盡量減少程序段數。 5)保證工件輪廓表面加工後的粗糙度的要求,最終輪廓應安排最後一走刀連續加工出來。 6)刀具的進退刀(切入與切出)路線也要認真考慮,以盡量減少在輪廓處停刀(切削力突然變化造成彈性變形)而留下刀痕,也要避免在輪廓面上垂直下刀而劃傷工件。
六、問:如何在加工過程中監控與調整? 工件在找正及程序調試完成之後,就可進入自動加工階段。在自動加工過程中,操作者要對切削的過程進行監控,防止出現非正常切削造成工件質量問題及其它事故。
對切削過程進行監控主要考慮以下幾個方面: 1、加工過程監控
粗加工主要考慮的是工件表面的多餘餘量的快速切除。在機床自動加工過程中,根據設定的切削用量,刀具按預定的切削軌跡自動切削。此時操作者應注意通過切削負荷表觀察自動加工過程中的切削負荷變化情況,根據刀具的承受力狀況,調整切削用量,發揮機床的最大效率。
2、切削過程中切削聲音的監控
在自動切削過程中,一般開始切削時,刀具切削工件的聲音是穩定的、連續的、輕快的,此時機床的運動是平穩的。隨著切削過程的進行,當工件上有硬質點或刀具磨損或刀具送夾等原因後,切削過程出現不穩定,不穩定的表現是切削聲音發生變化,刀具與工件之間會出現相互撞擊聲,機床會出現震動。此時應及時調整切削用量及切削條件,當調整效果不明顯時,應暫停機床,檢查刀具及工件狀況。
3、精加工過程監控
精加工,主要是保證工件的加工尺寸和加工表面質量,切削速度較高,進給量較大。此時應著重注意積屑瘤對加工表面的影響,對於型腔加工,還應注意拐角處加工過切與讓刀。對於上述問題的解決,一是要注意調整切削液的噴淋位置,讓加工表面時刻處於最佳]的冷卻條件;二是要注意觀察工件的已加工面質量,通過調整切削用量,盡可能避免質量的變化。如調整仍無明顯效果,則應停機檢察原程序編得是否合理。
特別注意的是,在暫停檢查或停機檢查時,要注意刀具的位置。如刀具在切削過程中停機,突然的主軸停轉,會使工件表面產生刀痕。一般應在刀具離開切削狀態時,考慮停機。
4、刀具監控
刀具的質量很大程度決定了工件的加工質量。在自動加工切削過程中,要通過聲音監控、切削時間控制、切削過程中暫停檢查、工件表面分析等方法判斷刀具的正常磨損狀況及非正常破損狀況。要根據加工要求,對刀具及時處理,防止發生由刀具未及時處理而產生的加工質量問題。
七、問:如何合理選擇加工刀具?切削用量有幾大要素?有幾種材料的刀具?如何確定刀具的轉速,切削速度,切削寬度?
1、平面銑削時應選用不重磨硬質合金端銑刀或立銑刀。一般銑削時,盡量採用二次走刀加工,第一次走刀最好用端銑刀粗銑,沿工件表面連續走刀。每次走刀寬度推薦至為刀具直徑的60%--75%。
2、立銑刀和鑲硬質合金刀片的端銑刀主要用於加工凸台、凹槽和箱口面。 3、球刀、圓刀(亦稱圓鼻刀)常用於加工曲面和變斜角輪廓外形。而球刀多用於半精加工和精加工。鑲硬質合金刀具的圓刀多用於開粗。
八、問:加工程序單有什麼作用?在加工程序單中應包括什麼內容? (一)加工程序單是數控加工工藝設計的內容之一,也是需要操作者遵守、執行的規程,是加工程序的具體說明,目的是讓操作者明確程序的內容、裝夾和定位方式、各個加工程序所選用的刀具既應注意的問題等。
(二)在加工程序單里,應包括:繪圖和編程文件名,工件名稱,裝夾草圖,程序名,每個程序所使用的刀具、切削的最大深度,加工性質(如粗加工還是精加工),理論加工時間等。
九、問:數控編程前要做何准備? 答:在確定加工工藝後,編程前要了解:1、工件裝夾方式
;2、工件毛胚的大小----以便確定加工的范圍或是否需要多次裝夾;3、工件的材料----以便選擇加工所使用何種刀具;4、庫存的刀具有哪些----避免在加工時因無此刀具要修改程序,若一定要用到此刀具,則可以提前准備。
十、問:在編程中安全高度的設定有什麼原則? 答:安全高度的設定原則:一般高過島嶼的最高面。或者將編程零點設在最高面,這樣也可以最大限度避免撞刀的危險。 十一、問:刀具路徑編出來之後,為什麼還要進行後處理? 答:因為不同的機床所能認到的地址碼和NC程序格式不同,所以要針對所使用的機床選擇正確的後處理格式才能保證編出來的程序可以運行。
十二、問:什麼是DNC通訊? (一)程序輸送的方式可分為CNC和DNC兩種,CNC是指程序通過媒體介質(如軟盤,讀帶機,通訊線等)輸送到機床的存儲器存儲起來,加工時從存儲器里調出程序來進行加工。由於存儲器的容量受大小的限制,所以當程序大的時候可採用DNC方式進行加工,由於DNC加工時機床直接從控制電腦讀取程序(也即是邊送邊做),所以不受存儲器的容量受大小的限制。
(二)切削用量有三大要素:切削深度,主軸轉速和進給速度。切削用量的選擇總體原則是:少切削,快進給(即切削深度小,進給速度快)。
(三)按材料分類,刀具一般分為普通硬質白鋼刀(材料為高速鋼),塗層刀具(如鍍鈦等),合金刀具(如鎢鋼,氮化硼刀具等)。