A. 凱氏定氮法測定食品中蛋白質含量的原理和基本操作方法是什麼
原理:有機含氮化合物與濃硫酸共熱消化,氮轉化為氨,再與硫酸結合成硫酸銨。硫酸銨與強鹼反應,放出氨。將氨蒸餾到過量的標准無機溶液中,再用標准鹼溶液進行滴定。根據測得的氨量,計算樣品的總氮量。
、試劑與材料:
濃硫酸、硫酸鉀-硫酸銅粉末(稱取80g硫酸鉀和20g硫酸銅(五水),0.3g二氧化硒研細混合)、30%氫氧化鈉溶液、2%硼酸溶液、0.01M標准鹽酸、混合指示劑(田氏指示劑)儲存液(取50ml0.1%甲烯藍乙醇溶液與200ml0.1%甲基紅溶液混合,儲存於棕色瓶中備用。此指示劑在PH5.2為紫色;PH為5.4為暗灰色或灰色;PH5.6為綠色;變色點為PH5.4)、硼酸-田氏指示劑混合液(100ml2%硼酸溶液,滴加約1ml田氏指示劑,搖勻後,溶液呈紫紅色)、蛋白質樣品、容量瓶、吸管、凱氏燒瓶、凱氏定氮蒸餾裝置、微量滴定管、電爐
三、操作方法
1、樣品處理:固體樣品,應在105℃乾燥至恆重。液體樣品可直接吸取一定量,也可經適當稀釋後,吸取一定量進行測定,使每一樣品的含氮量在0.2-1.0mg范圍內。
2、消化:取一定量樣品,於50ml乾燥的凱氏燒瓶內。加入300mg硫酸鉀-硫酸銅混合粉末,再加入3ml濃硫酸。用電爐加熱,在通風廚中消化,瓶口加一小漏斗。先以文火加熱,避免泡沫飛濺,不能讓泡沫上升到瓶頸,待泡沫停止發生後,加強火保持瓶內液體沸騰。時常轉動燒瓶使樣品全部消化完全,直至消化液清澈透明。
另取凱氏瓶一個,不加樣品,其它操作相同,作為空白試驗,用以測定試劑中可能含有的微量含氮物質,以對樣品進行校正。
3、蒸餾:將微量凱氏蒸餾裝置洗滌(先用水蒸氣洗滌)干凈。將凱氏燒瓶中的消化液冷卻後,全部轉入100ml的容量瓶,用蒸餾水定容至刻度。
吸取20ml稀釋消化液,置於蒸餾裝置的反應室中,加入10ml30%氫氧化鈉溶液,將玻璃塞塞緊,於漏斗中加一些蒸餾水,作為水封。
取一三角瓶,加入10ml硼酸-田氏指示劑混合液,置於冷凝管之下口,冷凝管口應浸沒在硼酸液面之下,以保證氨的吸收。
加熱水蒸汽發生器,沸騰後,夾緊夾子,凱氏蒸餾。三角瓶中的硼酸-指示劑混合液,吸收蒸餾出的氨,由紫紅色變為綠色。蒸餾15min,讓硼酸液面離開冷凝管口,再蒸1-2min以沖洗冷凝管口。空白試驗按同樣操作進行。
4、滴定:樣品和空白均蒸餾完畢後,用0.01M標准鹽酸滴定,至硼酸-指示劑混合液由綠色變回淡紫色,即為滴定終點。
四、計算 樣品總氮量(mg)=(A-B)×c×14×100/20
式中:A:樣品滴定時消耗的標准鹽酸體積 B:空白滴定時消耗的鹽酸體積 C:標准鹽酸的當量濃度 14:氮的相對分子量 20:用於蒸餾的稀釋消化液體積 100:稀釋消化液的體積
樣品中粗蛋白含量(mg)=樣品總氮量(mg)×6.25
B. 蛋白質含量的測定方法有哪些
蛋白質含量測定的方法有微量凱氏定氮法、雙縮脲法、folin―酚試劑法、考馬斯亮蘭法、紫外吸收法等。
1、微量凱氏定氮法:含氮有機物即分解產生氨(消化),氨又與硫酸作用,變成硫酸銨。經強鹼鹼化使之分解放出氨,借蒸汽將氨蒸至酸液中,根據此酸液被中和的程度可計算得樣品之氮含量。
2、雙縮脲法:雙縮脲是兩個分子脲經180℃左右加熱,放出一個分子氨後得到的產物。在強鹼性溶液中,雙縮脲與CuSO4形成紫色絡合物,稱為雙縮脲反應。
3、folin―酚試劑法:這種蛋白質測定法是最靈敏的方法之一。過去此法是應用最廣泛的一種方法,由於其試劑乙的配製較為困難,近年來逐漸被考馬斯亮蘭法所取代。
4、考馬斯亮蘭法:1976年由bradford建立的考馬斯亮蘭法,是根據蛋白質與染料相結合的原理設計的。這一方法是目前靈敏度最高的蛋白質測定法。
5、紫外吸收法:蛋白質分子中,酪氨酸、苯丙氨酸和色氨酸殘基的苯環含有共軛雙鍵,使蛋白質具有吸收紫外光的性質。吸收高峰在280nm處,其吸光度(即光密度值)與蛋白質含量成正比。
C. 凱氏定氮法原理是什麼
凱氏定氮法原理:即在有催化劑的條件下,用濃硫酸硝化樣品將有機氮都轉變成無機銨鹽,然後在鹼性條件下將銨鹽轉化為氨。
隨水蒸氣餾出並為過量的酸液吸收,再以標准酸滴定,就可計算出樣品中的氮量。由於蛋白質含氮量比較恆定,可由其氮量計算蛋白質含量,故此法是經典的蛋白質定量方法。
從凱氏定氮原理可以知道:凱氏定氮法是將含氮有機物轉變為無機氮硫酸銨來進行檢測,以得到含氮量的測定值乘以一定系數得出蛋白質含量。而含氮有機物不僅僅是蛋白質,還有三聚氰胺等等。在加上食品中蛋白質含量的現行國家標准和通行測定方法是經典凱氏定氮法。
這就為造假者提供了可乘之機。蛋白質中的含氮量不超過30%,三聚氰胺的zui大的特點是含氮量很高(66%),溶於水後無色無味,也就是說在一杯清水中加入三聚氰胺,然後用凱氏定氮法檢測,結果顯示是含有蛋白質的。
由於「凱氏定氮法」只能測出含氮量,並不能鑒定飼料中有無違規化學物質,所以,添加三聚氰胺的奶粉理論上可以測出較高的蛋白質含量。
應用
凱氏定氮法的普遍適用性、性和可重復性已經得到了的廣泛認可。它已經被確定為檢測食品中蛋白質含量的標准方法。但是,這種方法並不能給出真實的蛋白質含量,因為所測定的氮可能不僅僅是由蛋白質轉化來的。
D. 常用的蛋白質含量測定方法有哪些
①凱氏定氮法
原理:蛋白質平均含氮量為16%。當樣品與濃硫酸共熱,蛋白氮轉化為銨鹽,在強鹼性條件下將氨蒸出,用加有指示劑的硼酸吸收,最後用標准酸滴定硼酸,通過標准酸的用量即可求出蛋白質中的含氮量和蛋白質含量。
②雙縮脲法
原理:尿素在180℃下脫氨生成雙縮脲,在鹼性溶液中雙縮脲可與Cu2+形成穩定的紫紅色絡合物。蛋白質中的肽鍵實際上就是醯胺鍵,故多肽、蛋白質等都有雙縮脲(biuret)反應,產生藍色或紫色復合物。比色定蛋白質含量。
缺點:靈敏度低,樣品必須可溶,在大量糖類共存和含有脯氨酸的肽中顯色不好。其 精確度 較差 (數mg),且會受樣品中 硫酸銨 及 Tris 的干擾,但 准確度 較高,不受蛋白質的種類影響。
③Folin酚法(Lowry)
Folin酚法是biuret 法的延伸,所用試劑由試劑甲和乙兩部分組成。試劑甲相當於雙縮脲試劑(鹼性銅試劑),試劑乙中含有磷鉬酸和磷鎢酸。
在鹼性條件下,蛋白質中的巰基和酚基等可將Cu2+還原成Cu+, Cu+能定量地與Folin-酚試劑反應生成藍色物質,600nm比色測定蛋白質含量。
靈敏度較高(約 0.1 mg),但較麻煩,也會受 硫酸銨 及 硫醇化合物 的干擾。 步驟中各項試劑的混合,要特別注意均勻澈底,否則會有大誤差。
④紫外法
280nm光吸收法:利用Tyr在280nm在吸收進行測定。
280nm-260nm的吸收差法:若樣品液中有少量核酸共存按下式計算:
蛋白質濃度(mg/ml)=1.24E280-0.74E260 (280 260為角標)
⑤色素結合法(Bradford 法)
直接測定法:利用蛋白質與色素分子(Coomassie Brilliant Blue G-250)結合物的光吸收用分光光度法進行測定。
考馬斯亮蘭(CBG)染色法測定蛋白質含量。CBG 有點像指示劑,會在不同的酸鹼度下變色;在酸性下是茶色,在中性下為藍色。當 CBG接到蛋白質上去的時候,因為蛋白質會提供 CBG一個較為中性的環境,因此會變成藍色。當樣本中的蛋白質越多,吸到蛋白質上的CBG也多,藍色也會增強。因此,藍色的呈色強度,是與樣本中的蛋白質量成正比。
間接測定法:蛋白質與某些酸性或鹼性色素分子結合形成不溶性的鹽沉澱。用分光光度計測定未結合的色素,以每克樣品結合色素的量來表示蛋白質含量的多少。
⑥BCA法
BCA(Bicinchoninc acid procere,4,4』-二羧-2,2』-二喹啉)法與Lowry法相似,主要差別在鹼性溶液中,蛋白質使Cu2+轉變Cu+後,進一步以BCA 取代Folin試劑與Cu+結合產生深紫色,在波長562 nm有強的吸收。
它的優點在於鹼性溶液中BCA 比Folin試劑穩定,因此BCA與鹼性銅離子溶液結合的呈色反應只需一步驟即完成。靈敏度Lowry法相似。
本方法對於陰離子、非離子性及二性離子的清潔劑和尿素較具容忍度,較不受干擾,但會受還原糖 及EDTA的干擾。
⑦膠體金測定法
膠體金(colloidal gold)是氯金酸(chloroauric acid)的水溶膠,呈洋紅色,具有高電子密度,並能與多種生物大分子結合。
膠體金是一種帶負電荷的疏水膠體遇蛋白質轉變為藍色,顏色的改變與蛋白質有定量關系,可用於蛋白質的定量測定。
⑧其他方法
有些蛋白質含有特殊的 非蛋白質基團,如 過氧化物酶含有 亞鐵血紅素基團,可測 403 nm 波長的吸光來定量之。 含特殊金屬的酶 (如鎘),則可追蹤該金屬。
E. 測定血清總蛋白的參考方法是
總蛋白的六種檢測方法
(一)凱氏定氮法
將血清與強酸一起加熱消化,使血清中的含氮化合物轉化為銨鹽,再加鹼使銨鹽成為氨進經蒸餾分離出來,最後用酸滴定測定氮量,按每克氨相當於6.25g蛋白質計算蛋白質的濃度。
應用歷史較久,結果較准確,是蛋白質測定的參考方法,但操作復雜,影響因素較多,且不少蛋白質的含氮量並非16%,不適用於日常工作,目前多用於標准蛋白的標定及校正其它的常規方法。
(二)雙縮脲法
蛋白質中的肽鍵(-CONH-)在鹼性條件下與Cu2+絡合成紫紅色復合物,產生的顏色強度在一定范圍內與蛋白質含量成正比。
此反應和二分子尿素縮合後的產物雙縮脲(H2N-CO-NH-CO-NH2)與鹼性銅溶液作用形成紫紅色的反應相似,故稱為雙縮脲反應。幾分子中含有兩個甲醯胺基(-CO-NH2)的化合物都能出現此反應。
因至少含2個-CONH-基團才能與Cu2+絡合,所以氨基酸和二肽無此反應。體液中小分子肽含量極低,故血漿中除蛋白質外幾乎不存在可與雙縮脲試劑顯色的物質,且各種蛋白質顯色程度基本相同。
此法簡便、准確、重復性好,在10-120g/L。濃度范圍內呈良好的線性關系,批內CV值<2%,但靈敏度較其它方法稍差,是目前臨床上最常規的方法。
(三)酚試劑法
蛋白質分子中的酪氨酸殘基和色氨酸殘基能夠和酚試劑中的磷鎢酸-磷鉬酸反應生成藍色化合物。Lowry改良法在酚試劑中加入Cu2+,提高了呈色的靈敏度,其中75%呈色靠銅離子產生。Lowry改良法的靈敏度為雙縮脲法的100倍左右。
由於各種蛋白質中酪氨酸和色氨酸的比例不同,如白蛋白含色氨酸為0.2%,而在一些球蛋白中色氨酸含量高達2%~3%,因此使用本法測定純粹的、單一的蛋白質較合適。此法靈敏度較高,為10~60ug/ml,因而適用於測定蛋白質含量較少的標本(如腦脊液),但試劑反應易受還原性化合物糖類、酚類及多種葯物如水楊酸、氯丙嗪和某些磺胺葯的干擾。
(四)紫外分光光度法
蛋白質分子內的色氨酸、酪氨酸等芳香族氨基酸可使蛋白質溶液在280nm波長處有一吸收峰,依此性質可用於蛋白質定量。
由於各種蛋白質中芳香族氨基酸的含量和比例不同,血清中游離的酪氨酸和色氨酸在280nm處也有吸收,因尿酸和膽紅素在280nm處也有干擾,因而本法的准確性和特異性都受到很大的影響。
此法敏感而且簡便,由於制劑未經任何處理,蛋白質的生物活性得以保留,故常用於較純的酶和免疫球蛋白的測定。但此法需紫外分光光度計和石英比色杯。
(五)染料結合法
在酸性環境中,蛋白質分子解離出的-NH3+,可與染料的陰離子產生顏色反應。常用的染料有氨基黑、考馬斯亮藍等。這一性質可用於電泳後蛋白質的染色和血清總蛋白測定。
此法操作簡便、重復性好、靈敏度高、且干擾因素較少。缺點是特異性不高,分子量3 000以上的多肽也參與反應。另外,不同蛋白質和染料的結合力不一致,因此很難找到一種合適的物質作標准物,使此方法的應用受到限制。
(六)比濁法
用某些酸類(如二氯醋酸、磺基水楊酸等)和血清蛋白質結合產生沉澱,然後測定其濁度,與同樣處理的蛋白標准液比較,即可求得蛋白質含量。
此方法簡便,不需特殊儀器。缺點是濁度形成的強弱易受多種因素影響,如加入試劑的方法、反應時的溫度等。另外,蛋白質沉澱時易形成絮狀物,難以獲得穩定的懸浮液
F. 蛋白質含量測定方法總結
蛋白質檢測方法總結 雙縮脲法: 將兩分子尿素分子加熱脫去一分子氨而形成的就是雙縮脲 (NH2-CO-NH-CO-NH2) . 雙縮脲在鹼性溶液中與 CU2+結合形成紫紅色絡合物, 這樣...
G. 蛋白質凱氏定氮法測定蒸餾中,如果蒸餾時,接收瓶的顏色一直不變化,可能存在哪
可能存在氣接受的時候沒弄好,氨氣都跑走了。
凱氏定氮法是由丹麥化學家凱道爾於1833年建立的,現已發展為常量、微量、平微量凱氏定氮法以及自動定氮儀法等,是分析有機化合物含氮量的常用方法。
凱氏定氮法的理論基礎是蛋白質中的含氮量通常占其總質量的16%左右(12%~一19%),因此,通過測定物質中的含氮量便可估算出物質中的總蛋白質含量(假設測定物質中的氮全來自蛋白質),即: 蛋白質含量=含氮量/16%。
凱氏定氮法是測定化合物或混合物中總氮量的一種方法。即在有催化劑的條件下,用濃硫酸消化樣品將有機氮都轉變成無機銨鹽,然後在鹼性條件下將銨鹽轉化為氨,隨水蒸氣蒸餾出來並為過量的硼酸液吸收,再以標准鹽酸滴定,就可計算出樣品中的氮量。
由於蛋白質含氮量比較恆定,可由其氮量計算蛋白質含量,故此法是經典的蛋白質定量方法。
H. 國家標准檢測蛋白質含量測定方法
蛋白質含量測定方法就是檢測N元素的含量,像三聚氰胺的問題,就是通過增加N的含量使「蛋白質」含量提高的。
國家標准檢測蛋白質含量的方法叫做凱氏定氮法,食物中的蛋白質在催化加熱條件下分解,導致氨和硫酸結合產生硫酸銨。 鹼蒸餾採用無硫,硼酸吸收,用硫酸或鹽酸標准滴定溶液滴定,根據酸耗計算氮含量,再乘以轉化系數,即蛋白質含量。
具體操作步驟如下:
1.樣品處理
精確稱量0.2-2.0g固體樣品或2-5g半固體樣品或吸收10-20ml液體樣品(約30-40mg氮當量)。將其轉移至乾燥的100毫升或500毫升氮氣固定瓶中,加入0.2克硫酸銅,6克硫酸鉀和20毫升硫酸,輕輕搖動,在瓶口放置一個小漏斗,將瓶子傾斜石棉網上有45度角,有小孔。
加熱小火後,內容物碳化,泡沫完全停止,加強火力,保持瓶內液體稍微沸騰,直至液體呈藍綠色澄清透明,然後繼續加熱0.5小時。取出並冷卻,小心加入20毫升水,冷卻,移入100毫升容量瓶中,用少量水洗凈氮氣瓶,洗凈液放入容量瓶中,然後用水沖洗至刻度,混勻備用。
取相同量的硫酸銅,硫酸鉀和濃硫酸作為試劑進行空白試驗。然而,這種方法很危險,很難在實驗室中證明。大多數實驗室都有一個消化器,可以一次處理16個以上的樣品和一個可以自行設定溫度的呼吸機。它更安全,更可操作。
(8)蛋白質檢測方法凱氏擴展閱讀
除了凱氏定氮法以外,標準的測量方法還有:
分光光度法
食品中的蛋白質在催化加熱條件下被分解,分解產生的氨與硫酸結合生成硫酸銨,在pH4.8的乙酸鈉-乙酸緩沖溶液中與乙醯丙酮和甲醛反應生成黃色的3,5-二乙醯-2,6-二甲基-1,4-二氫化吡啶化合物。在波長400nm 下測定吸光度值,與標准系列比較定量,結果乘以換算系數,即為蛋白質含量。
燃燒法
樣品在900~1200℃下燃燒。在燃燒過程中,產生混合氣體。 諸如碳,硫和鹽的干擾氣體被吸收管吸收,氮氧化物被還原成氮。 形成的氮氣流由熱導檢測器(TCD)檢測。
I. 國際通行的檢驗奶粉所含蛋白質為「凱氏定氮法」,是如何檢測的有何漏洞
蛋白質是含氮的有機化合物。蛋白質與濃硫酸和催化劑一同加熱消化,使蛋白質分解,分解的氨與硫酸結合生成硫酸銨。然後鹼化蒸餾使氨游離,用硼酸吸收後再以硫酸或鹽酸標准溶液滴定,根據酸的消耗量乘以換算系數,並換算成蛋白質含量。含氮量*6.25=蛋白含量。
凱氏定氮法缺點:
1、最終測定的是總有機氮,而不只是蛋白質氮。
2、實驗時間太長,至少需要2小時才能完成。
3、精度差,精度低於雙縮脲法。
凱氏定氮法注意事項:
1、樣品應是均勻的,固體樣品應預先研細混勻,液體樣品應振搖或攪拌均勻。
2、樣品放入定氮瓶內時,不要沾附頸上,萬一沾附可用少量水沖下,以免被檢樣消化不完全,結果偏低。
3、硝化時如不容易呈透明溶液,可將定氮瓶放冷後,慢慢加入百分之三十過氧化氫2到3毫升,促使氧化。
4、在整個消化過程中,不要用強火。保持和緩的沸騰,使火力集中在凱氏瓶底部,以免附在壁上的蛋白質在無硫酸存在的情況下,使氮有損失。
J. 測量蛋白質總量的方法有哪些
1.凝膠過濾法 凝膠過濾法分離蛋白質的原理是根據蛋白質分子量的大小。由於不同排阻范圍的葡聚糖凝膠有一特定的蛋白質分子量范圍,在此范圍內,分子量的對數和洗脫體積之間成線性關系。因此,用幾種已知分子量的蛋白質為標准,進行凝膠層析,以每種蛋白質的洗脫體積對它們的分子量的對數作圖,繪制出標准洗脫曲線。未知蛋白質在同樣的條件下進行凝膠層析,根據其所用的洗脫體積,從標准洗脫曲線上可求出此未知蛋白質對應的分子量。
2.SDS-聚丙烯醯胺凝膠電泳法 蛋白質在普通聚丙烯醯胺凝膠中的電泳速度取決於蛋白質分子的大小、分子形狀和所帶電荷的多少。SDS(十二烷基磺酸鈉)是一種去污劑,可使蛋白質變性並解離成亞基。當蛋白質樣品中加入SDS後,SDS與蛋白質分子結合,使蛋白質分子帶上大量的強負電荷,並且使蛋白質分子的形狀都變成短棒狀,從而消除了蛋白質分子之間原有的帶電荷量和分子形狀的差異。這樣電泳的速度只取決於蛋白質分子量的大小,蛋白質分子在電泳中的相對遷移率和分子質量的對數成直線關系。以標准蛋白質分子質量的對數和其相對遷移率作圖,得到標准曲線,根據所測樣品的相對遷移率,從標准曲線上便可查出其分子質量。
3.沉降法(超速離心法) 沉降系數(S)是指單位離心場強度溶質的沉降速度。S也常用於近似地描述生物大分子的大小。蛋白質溶液經高速離心分離時,由於比重關系,蛋白質分子趨於下沉,沉降速度與蛋白質顆粒大小成正比,應用光學方法觀察離心過程中蛋白質顆粒的沉降行為,可判斷出蛋白質的沉降速度。根據沉降速度可求出沉降系數,將S帶入公式,即可計算出蛋白質的分子質量。質的沉降速度。S也常用於近似地描述生物大分子的大小。蛋白質溶液經高速離心分離時,由於比重關系,蛋白質分子趨於下沉,沉降速度與蛋白質顆粒大小成正比,應用光學方法觀察離心過程中蛋白質顆粒的沉降行為,可判斷出蛋白質的沉降速度。根據沉降速度可求出沉降系數,將S帶入公式,即可計算出蛋白質的分子質量。