① 人工智慧有哪些研究方向
人工智慧可分為六個研究方向:
1、機器視覺,包括3D重建,模式識別,圖像理解等。
2、語言理解和溝通,包括語音識別,綜合,人機對話,機器翻譯等;
3、機器人技術,包括力學,控制,設計,運動規劃,任務規劃等;
4、認知和推理,包括各種身體和社會常識的認知和推理;
5、游戲和道德,包括多智能體,機器人和社會整合的互動,對抗和合作;
6、機器學習,包括各種統計建模,分析工具和計算方法;
人工智慧作為下一代信息技術的重要領域,是一種具有普遍性的新型通用技術,可應用於經濟社會,生產和生活的各個方面(Trajtenberg,2018); 無意中與此同時,人工智慧已經滲透到生產和生活的許多方面,並悄然改變了經濟和社會組織的運作模式。 雖然人工智慧技術可以使人類擺脫繁瑣的程式化工作,但它也是應對人口老齡化的有效手段,但其推廣也意味著在應用領域取代就業領域(部分),並將 最終影響就業結構和收入分配格局。
② 人工智慧在工業領域的運用有哪些呢
目前不同行業在智能製造方面,有很多優秀的解決方案和案例分享一個工業混流製造方向的智能製造智能製造-玻璃加工-混流製造華域雲腦方案玻璃加工具有在不改變生產組織方式的前提下,在同一條流水線上同時生產出多種不同型號、不同尺寸、不同數量的產品的特徵,屬於典型的混流製造。相對於單一產品流水線而言,混流生產系統既可以大批量生產標准產品, 也可以按照客戶訂單生產小批量非標准產品,因而具有更高的靈活性,可滿足客戶對 產品的多樣化需求,使企業快速響應市場變化。隨著經濟發展、消費升級混流製造將會變成製造業普遍採用的一種生產組織方式,具有廣闊的應用前景。 因此混流製造一致是生產、學術研究的重點,但是過去玻璃加工領域的研究方向主要集中在單機設備的改進上,試圖在單機設備上一次完成玻璃深加工的所有工序;也取得了一些成果,目前全球范圍內有Bottero、Intermac、Bavelloni三家公司生產高速數控玻璃加工中心控制系統能夠全自動實現鑽孔、切割、粗磨、精磨、拋光加工,但也沒有完成玻璃加工的所有工序,且售價昂貴。針對玻璃加工業行業沒有功能完全的玻璃加工控制系統,不能一次完成全部的玻璃加工工序,設備整體應用的局限性大,勞動強度大,產品加工效率相對較低等問題。華域雲腦提出了一種針對玻璃加工企業的智慧工廠方案,將各個設備、工序連接起來進行統一調度和管理從而達到減員、增效、提升品質、輔助決策等目的。 智慧工廠採用感測技術、通信技術、工控技術,以RFID-MES、VMS(電子看板)、ERP、大數據統一決策系統為核心,實現玻璃加工的生產信息化、管理精細化、調度統一化。方案特點如下: (1) 生產信息化/自動化:實現切片、磨邊、鑽孔、鋼化、夾膠、鍍膜、中空、包裝八道工序的全自動,降低生產成本,提高加工效率。 (2) 管理精細化:將RFID系統、設備控制系統、MES系統有機集成,實時反饋產品加工信息、現場異常信息、設備信息,形成完整的反饋控制系統。 (3) 調度統一化:基於產品加工狀態、工序狀態、設備狀態等現場信息實現訂單、設備的統一調度,同時引入深度學習演算法使得調度結果最優化。南京華域雲腦信息科技有限公司
③ 人在智能製造中的作用有哪些
人工智慧在製造業的生產中可以發揮的作用:
1、實現製造業的生產的數字化
就目前來看,國內工業物聯網處於早期階段,不論是網路及硬體設備都尚未成熟,基礎設施建設和數據採集這一步還沒有全部完成。工廠首先需要為生產設備裝上感測器和控制裝置,打通生產設備、生產管理、製造執行及規劃系統,更實時透明地掌控生產進度。
2、實現製造業的生產的自動化
除了汽車製造業,中國大量的工廠自動化程度仍然偏低。2015年,根據經濟學人發布的統計,中國雖然每年采購全球最多的機器人,但整個國家平均每萬工人只配備了50個機器人。而在自動化程度相對發達的德國和日本這個數字是約300個,在韓國甚至是500個之多。如果要繼續提高生產效率,那麼自動化生產系統一定會在工廠普及。
3、實現製造業的生產的智能化
歷史上,「自動化」代表著機器可以執行某個具體獨立的任務,例如根據定義好的規則開啟和關閉泵。自動化是取代人做重復性的勞動,而智能化是做人做不了的事情。智能工廠的定義是一個靈活的協同系統,自主運行整個生產流程,在全局范圍內自我優化,實時地適應新的環境。它代表著一個持續的自適應的過程,而不是過去「一勞永逸」的升級改造。
④ 人工智慧的研究領域和應用領域是什麼
人工智慧應用領域機器翻譯,智能控制,專家系統,機器人學,語言和圖像理解,遺傳編程機器人工廠,自動程序設計,航天應用,龐大的信息處理,儲存與管理,執行化合生命體無法執行的或復雜或規模龐大的任務等等。研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。人工智慧從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智慧帶來的科技產品,將會是人類智慧的「容器」。人工智慧可以對人的意識、思維的信息過程的模擬。人工智慧不是人的智能,但能像人那樣思考、也可能超過人的智能。人工智慧是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智慧是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智慧研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種「復雜工作」的理解是不同的。2017年12月,人工智慧入選「2017年度中國媒體十大流行語」。
⑤ 人工智慧技術對製造業會產生怎樣的影響
一是智能生產。
實現生產設備、價值鏈、供應鏈的數字化連接和高度協同,使生產系統具備敏捷感知、實時分析、自主決策、精準執行、學習提升等能力,全面提升生產效率。
二是智能產品。
通過雲端連接或將訓練好的人工智慧系統封裝到硬體中等方式,賦予產品智能化響應外界變化和用戶需求的能力。
三是智能服務。
實時監測產品狀態和響應用戶需求,提供以租代售、按時計費、遠程診斷、故障預測、遠程維修、一體化解決方案等增值服務,實現製造企業從提供產品向提供「產品+服務」的轉變。
實現
一是充分利用綜合優勢,實施逆向整合戰略。
我國在製造環節實現人工智慧應用場景優化及商業布局方面具有優勢,應充分利用這些優勢,進一步整合利用全球創新資源,尤其是人工智慧基礎技術、核心技術及關鍵零部件、裝備領域方面的創新資源。
二是編制製造業人工智慧技術戰略(路線)圖,並定期修訂,幫助各界及時、准確地把握人工智慧技術及產業的發展趨勢。
要更為關注制定技術戰略圖及研判發展趨勢的過程,在這一過程中,不僅要形成對人工智慧技術發展趨勢的共識,而且要形成學術界與產業界之間的知識交流與互動,推動有關方面圍繞人工智慧技術發展方向及可能的突破口進行深入交流和探討,促進知識融合、擴展和深化。
⑥ AI(人工智慧)在機械領域有哪些應用
1.機械領域的主要應用:1.1 機械設計 機械設計實際上是一個模型的綜合和分析的過程,它不僅包括大量的計算、分析、繪圖等數值計算型工作;還包括擬定初始方案,選擇最優方案,制定合理結構等方案設計工作。 目前, 有些企業已引入CAD/CAM 系統, 由於CAD/CAM系統對符號推理工作需要綜合運用多種科學的專門知識和豐富的實踐經驗才能解決,這需要CAD/CAM系統具有智能性,因此,設計智能化已成為機械設計中一個很熱門的研究課題之一,它把計算機從數值處理擴展到非數值處理,包括知識與經驗的集成、推理和決策,力圖使機械設計過程自動化,減少人類專家在設計過程中由於個人因素造成的不足。此外,與傳統設計方法相比,專家系統在機械設計中有著不可比擬的優勢,它不僅可以長期穩定工作、節省成本,還可以為專家知識特別是啟發式知識提供存儲手段和傳授途徑、易於繼承。1.2 機械製造 在機械生產製造過程中,需要為工廠中所有的裝配機器供應零件。目標可能由監控者提供,也可能由系統對當時狀態做出評估而產生。智能系統怎樣推斷出適當的目標,然後構造試圖達到目標的動作序列,這個過程通常稱為規劃(planning), 它是自動問題求解的特例,是人工智慧研究的重要子領域。 此外,計算機集成加工系統(CIMS)和柔性加工系統(FMS)在近年來獲得迅速發展。在一個復雜的加工過程中,不同條件下的多種操作是必要的。環境的不確定性以及系統軟硬體的復雜性,向當代工程師們設計和實現有效的集成控制系統提出了挑戰。為了把現有的Petri 網技術用於現代加工系統,需要開發一種新技術,把機器智能技術和Petri 網理論以及智能離散事件控制器連接起來。1.3 機械電子工程 在許多工程系統中,往往由於內部結構復雜,存在著對加工過程式控制制及故障診斷等方面的困難,一般的PID 等典型控制方法雖然能解決一些問題,但在一些場合已不能滿足生產的要求,當前,典型的機電一體化產品- 數控機床、交流伺服驅動裝置等正在向數字化、小型化、高精度等方向發展,為監控帶來新的挑戰,由於模糊神經網路控制不依賴控制對象和數學模型,具有較強的魯棒性,是一種非線性的控制方法,在解決此類問題中有很好的優勢。而專家系統主要用於復雜的機械繫統,能夠克服基於模型的故障診斷方法對模型的過分依賴性。1.4 機械繫統故障診斷 對機械設備進行故障診斷主要是通過對設備敏感部位的信號利用感測器進行數據採集和特徵提取,根據不同機械部件在不同時間和狀態下具有不同的特徵,來判斷是否工作正常。它包含兩方面的內容,即對系統運行狀態進行監測和發現異常情況後對故障進行分析、診斷。在系統運行過程中,若某一時刻系統發生故障,領域專家可以憑借視覺、聽覺、嗅覺、觸覺或測量設備得到一些客觀數據,並根據對系統結構和系統故障歷史的深刻了解很快做出判斷,確定故障的原因和部位。對於較為復雜的系統,這種基於專家系統的故障診斷方法尤為有效。2 人工智慧在機械繫統中的應用方法 應用機械繫統的AI 技術傳統上可以分為專家系統(ES)、人工神經網路(ANN)、模糊集理論(FST)和啟發式搜索(GA)四類。2.1 專家系統(Expert System .ES) 專家系統是人工智慧的主要分支之一。一個典型的專家系統由四部分組成:知識庫、推理機、知識獲取機制和人機界面。專家系統按其知識表達方式不同,可分為基於規則和基於框架的專家系統;按其推理方式不同可分為正向推理和逆向推理。在知識表達方面,利用產生式規則進行知識表達,一方面得有益於現有人工智慧語言,另一方面,它的表達合乎人的心理邏輯,便於進行知識獲取,利於人們接受,利用框架進行知識表達得到了越來越多的應用。在診斷推理方面,主要表現在對推理邏輯和推理模型的研究,在人工智慧領域,存在著許多推理邏輯,在專家系統中廣泛使用模糊推理邏輯降低系統復雜性,在機械繫統故障診斷上能產生很好的效果。專家系統技術的研究和應用正以前所未有的速度在故障診斷、模擬模擬、自動控制、工藝編程、生產規劃、產品設計等許多機械工程領域不斷發展。隨著研究工作的不斷深入,一些新的技術方法和先進製造技術正融入機械工程專家系統技術的研究和應用中,不僅使知識表示、知識庫構建、知識獲取和推理模式等關鍵技術的研究取得了一定成果,還出現了一些集成式的新型專家系統,如神經網路專家系統、模糊專家系統、基於Internet 的專家系統、CAD 專家系統、CAPP 專家系統等。他們綜合利用了專家系統啟發性、透明性、靈活性以及具有處理不確定知識能力的特點,使機械工程專家系統的應用領域不斷拓寬。2.2 人工神經網路(artificial neural network. ANN) 人工神經網路是模擬的生物激勵系統,將一系列輸入通過神經網路產生輸出。這里輸出、輸入都是標准化的量,輸出是輸入的非線性函數,其值可由連接各神經元的權重改變,以獲得期望的輸出值,即所謂的訓練過程。基於數值計算方法的神經網路,將已有數據和已知系統模式作樣本,通過學習獲得兩者的映射關系,實現了對人類經驗思維的模擬。 由於神經網路具有原則上容錯、結構拓撲魯棒、聯想、推測、記憶、自適應、自學習、並行和處理復雜模式的功能,使其在工程實際存在著大量的多故障、多過程、突發性故障、龐大復雜機器和系統的監測及診斷中發揮著較大作用。 在機械繫統的應用方式有:從模式識別角度應用神經網路作為分類器進行故障診斷;從預測角度應用神經網路作為動態預測模型進行故障預測;利用神經網路極強的非線性動態跟蹤能力進行基於結構映射的故障診斷;從知識處理角度建立基於神經網路的診斷專家系統等。目前,為提高神經網路在實用中的學習和診斷性能,主要從神經網路模型本身改進和模塊化模型診斷策略兩方面開展研究;同時,與模糊邏輯的結合研究也是一個研究熱點。2.3 模糊集理論(Fuzzy Sets Theory. FSN) 人的認知世界包含大量的不確定之時,需要對所獲信息進行一定的模糊化處理,以減少問題的復雜度。1965 年Zadeh 創立的模糊集理論是處理不確定性的一種很好的方法。模糊邏輯可認為是多值邏輯的擴展,能夠完成傳統數學方法難以做到的近似推理。目前基於多類電量測試信息模糊融合的模擬電路故障診斷方法已經提出。基於K故障節點診斷法和最小標准差法的元件故障隸屬函數構造方法,以及基於可測點電壓與不同測試頻率下電路增益的模糊信息融合診斷演算法也已闡述。分別利用此兩類測試信息及K 故障診斷法和最小標准差法,對電路進行初步診斷,再運用模糊變換及故障定位規則, 得到融合的故障診斷結果。模擬實驗結果表明,所提方法大大提高了機械繫統故障定位的准確率。2.4 啟發式搜索(Heuristic Search. HS) 遺傳演算法(Genetic Algorithms ,GA)和模擬退火(Simulated Annealing ,SA)演算法是近年來逐漸興起的兩種啟發式搜索,通過隨機產生新的解並保留其中較好的結果,並避免陷入局部最小,以求得全局最優解或近似最優解。GA是由數字串的集合表示優化問題的解,通過遺傳運算元,即選擇、雜交和變異的操作對數字串尋優。SA 在已知解的鄰近區產生新的解,並逐漸縮小鄰近區域的大小,直到逼近全局的最優解。兩種方法都可以用來求解任意目標函數和約束的最優化問題。 在交流伺服系統中採用遺傳演算法的模糊神經網路控制較之傳統的PID 控制方式具有響應速度快、誤差小、無震盪、伺服性能強等優點,模擬結果表明,將遺傳演算法融入模糊神經網路控制器來控制交流伺服系統,其系統的響應超調量明顯減少,具有較好的抗干擾性、伺服性。3 人工智慧在機械繫統中的發展趨勢 人工智慧中的四種主要工具, 即ES、ANN、FST 和GA,雖然在機械領域有不同程度的應用,但各自都存在一些局限:ES 存在知識獲取的「瓶頸」、知識難以維護、應用面窄、診斷能力弱等問題。ANN 在外推時誤差較大、系統結構變化時ANN 的組成結構也要變化、難以實現基於結構化知識的邏輯推理、缺乏解釋能力等。FST 存在可維護性問題。GA 在依據的信息發生畸變時,難以保證可靠性等。 目前,缺少一種普遍有效的方法應用於機械繫統的各個領域。混合智能,即綜合多種智能技術用以設計、控制、監測機械繫統成為新的發展趨勢。結合的方式主要有基於規則的專家系統與神經網路相結合,CBR 與基於規則系統和神經網路的結合,模糊邏輯、神經網路與專家系統的結合等。其中模糊邏輯、神經網路與專家系統結合的診斷模型是最具發展前景的,也是目前人工智慧領域的研究熱點之一。混合智能在機械繫統的應用中有如下發展趨勢:由基於規則的系統到混合模型的系統,由領域專家提供知識到機器學習、由非實時診斷到實時診斷、由單一推理控制到混合推理控制策略等。4 人工智慧在機械繫統中的應用實例 智能技術在機械領域已經有了許多成功的應用。在工程中,典型的專家系統有幫助工程師發現結構分析問題的分析策略的SACON 系統;幫助識別和排除機車故障的DELTA 系統;幫助操作人員檢測和處理核反應堆事故的REACTOR 系統。 在故障診斷方面,1967 年在美國航天局(NASA)倡導下,由美國海軍研究室(ONR)主持美國機械故障預防小組(MFPG),積極從事故障診斷技術研究和開發。目前各種類型的故障診斷和維修專家系統已用於美國F- 15 戰斗機、B- 1B 轟炸機、海軍艦艇、陸軍軍械裝置等現役裝備的故障診斷和維修中。在我國,華中理工大學研製了用於汽輪機組工況監測和故障診斷的智能系統DEST;哈爾濱工業大學和上海發電設備成套設計研究所聯合研製了汽輪發電機組故障診斷專家系統MMMD- ;清華大學研製了用於鍋爐設備故障診斷的專家系統等等。 在電路和數字電子設備方面,MIT 研製用於模擬電路操作並演繹出故障可能原因的EI 系統;美國海軍人工智慧中心開發了用於診斷電子設備故障的IN- ATE 系統;波音航空公司研製了診斷微波模擬介面MSI 的IMA 系統;義大利米蘭工業大學研製用於汽車啟動器電路故障診斷的系統。 2006 年初,上海交通大學機電控制研究所、上海市農業機械研究所成功研製了適用於我國數字農業特點的兩種主要智能型農業機械:中、小型收割機智能測產系統及其配套軟體;智能變數施肥、播種機及其配套軟體。雖然相關的應用實例還有很多,但它們大都處於實驗室或小范圍試驗狀態,限於成本、技術等問題,不能得到普及應用,這將成為智能技術在機械領域應用的「瓶頸」。引用: http://teardown.eefocus.com/xuweitao/blog/08-01/141923_aa9c4.html
⑦ 人工智慧的主要研究領域有哪些
人工智慧的主要研究領域有:
語言的學習與處理,知識表現,智能搜索,推理,規劃,機器學習,知識獲取,組合調度問題,感知問題,模式識別,邏輯程序設計,軟計算,不精確和不確定的管理,人工生命,神經網路,復雜系統,遺傳演算法人類思維方式,最關鍵的難題還是機器的自主創造性思維能力的塑造與提升。
如今沒有統一的原理或範式指導人工智慧研究。許多問題上研究者都存在爭論。其中幾個長久以來仍沒有結論的問題是:是否應從心理或神經方面模擬人工智慧?或者像鳥類生物學對於航空工程一樣,人類生物學對於人工智慧研究是沒有關系的?智能行為能否用簡單的原則(如邏輯或優化)來描述?還是必須解決大量完全無關的問題?
智能是否可以使用高級符號表達,如詞和想法?還是需要「子符號」的處理?JOHN HAUGELAND提出了GOFAI(出色的老式人工智慧)的概念,也提議人工智慧應歸類為SYNTHETIC INTELLIGENCE,[29]這個概念後來被某些非GOFAI研究者採納。
(7)人工智慧在製造業的應用研究方法擴展閱讀:
人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。
人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。人工智慧從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智慧帶來的科技產品,將會是人類智慧的「容器」。人工智慧可以對人的意識、思維的信息過程的模擬。人工智慧不是人的智能,但能像人那樣思考、也可能超過人的智能。
人工智慧是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智慧是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智慧研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種「復雜工作」的理解是不同的。
⑧ 人工智慧的研究領域主要有哪些
人工智慧的研究領域主要有:模式識別、知識工程、機器人學。
具體分析如下:
1、模式識別:又稱圖形識別,是通過計算機用數學技術方法來研究模式的自動處理和判讀。
2、知識工程:是費根鮑姆教授在第五屆國際人工智慧會議上提出的一種概念,恰當運用專家知識的獲取、表達和推理過程的構成與解釋,是設計基於知識的系統的重要技術問題。
3、機器人學:又稱為機器人技術或機器人工程學,是與機器人設計、製造和應用相關的科學,主要研究機器人的控制與被處理物體之間的相互關系。
自從人工智慧誕生以來,理論和技術越來越成熟,應用領域在不斷的擴大,可以設想,未來人工智慧帶來的科技產品,將會是人類智慧的「容器」。人工智慧可以把人的意識、思維的信息過程的模擬。雖然人工智慧不是人的智能,但可以像人那樣思考、最終可能超過人的智能。
想了解更多有關人工智慧方面的詳情,推薦咨詢達內教育。達內教育擁有1v1督學跟蹤式學習有疑問隨時溝通,企業級項目,課程穿插大廠真實項目講解,對標企業人才標准制定專業學習計劃,囊括主流熱點技術,理論知識+學習思維+實戰操作,打造完整學習閉環。達內教育實戰講師、經驗豐富、多種班型供學員選擇、獨創TTS8.0教學系統,滿足學生多樣化學習需求。感興趣的話點擊此處,免費學習一下
⑨ 人工智慧在製造業領域有哪些應用和前景
目前不同行業在智能製造方面,有很多優秀的解決方案和案例
分享一個工業混流製造方向的智能製造
智能製造-玻璃加工-混流製造
華域雲腦方案
玻璃加工具有在不改變生產組織方式的前提下,在同一條流水線上同時生產出多種不同型號、不同尺寸、不同數量的產品的特徵,屬於典型的混流製造。相對於單一產品流水線而言,混流生產系統既可以大批量生產標准產品, 也可以按照客戶訂單生產小批量非標准產品,因而具有更高的靈活性,可滿足客戶對 產品的多樣化需求,使企業快速響應市場變化。隨著經濟發展、消費升級混流製造將會變成製造業普遍採用的一種生產組織方式,具有廣闊的應用前景。
智慧工廠採用感測技術、通信技術、工控技術,以RFID-MES、VMS(電子看板)、ERP、大數據統一決策系統為核心,實現玻璃加工的生產信息化、管理精細化、調度統一化。方案特點如下:
(1) 生產信息化/自動化:實現切片、磨邊、鑽孔、鋼化、夾膠、鍍膜、中空、包裝八道工序的全自動,降低生產成本,提高加工效率。
(2)管理精細化:將RFID系統、設備控制系統、MES系統有機集成,實時反饋產品加工信息、現場異常信息、設備信息,形成完整的反饋控制系統。
(3) 調度統一化:基於產品加工狀態、工序狀態、設備狀態等現場信息實現訂單、設備的統一調度,同時引入深度學習演算法使得調度結果最優化。
南京華域雲腦信息科技有限公司
⑩ 人工智慧的應用領域有哪些
人工智慧(Artificial Intelligence) ,英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。 人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。「人工智慧」一詞最初是在1956 年Dartmouth學會上提出的。從那以後,研究者們發展了眾多理論和原理,人工智慧的概念也隨之擴展。人工智慧是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智慧是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智慧研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種「復雜工作」的理解是不同的。例如繁重的科學和工程計算本來是要人腦來承擔的,現在計算機不但能完成這種計算, 而且能夠比人腦做得更快、更准確,因之當代人已不再把這種計算看作是「需要人類智能才能完成的復雜任務」, 可見復雜工作的定義是隨著時代的發展和技術的進步而變化的, 人工智慧這門科學的具體目標也自然隨著時代的變化而發展。它一方面不斷獲得新的進展,一方面又轉向更有意義、更加困難的目標。目前能夠用來研究人工智慧的主要物質手段以及能夠實現人工智慧技術的機器就是計算機, 人工智慧的發展歷史是和計算機科學與技術的發展史聯系在一起的。除了計算機科學以外, 人工智慧還涉及資訊理論、控制論、自動化、仿生學、生物學、心理學、數理邏輯、語言學、醫學和哲學等多門學科。人工智慧學科研究的主要內容包括:知識表示、自動推理和搜索方法、機器學習和知識獲取、知識處理系統、自然語言理解、計算機視覺、智能機器人、自動程序設計等方面。
[編輯本段]【人工和智能】
人工智慧的定義可以分為兩部分,即「人工」和「智能」。「人工」比較好理解,爭議性也不大。有時我們會要考慮什麼是人力所能及製造的,或著人自身的智能程度有沒有高到可以創造人工智慧的地步,等等。但總的來說,「人工系統」就是通常意義下的人工系統。
關於什麼是「智能」,就問題多多了。這涉及到其它諸如意識(consciousness)、自我(self)、思維(mind)(包括無意識的思維(unconscious_mind)等等問題。人唯一了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成人的智能的必要元素也了解有限,所以就很難定義什麼是「人工」製造的「智能」了。因此人工智慧的研究往往涉及對人的智能本身的研究。其它關於動物或其它人造系統的智能也普遍被認為是人工智慧相關的研究課題。
人工智慧目前在計算機領域內,得到了愈加廣泛的重視。並在機器人,經濟政治決策,控制系統,模擬系統中得到應用。
[編輯本段]【人工智慧的定義】
著名的美國斯坦福大學人工智慧研究中心尼爾遜教授對人工智慧下了這樣一個定義:「人工智慧是關於知識的學科――怎樣表示知識以及怎樣獲得知識並使用知識的科學。」而另一個美國麻省理工學院的溫斯頓教授認為:「人工智慧就是研究如何使計算機去做過去只有人才能做的智能工作。」這些說法反映了人工智慧學科的基本思想和基本內容。即人工智慧是研究人類智能活動的規律,構造具有一定智能的人工系統,研究如何讓計算機去完成以往需要人的智力才能勝任的工作,也就是研究如何應用計算機的軟硬體來模擬人類某些智能行為的基本理論、方法和技術。
人工智慧(Artificial Intelligence,簡稱AI)是計算機學科的一個分支,二十世紀七十年代以來被稱為世界三大尖端技術之一(空間技術、能源技術、人工智慧)。也被認為是二十一世紀(基因工程、納米科學、人工智慧)三大尖端技術之一。這是因為近三十年來它獲得了迅速的發展,在很多學科領域都獲得了廣泛應用,並取得了豐碩的成果,人工智慧已逐步成為一個獨立的分支,無論在理論和實踐上都已自成一個系統。
人工智慧是研究使計算機來模擬人的某些思維過程和智能行為(如學習、推理、思考、規劃等)的學科,主要包括計算機實現智能的原理、製造類似於人腦智能的計算機,使計算機能實現更高層次的應用。人工智慧將涉及到計算機科學、心理學、哲學和語言學等學科。可以說幾乎是自然科學和社會科學的所有學科,其范圍已遠遠超出了計算機科學的范疇,人工智慧與思維科學的關系是實踐和理論的關系,人工智慧是處於思維科學的技術應用層次,是它的一個應用分支。從思維觀點看,人工智慧不僅限於邏輯思維,要考慮形象思維、靈感思維才能促進人工智慧的突破性的發展,數學常被認為是多種學科的基礎科學,數學也進入語言、思維領域,人工智慧學科也必須借用數學工具,數學不僅在標准邏輯、模糊數學等范圍發揮作用,數學進入人工智慧學科,它們將互相促進而更快地發展。
[編輯本段]【實際應用】
機器視覺:指紋識別,人臉識別,視網膜識別,虹膜識別,掌紋識別,專家系統,智能搜索,定理證明,博弈,自動程序設計,還有航天應用等。
[編輯本段]【學科範疇】
人工智慧是一門邊沿學科,屬於自然科學和社會科學的交叉。
[編輯本段]【涉及學科】
哲學和認知科學,數學,神經生理學,心理學,計算機科學,資訊理論,控制論,不定性論,仿生學,
[編輯本段]【研究范疇】
自然語言處理,知識表現,智能搜索,推理,規劃,機器學習,知識獲取,組合調度問題,感知問題,模式識別,邏輯程序設計,軟計算,不精確和不確定的管理,人工生命,神經網路,復雜系統,遺傳演算法
[編輯本段]【應用領域】
智能控制,機器人學,語言和圖像理解,遺傳編程
[編輯本段]【意識和人工智慧的區別】
人工智慧就其本質而言,是對人的思維的信息過程的模擬。
對於人的思維模擬可以從兩條道路進行,一是結構模擬,仿照人腦的結構機制,製造出「類人腦」的機器;二是功能模擬,暫時撇開人腦的內部結構,而從其功能過程進行模擬。現代電子計算機的產生便是對人腦思維功能的模擬,是對人腦思維的信息過程的模擬。
人工智慧不是人的智能,更不會超過人的智能。
「機器思維」同人類思維的本質區別:
1.人工智慧純系無意識的機械的物理的過程,人類智能主要是生理和心理的過程。
2.人工智慧沒有社會性。
3.人工智慧沒有人類的意識所特有的能動的創造能力。
4.兩者總是人腦的思維在前,電腦的功能在後。
[編輯本段]【強人工智慧和弱人工智慧】
人工智慧的一個比較流行的定義,也是該領域較早的定義,是由約翰·麥卡錫(John McCarthy|)在1956年的達特矛斯會議(Dartmouth Conference)上提出的:人工智慧就是要讓機器的行為看起來就象是人所表現出的智能行為一樣。但是這個定義似乎忽略了強人工智慧的可能性(見下)。另一個定義指人工智慧是人造機器所表現出來的智能性。總體來講,目前對人工智慧的定義大多可劃分為四類,即機器「像人一樣思考」、「像人一樣行動」、「理性地思考」和「理性地行動」。這里「行動」應廣義地理解為採取行動,或制定行動的決策,而不是肢體動作。
強人工智慧
強人工智慧觀點認為有可能製造出真正能推理(Reasoning)和解決問題(Problem_solving)的智能機器,並且,這樣的機器能將被認為是有知覺的,有自我意識的。強人工智慧可以有兩類:
類人的人工智慧,即機器的思考和推理就像人的思維一樣。
非類人的人工智慧,即機器產生了和人完全不一樣的知覺和意識,使用和人完全不一樣的推理方式。
弱人工智慧
弱人工智慧觀點認為不可能製造出能真正地推理(Reasoning)和解決問題(Problem_solving)的智能機器,這些機器只不過看起來像是智能的,但是並不真正擁有智能,也不會有自主意識。
主流科研集中在弱人工智慧上,並且一般認為這一研究領域已經取得可觀的成就。強人工智慧的研究則出於停滯不前的狀態下。
對強人工智慧的哲學爭論
「強人工智慧」一詞最初是約翰·羅傑斯·希爾勒針對計算機和其它信息處理機器創造的,其定義為:
「強人工智慧觀點認為計算機不僅是用來研究人的思維的一種工具;相反,只要運行適當的程序,計算機本身就是有思維的。」(J Searle in Minds Brains and Programs. The Behavioral and Brain Sciences, vol. 3, 1980)這是指使計算機從事智能的活動。在這里智能的涵義是多義的、不確定的,象下面所提到的就是其中的例子。利用計算機解決問題時,必須知道明確的程序。可是,人即使在不清楚程序時,根據發現(heu- ristic)法而設法巧妙地解決了問題的情況是不少的。如識別書寫的文字、圖形、聲音等,所謂認識模型就是一例。再有,能力因學習而得到的提高和歸納推理、依據類推而進行的推理等,也是其例。此外,解決的程序雖然是清楚的,但是實行起來需要很長時間,對於這樣的問題,人能在很短的時間內找出相當好的解決方法,如競技的比賽等就是其例。還有,計算機在沒有給予充分的合乎邏輯的正確信息時,就不能理解它的意義,而人在僅是被給予不充分、不正確的信息的情況下,根據適當的補充信息,也能抓住它的意義。自然語言就是例子。用計算機處理自然語言,稱為自然語言處理。
關於強人工智慧的爭論不同於更廣義的一元論和二元論(alism)的爭論。其爭論要點是:如果一台機器的唯一工作原理就是對編碼數據進行轉換,那麼這台機器是不是有思維的?希爾勒認為這是不可能的。他舉了個中文房間的例子來說明,如果機器僅僅是對數據進行轉換,而數據本身是對某些事情的一種編碼表現,那麼在不理解這一編碼和這實際事情之間的對應關系的前提下,機器不可能對其處理的數據有任何理解。基於這一論點,希爾勒認為即使有機器通過了圖靈測試,也不一定說明機器就真的像人一樣有思維和意識。
也有哲學家持不同的觀點。Daniel C. Dennett 在其著作 Consciousness Explained 里認為,人也不過是一台有靈魂的機器而已,為什麼我們認為人可以有智能而普通機器就不能呢?他認為像上述的數據轉換機器是有可能有思維和意識的。
有的哲學家認為如果弱人工智慧是可實現的,那麼強人工智慧也是可實現的。比如Simon Blackburn在其哲學入門教材 Think 里說道,一個人的看起來是「智能」的行動並不能真正說明這個人就真的是智能的。我永遠不可能知道另一個人是否真的像我一樣是智能的,還是說她/他僅僅是看起來是智能的。基於這個論點,既然弱人工智慧認為可以令機器看起來像是智能的,那就不能完全否定這機器是真的有智能的。Blackburn 認為這是一個主觀認定的問題。
需要要指出的是,弱人工智慧並非和強人工智慧完全對立,也就是說,即使強人工智慧是可能的,弱人工智慧仍然是有意義的。至少,今日的計算機能做的事,像算術運算等,在百多年前是被認為很需要智能的。
[編輯本段]【人工智慧簡史】
人工智慧的傳說可以追溯到古埃及,但隨著1941年以來電子計算機的發展,技術已最終可以創造出機器智能,「人工智慧」(Artificial Intelligence)一詞最初是在1956年Dartmouth學會上提出的,從那以後,研究者們發展了眾多理論和原理,人工智慧的概念也隨之擴展,在它還不長的歷史中,人工智慧的發展比預想的要慢,但一直在前進,從40年前出現到現在,已經出現了許多AI程序,並且它們也影響到了其它 技術的發展。
計算機時代
1941年的一項發明使信息存儲和處理的各個方面都發生了革命.這項同時在美國和德國出現的 發明就是電子計算機.第一台計算機要佔用幾間裝空調的大房間,對程序員來說是場惡夢:僅僅為運行一 個程序就要設置成千的線路.1949年改進後的能存儲程序的計算機使得輸入程序變得簡單些,而且計算機 理論的發展產生了計算機科學,並最終促使了人工智慧的出現.計算機這個用電子方式處理數據的發明, 為人工智慧的可能實現提供了一種媒介.
AI的開端
雖然計算機為AI提供了必要的技術基礎,但直到50年代早期人們才注意到人類智能與機器之間 的聯系. Norbert Wiener是最早研究反饋理論的美國人之一.最熟悉的反饋控制的例子是自動調溫器.它 將收集到的房間溫度與希望的溫度比較,並做出反應將加熱器開大或關小,從而控制環境溫度.這項對反饋 迴路的研究重要性在於: Wiener從理論上指出,所有的智能活動都是反饋機制的結果.而反饋機制是有可 能用機器模擬的.這項發現對早期AI的發展影響很大.
1955年末,Newell和Simon做了一個名為"邏輯專家"(Logic Theorist)的程序.這個程序被許多人 認為是第一個AI程序.它將每個問題都表示成一個樹形模型,然後選擇最可能得到正確結論的那一枝來求解 問題."邏輯專家"對公眾和AI研究領域產生的影響使它成為AI發展中一個重要的里程碑.1956年,被認為是 人工智慧之父的John McCarthy組織了一次學會,將許多對機器智能感興趣的專家學者聚集在一起進行了一 個月的討論.他請他們到 Vermont參加 " Dartmouth人工智慧夏季研究會".從那時起,這個領域被命名為 "人工智慧".雖然 Dartmouth學會不是非常成功,但它確實集中了AI的創立者們,並為以後的AI研究奠定了基礎.
Dartmouth會議後的7年中,AI研究開始快速發展.雖然這個領域還沒明確定義,會議中的一些思想 已被重新考慮和使用了. Carnegie Mellon大學和MIT開始組建AI研究中心.研究面臨新的挑戰: 下一步需 要建立能夠更有效解決問題的系統,例如在"邏輯專家"中減少搜索;還有就是建立可以自我學習的系統.
1957年一個新程序,"通用解題機"(GPS)的第一個版本進行了測試.這個程序是由製作"邏輯專家" 的同一個組開發的.GPS擴展了Wiener的反饋原理,可以解決很多常識問題.兩年以後,IBM成立了一個AI研 究組.Herbert Gelerneter花3年時間製作了一個解幾何定理的程序.
當越來越多的程序涌現時,McCarthy正忙於一個AI史上的突破.1958年McCarthy宣布了他的新成 果: LISP語言. LISP到今天還在用."LISP"的意思是"表處理"(LISt Processing),它很快就為大多數AI開發者採納.
1963年MIT從美國政府得到一筆220萬美元的資助,用於研究機器輔助識別.這筆資助來自國防部 高級研究計劃署(ARPA),已保證美國在技術進步上領先於蘇聯.這個計劃吸引了來自全世界的計算機科學家, 加快了AI研究的發展步伐.
大量的程序
以後幾年出現了大量程序.其中一個著名的叫"SHRDLU"."SHRDLU"是"微型世界"項目的一部分,包括 在微型世界(例如只有有限數量的幾何形體)中的研究與編程.在MIT由Marvin Minsky領導的研究人員發現, 面對小規模的對象,計算機程序可以解決空間和邏輯問題.其它如在60年代末出現的"STUDENT"可以解決代數 問題,"SIR"可以理解簡單的英語句子.這些程序的結果對處理語言理解和邏輯有所幫助.
70年代另一個進展是專家系統.專家系統可以預測在一定條件下某種解的概率.由於當時計算機已 有巨大容量,專家系統有可能從數據中得出規律.專家系統的市場應用很廣.十年間,專家系統被用於股市預 測,幫助醫生診斷疾病,以及指示礦工確定礦藏位置等.這一切都因為專家系統存儲規律和信息的能力而成為可能.
70年代許多新方法被用於AI開發,著名的如Minsky的構造理論.另外David Marr提出了機器視覺方 面的新理論,例如,如何通過一副圖像的陰影,形狀,顏色,邊界和紋理等基本信息辨別圖像.通過分析這些信 息,可以推斷出圖像可能是什麼.同時期另一項成果是PROLOGE語言,於1972年提出. 80年代期間,AI前進更為迅速,並更多地進入商業領域.1986年,美國AI相關軟硬體銷售高達4.25億 美元.專家系統因其效用尤受需求.象數字電氣公司這樣的公司用XCON專家系統為VAX大型機編程.杜邦,通用 汽車公司和波音公司也大量依賴專家系統.為滿足計算機專家的需要,一些生產專家系統輔助製作軟體的公 司,如Teknowledge和Intellicorp成立了。為了查找和改正現有專家系統中的錯誤,又有另外一些專家系統被設計出來.
從實驗室到日常生活
人們開始感受到計算機和人工智慧技術的影響.計算機技術不再只屬於實驗室中的一小群研究人員. 個人電腦和眾多技術雜志使計算機技術展現在人們面前.有了象美國人工智慧協會這樣的基金會.因為AI開發 的需要,還出現了一陣研究人員進入私人公司的熱潮。150多所像DEC(它雇了700多員工從事AI研究)這樣的公司共花了10億美元在內部的AI開發組上.
其它一些AI領域也在80年代進入市場.其中一項就是機器視覺. Minsky和Marr的成果現在用到了生產線上的相機和計算機中,進行質量控制.盡管還很簡陋,這些系統已能夠通過黑白區別分辨出物件形狀的不同.到1985年美國有一百多個公司生產機器視覺系統,銷售額共達8千萬美元.
但80年代對AI工業來說也不全是好年景.86-87年對AI系統的需求下降,業界損失了近5億美元.象 Teknowledge和Intellicorp兩家共損失超過6百萬美元,大約占利潤的三分之一巨大的損失迫使許多研究領 導者削減經費.另一個另人失望的是國防部高級研究計劃署支持的所謂"智能卡車".這個項目目的是研製一種能完成許多戰地任務的機器人。由於項目缺陷和成功無望,Pentagon停止了項目的經費.
盡管經歷了這些受挫的事件,AI仍在慢慢恢復發展.新的技術在日本被開發出來,如在美國首創的模糊邏輯,它可以從不確定的條件作出決策;還有神經網路,被視為實現人工智慧的可能途徑.總之,80年代AI被引入了市場,並顯示出實用價值.可以確信,它將是通向21世紀之匙. 人工智慧技術接受檢驗 在"沙漠風暴"行動中軍方的智能設備經受了戰爭的檢驗.人工智慧技術被用於導彈系統和預警顯示以 及其它先進武器.AI技術也進入了家庭.智能電腦的增加吸引了公眾興趣;一些面向蘋果機和IBM兼容機的應用 軟體例如語音和文字識別已可買到;使用模糊邏輯,AI技術簡化了攝像設備.對人工智慧相關技術更大的需求促 使新的進步不斷出現.人工智慧已經並且將繼續不可避免地改變我們的生活.
人工智慧專業機構
美國
1. Massachusetts Institute of Technology 麻省理工學院
2. Stanford University 斯坦福大學 (CA)
3. Carnegie Mellon University 卡內基美隆大學 (PA)
4. University of California-Berkeley 加州大學伯克利分校
5. University of Washington 華盛頓大學
6. University of Texas-Austin 德克薩斯大學奧斯汀分校
7. University of Pennsylvania 賓夕法尼亞大學
8. University of Illinois-Urbana-Champaign 伊利諾伊大學厄本那—香檳分校
9. University of Maryland-College Park 馬里蘭大學帕克分校
10. Cornell University 康乃爾大學 (NY)
11. University of Massachusetts-Amherst 馬薩諸塞大學Amherst校區
12. Georgia Institute of Technology 喬治亞理工學院
University of Michigan-Ann Arbor 密西根大學-安娜堡分校
14. University of Southern California 南加州大學
15. Columbia University 哥倫比亞大學 (NY)
University of California-Los Angeles 加州大學-洛杉磯分校
17. Brown University 布朗大學 (RI)
18. Yale University 耶魯大學 (CT)
19. University of California-San Diego 加利福尼亞大學聖地亞哥分校
20. University of Wisconsin-Madison 威斯康星大學麥迪遜分校
中國
1、北京大學
2、清華大學
3、哈爾濱工業大學
4、廈門大學人工智慧研究所
5、中國AI創業研發俱樂部