導航:首頁 > 研究方法 > 探針標記方法優缺點分析

探針標記方法優缺點分析

發布時間:2022-12-08 16:29:11

1. 探針有哪些類型探針標記有哪些方法

探針有DNA探針和寡核苷酸探針。

探針標記方法有:隨機引物標記、切口平移法、末端標記法。

切口平移是切口產生3'羥基和5'磷酸基團,DNA延伸合成3'端,5'端被小片段降解,缺口位點沿著雙鏈向3'端移動,是在體外向DNA分子引入放射性標記核苷酸的技術。

隨機引物合成是使寡核苷酸引物與DNA模板結合,在Klenow酶的作用下,合成DNA探針。

末端標記法通過末端脫氧核糖核苷酸轉移酶催化標記的dNTP加到單鏈或雙鏈DNA的3,末端上。



探針合成的注意事項

①合成探針的長短,一般在20~50個核苷酸之間。合成過長成本高,且易出現聚合酶合成錯誤,雜交時間長,合成太短則特異性下降。

②鹼基組成G-C應含40%~60%,一種鹼基連續重復不超過4個,以免非特異性雜交產生。

③探針自身序列內應無互補區域,以免產生「發夾」結構,影響雜交。

總之,一個好的探針最終要在實踐中才能加以確認。

2. RNA探針與DNA探針的優缺點比較

只知道RNA探針在細胞內的穩定性比DNA探針差
很多蛋白的對應配體探針只能篩選到RNA的
其他的就不知道了

3. 原子力顯微鏡探針的探針優缺點

原子力顯微鏡的探針有很多種類,不同類型的顯微鏡探針是不一樣的,所以每一種探針都有自己的優缺點。想要了解的更詳細,可以詢問Park原子力顯微鏡。Park NX10是全球唯一一個真正非接觸式原子力顯微鏡,在延長探針使用壽命的同時,還能良好地保護您的樣品不受損壞。Park NX10為您帶來最高納米級解析度的數據,值得您信賴、使用和擁有。可彎曲的獨立XY掃描儀和Z掃描儀可帶來無與倫比的精確度和解析度。

AFM探針基本都是由MEMS技術加工Si 或者Si3N4來制備。探針針尖半徑一般為10到幾十nm。微懸臂通常由一個一般100~500μm長和大約500nm~5μm厚的矽片或氮化矽片製成。典型的硅微懸臂大約100μm長、10μm寬、數微米厚。利用探針與樣品之間各種不同的相互作用的力而開發了各種不同應用領域的顯微鏡,如AFM(范德法力),靜電力顯微鏡EFM(靜電力)磁力顯微鏡MFM(靜磁力)側向力顯微鏡LFM(探針側向偏轉力)等,因此有對應不同種類顯微鏡的相應探針。

想要了解原子力顯微鏡的相關信息,推薦咨詢Park原子力顯微鏡。Park成立30多年來,始終致力於納米領域的形貌&力學測量和半導體先進製成工藝的計量的新技術新產品的開發。Park獨有的技術是將XY和Z掃描器分離,實現探針與樣品間的真正非接觸,避免形貌掃描過程中因探針磨損帶來的圖像失真,快速成像還可以大大提高測試效率,降低實驗測試成本。

4. DNA探針的DNA探針的優點

對於基因探針的克隆尚有更快捷的途徑。這也是許多重要蛋白質的編碼基因的克隆方法。該方法的第一步是分離純化蛋白質,然後測定該蛋白的氨基或羥基末端的部分氨基酸序列,然後根據這一序列合成一套寡核苷酸探針。用此探針在DNA文庫中篩選,陽性克隆即是目標蛋白的編碼基因。值得一提的是真核細胞和原核細胞DNA組織有所不同。真核基因中含有非編碼的內含子序列,而原核則沒有。因此,真核基因組DNA探針用於檢測基因表達時雜交效率要明顯低於cDNA探針。 DNA探針(包括cDNA探針)的主要優點有下面三點:①這類探針多克隆在質粒載體中,可以無限繁殖,取之不盡,制備方法簡便。②DNA探針不易降解(相對RNA而言),一般能有效抑制DNA酶活性。③DNA探針的標記方法較成熟,有多種方法可供選擇,如缺口平移,隨機引物法,PCR標記方法等,能用於同位素和非同位素標記.

5. 簡述幾種DNA測序的方法,比較優缺點

基因晶元的原理是鹼基配對。樣品通過一條或多條已知序列經過標記的核酸探針進行雜交,通過檢測雜交結果而測定樣品序列,優點是可以一次分析大量樣品,缺點是容易出現假陽性。基因測序的原理是雙脫氧鏈終止法,用儀器測定一條DNA序列,優點是准確率高,沒有假陽性,只是通量略低。

6. 基因探針的探針標記

探針是能與特異靶分子反應並帶有供反應後檢測的合適標記物的分子。利用核苷酸鹼基順序互補的原理,用特異的基因探針即識別特異鹼基序列的有標記的一段單鏈DNA(或RNA)分子,與被測定的靶序列互補,以檢測被測靶序列的技術叫核酸探針技術。探針制備就是將目的基因進行標記。特異性探針有三種形式——cDNA、RNA、寡核苷酸。cDNA和寡核苷酸是目前最常採用的探針。RNA探針用途很廣,也容易獲得,但其不穩定性限制了其商業用途。cDNA探針的獲得是,將特定的基因片段裝載到質粒或噬菌體中,經過擴增、酶切、純化等復雜的步驟,才能得到一定長度的cDNA探針。這一過程比較復雜,有相應條件的實驗室才能做到。寡核苷酸探針是在已知基因序列的情況下,由核酸合成儀來完成,可廉價獲得大量的此類探針。質量也相對來說更為穩定。由於cDNA探針長度通常為數百至數千個鹼基,所以有良好的信號放大作用,但其滲透性比較差。寡核苷酸探針一般為十數個至數十個鹼基,滲透性強,但信號放大作用則較差,合成的多相寡核苷酸探針,敏感性可以達到cDNA探針水平。
探針的標記方式有放射性標記和非放射性標記。標記物質有放射性元素(如32P等)和非放射性物質(如生物素、地高辛等)。32P是最常用的核苷酸標記同位素,被標記的dNTP本身就帶有磷酸基團,便於標記。特點是比活性高,可達9000Ci/mmol;發射的β射線能量高。用它標記的探針自顯影時間短,靈敏度高。32P的半壽期短,雖使用不方便,但為廢棄物的處理減輕了壓力。非放射性標記法有酶標法和化學物標記法。酶標方法與免疫測定ELISA方法相似,只是被標記的核酸代替了被標記的抗體,事實上被標記的抗體也稱為探針,現有許多商品是生物素、地高辛標記的。血凝素與生物素有非常高的親和性,當血凝素標記上過氧化物酶或鹼性磷酸酶,經雜交反應最終形成探針-生物素-血凝素酶復合物(ABC法),酶催化底物顯色,觀察結果。ABC法底物顯色生成不溶物,以便觀測結果。酶標記法復雜、重復性差,成本高,但便於運輸、保存,靈敏度與放射物標記法相當。 ①缺口平移標記法。利用的是DNA聚合酶I能修復DNA鏈的功能。該法先由DNaseI在DNA雙鏈上隨機切出切口,然後DNA聚合酶I沿缺口水解5´端核苷酸,同時在3´端修復加入被標記核苷酸,切口平行推移。缺口平移法快速、簡便、成本相對較低、比活性相對較高、標記均勻,多用於大分子DNA標記,(>1000bp最好),但單鏈DNA、RNA不能用該法標記。
②隨機引物法。隨機引物是指含有各種可能排列順序的寡聚核苷酸片斷的混合物,因此它可以與任意核苷酸序列雜交,起到聚合酶反應的引物作用。將待標記的DNA探針片斷變性後與隨機引物一起雜交,然後以此雜交的寡聚核苷酸為引物,在大腸桿菌DNA聚合酶I大斷段(KlenowFragment)催化下,合成與探針DNA互補的DNA鏈,當在反應體系中含有a-32P-dNTP時,即形成放射性同位素標記的DNA探針。具有上述優點,可代替缺口平移法。此外大小、單雙DNA均可標記,標記均勻,標記率高,但也不能標記環狀DNA。隨機引物法標記探針一般長400~600bp。
③末端標記法(又叫尾標)。利用末端轉移酶可進行「尾標」,尾標適用於寡核苷酸探針標記,寡核苷酸探針多用於核酸「點」突變的檢測,該探針可用核酸合成儀人工合成,克隆出的探針一般較長,特異性好,標記量大,雜交的檢出信號強。 1、4—6微米切片,用防脫片膠(多聚賴氨酸)處理過的玻片貼附
2、56—60℃烤片2—16h
3、新鮮二甲苯脫蠟,10minX2(趁熱脫蠟)
4、100%乙醇5minX2次,不用浸水,直接空氣乾燥
5、加入50μl蛋白酶K工作液(蛋白酶K用蒸餾水稀釋,濃度為25μg/ml),37℃消化10—15min
6、棄去蛋白酶K工作液,0.1MTBS洗滌3minX3次逐級酒精脫水(85%,95%,100%酒精)1minX3次然後空氣乾燥
7、加入20μl探針,加蓋薄膜。(探針用預雜交液稀釋,濃度為5μg/ml)。
8、95℃變性10—12min;立刻置於冰塊上,防止復性。
9、37℃雜交16—20h
10、揭去薄膜,每張切片加入以下雜交後洗滌液:
>用2—3滴2XSSC37℃洗滌3minX2次;
>0.5XSSC37℃洗滌3minX2次;
>0.2XSSC37℃洗滌3minX2次;
11、0.1MPBS/TBS緩沖液洗滌,1minX3次
12、滴加小鼠抗地高辛生物素標記的抗體工作液,37℃孵育45—60min;
13、0.1MPBS浸洗,5minX3次
14、滴加高敏鹼性磷酸酶鏈親和素復合物工作液,37℃孵育45—60min。
15、0.1MPBS浸洗,5minX3次
16、滴加NBT/BCIP顯色6—16h,
17、雙蒸水終止反應(37℃10min—2h),雙蒸水浸洗,5minX2次
18、滴加核固紅,30秒—5min;
19、雙蒸水浸洗,5minX3次
20、脫水、透明、封片

7. WIFi探針的優點和缺點

我來說一下,wifi探針的優點和缺點吧!這個優點的話,就是採集量現在很大的啦,可以覆蓋方圓兩公里。它可以基本上拿到一個海量的數據來源。一個缺點的就是現在很多介面都已經關了,工信部管的嚴。所以這些數據的話,她的一個分析和有效使用就會有一定的困難。好比就是你有1000個人。但是呢你不知道這些人他們都擅長什麼,喜好性格都不清楚,你要把它合理的組成一個隊伍。達到戰鬥力最大化就很困難,甚至辦不到,這就是他的一個缺點。主要就是這兩樣,別的什麼都他媽不是的。但是如果你有一個行業。比如說你就是做貸款的,你海量的呼出大量的號碼問人家要不要貸款?那肯定就沒有問題。還有比如說你是做外賣的。你剛在這你剛在這邊開了一家店。附近方圓兩公里的人,所有的你打電話過去說說你這個情況,對吧?進行營銷那也是ok的。所以說,現在他的適用性啊,還是有的,只是針對行業不同,可能用的方式方法上不一樣。我們做這個的,我們是最清楚的。

8. 分子雜交技術的核酸探針標記法

核酸探針根據核酸的性質,可分為DNA和RNA探針;根據是否使用放射性標記物的與否,可分為放射性標記探針和非放射性標記探針;根據是否存在互補鏈,可分為單鏈和雙鏈探針;根據放射性標記物摻入情況,可分為均勻標記和末端標記探針。下面將介紹各種類型的探針及標記方法。 分子生物研究中,最常用的探針即為雙鏈DNA探針,它廣泛應用於基因的鑒定、臨床診斷等方面。
雙鏈DNA探針的合成方法主要有下列兩種:切口平移法和隨機引物合成法。
1. 切口平移法(nick translation) 當雙鏈DNA分子的一條鏈上產生切口時,E.coli DNA聚合酶Ⅰ就可將核苷酸連接到切口的3'羥基末端。同時該酶具有從5'→3'的核酸外切酶活性,能從切口的5'端除去核苷酸。由於在切去核苷酸的同時又在切口的3'端補上核苷酸,從而使切口沿著DNA鏈移動,用放射性核苷酸代替原先無放射性的核苷酸,將放射性同位素摻入到合成新鏈中。最合適的切口平移片段一般為50-500個核苷酸。切口平移反應受幾種因素的影響: (a) 產物的比活性取決於[α-32 P]dNTP的比活性和模板中核苷酸被置換的程度。(b) DNA酶Ⅰ的用量和E.coli DNA聚合酶的質量會影響產物片段的大小。(c) DNA模板中的抑制物如瓊脂糖會抑制酶的活性, 故應使用仔細純化後的DNA。
材料: 待標記的DNA。
設備:高速台式離心機,恆溫水浴鍋等。
試劑:
(1)10×切口平移緩沖液:0.5mol/L Tris·Cl (pH7.2); 0.1mol/L MgSO4 ; 10mmol/L DTT; 100μg/ml BSA。
(2)未標記的dNTP原液:除同位素標記的脫氧三磷酸核苷酸外,其餘3種分別溶解於50mmol/L Tris·Cl (pH7.5)溶液中,濃度為0.3mmol/L。
(3)[α-32 P] dCTP或[α-32 P]dATP:400 Ci/mmol, 10μCi/μl。
(4) E.coli DNA聚合酶Ⅰ(4單位/μ l):溶於50μ g/ml BSA, 1mmol/L DTT, 50%甘油,50mmol/L Tris·Cl(pH7.5)中。
(5)DNA酶Ⅰ:1mg/ml。
(6)EDTA :200mmol/L (pH8.0)。
(7)10mol/L NH4Ac。
操作步驟:
(1) 按下列配比混合:
未標記的dNTP 10μl
10×切口平移緩沖液 5μl
待標記的DNA 1μg
[α-32 P]dCTP或dATP(70μCi) 7μl
E.coli DNA聚合酶 4單位
DAN酶 I 1μl
加水至終體積 50μl
(2) 置於15℃水浴60分鍾。
(3) 加入5μl EDTA終止反應。
(4) 反應液中加入醋酸銨,使終濃度為0.5mol/L, 加入兩倍體積預冷無水乙醇沉澱回收DNA探針。
[注意]
1、3H,32P及35S標記的dNTP都可使用於探針標記,但通常使用[α-32 P]-dNTP。
2、DNA酶Ⅰ的活性不同,所得到的探針比活性也不同,DNA酶Ⅰ活性高,則所得探針比活性高,但長度比較短。 隨機引物合成雙鏈探針是使寡核苷酸引物與DNA模板結合,在Klenow酶的作用下,合成DNA探針。合成產物的大小、產量、比活性依賴於反應中模板、引物、dNTP和酶的量。通常,產物平均長度為400-600個核苷酸。利用隨機引物進行反應的優點是:(1)Klenow片段沒有5'→3'外切酶活性,反應穩定,可以獲得大量的有效探針。(2)反應時對模板的要求不嚴格,用微量制備的質粒DNA模板也可進行反應。(3)反應產物的比活性較高,可達4×109 cpm/μg探針。(4)隨機引物反應還可以在低熔點瓊脂糖中直接進行。
材料:待標記的DNA片段。
設備:高速台式離心機,恆溫水浴鍋等。
試劑:
(1)隨機引物(隨機六聚體或斷裂的鮭魚精子DNA)。
(2)10×隨機標記緩沖液:900mmol/L HEPES (pH6.6); 10mmol/L MgCl2。
(3)Klenow片段。
(4)20mmol/L DTT。
(5)未標記的dNTP溶液:dGTP、dCTP和dTTP溶液,各5mmol/L。
(6)[α-32 P] dATP:比活性>3000Ci/mmol, 10μCi/μl。
(7)緩沖液A:50mmol/L Tris·Cl (pH7.5); 50mmol/L NaCl; 5mmol/L EDTA (pH8.0); 0.5% SDS。
操作步驟:
(1) 200ng雙鏈DNA(1μl)和7.5ng隨機引物(1μl)混合後置於eppendorf管內,水浴煮沸5分鍾後,立即置於冰浴中1分鍾。
(2) 與此同時,盡快在一置於冰浴中的0.5ml eppendorf管內混合下列化合物:
20mmol/L DTT 1μl
未標記的dNTP溶液 1μl
10×隨機標記緩沖液 1μl
[α-32 P] dATP(比活性>3000Ci/mmol; 10μCi/μl) 3μl
ddH2O 1μl
(3) 將步驟(1)eppendorf管中的溶液移到步驟(2)管中。
(4) 加入5單位(約1μl) Klenow片段, 充分混合,在微型離心機中以12000g離心1-2秒, 使所有溶液沉於試管底部,在室溫下保溫3-16小時。
(5) 在反應液中加入10μl緩沖液A後,將放射性標記的探針保存在-20℃下備用。同時計算放射比活性。
[注意]1、引物與模板的比例應仔細調整,當引物高於模板時,反應產物比較短,但產物的累積較多;反之,則可獲得較長片段的探針。
2、模板DNA應是線性的,如為超螺旋DNA,則標記效率不足50%。 用雙鏈探針雜交檢測另一個遠緣DNA時,探針序列與被檢測序列間有很多錯配。而兩條探針互補鏈之間的配對卻十分穩定,即形成自身的無效雜交,結果使檢測效率下降。採用單鏈探針則可解決這一問題。單鏈DNA探針的合成方法主要有下列兩種:(1) 以M13載體衍生序列為模板,用Klenow片段合成單鏈探針; (2) 以RNA為模板, 用反轉錄酶合成單鏈cDNA探針。
1. 從M13載體衍生序列合成單鏈DNA探針 合成單鏈DNA探針可將模板序列克隆到噬粒或M13噬菌體載體中,以此為模板,以特定的通用引物或以人工合成的寡合苷酸為引物, 在[a-32P]-dNTP的存在下,由Klenow片段作用合成放射標記探針,反應完畢後得到部分雙鏈分子。在克隆序列內或下游用限制性內切酶切割這些長短不一的產物,然後通過變性凝膠電泳(如變性聚丙烯醯胺凝膠電泳)將探針與模板分離開。雙鏈RF型M13 DNA也可用於單鏈DNA的制備,選用適當的引物即可制備正鏈或負鏈單鏈探針。
材料:已制備好的單鏈DNA模板(方法參見第十章中有關內容)。
設備:高速台式離心機,恆溫水浴鍋等。
試劑:
(1)10×Klenow緩沖液:0.5mol/L NaCl, 0.1mol/L Tris·Cl(pH7.5); 0.1mol/L MgCl2。
(2)0.1mol/L DTT溶液。
(3) [α-32 P] dATP:3000Ci/mmol, 10μCi/μl。
(4)40mmol/L和20mmol/L的未標記的dNTP溶液。
(5)dCTP,dTTP,dGTP各20mmol/L的溶液。
(6) Klenow片段(5單位/ml)。
(7)適宜的限制酶,如EcoRⅠ、HindⅢ等。
(8)0.5mol/L EDTA (pH8.0)。
操作步驟:
(1)在0.5ml eppendorf管中混合如下溶液:
單鏈模板(約0.5pmol) 1mg
適當引物 5pmol
10×Klenow緩沖液 3ml
加水至 20ml
(2)將eppendorf管加熱到85℃ 5分鍾,在30分鍾內,使小離心管降到37℃;
(3)依次加入:
DTT 2ml
[a-32P]dATP 5ml
未標記的dATP 1ml
dGTP,dCTP,dTTP混合液 1ml
混合均勻後,稍離心使之沉於試管底部。
(4)加1ml(5單位)Klenow酶室溫下30分鍾。
(5)加1ml20mmol/L未標記的dATP溶液20分鍾。
(6)68℃加熱10分鍾,使Klenow片段失活。調整NaCl濃度,使之適宜於酶切。
(7)加入20單位限制性內切酶(如EcoRⅠ, HindⅢ等)酶切1小時。
(8)酚/氯仿抽提DNA,乙醇沉澱以去除dNTP或加0.5mol/L EDTA(pH8.0)至終濃度10mmol/L。
(9)用電泳方法分離放射性標記的探針。
2. 從RNA合成單鏈cDNA探針 cDNA單鏈探針主要用來分離cDNA文庫中相應的基因。用RNA為模板合成cDNA探針所用的引物有兩種: (1)用寡聚dT為引物合成cDNA探針。本方法只能用於帶Poly(A)的mRNA,並且產生的探針極大多數偏向於mRNA 3'末端序列。(2) 可用隨機引物合成cDNA探針。該法可避免上述缺點,產生比活性較高的探針。但由於模板RNA中通常含有多種不同的RNA分子,所得探針的序列往往比以克隆DNA為模板所得的探針復雜得多, 應預先盡量富集mRNA中的目的序列。
反轉錄得到的產物RNA/DNA雜交雙鏈經鹼變性後,RNA單鏈可被迅速地降解成小片段,經Sephadex G-50柱層析即可得到單鏈探針。 材料:已提純的RNA或mRNA
設備:高速台式離心機,恆溫水浴鍋等。
試劑:
(1)合適的引物:隨機引物或oligo(dT)15-18。
(2)5mmol/L dGTP, dATP dCTP, dTTP。
(3) [a-32P]dCTP(>3000Ci/mmol, 10mCi/ml)。
(4)反轉錄酶(200000單位/ml)。
(5)100mmol/L DTT。
(6)250mmol/L MgCl2。
(7)1mol/L KCl。
(8)0.5mol/L EDTA (pH8.0)。
(9)10% SDS。
(10)RNasin(40單位/ml)。
操作步驟:
(1)在已置於冰浴中的滅菌離心管中加入下列試劑:
RNA或mRNA 10.0ml
合適的產物(1mg/ml) 10.0ml
1mol/L Tris·Cl(pH7.6) 2.5ml
1mol/L KCl 3.5ml
250mmol/L MgCl2 2.0ml
5mmol/L dNTP 10.0ml
[a-32P]dCTP 10.0ml
0.1mol/L DTT 2.0ml
Rnasin 20U
加水至 48ml
反轉錄酶(200000單位/ml) 2ml
混勻後,稍稍離心,37℃保溫2小時。
(2) 反應完畢後加入下列試劑: 0.5mol/L EDTA (pH8.0) 2ml 10% SDS 2ml
(3) 加入3ml 3mol/L NaOH。68℃保溫30分鍾以水解RNA。
(4) 冷卻至室溫後, 加入10ml 1mol/L Tris·Cl (pH7.4)。混勻。然後加入3ml 2mol/L HCl。
(5) 酚/氯仿抽提後,用Sephadex G-50柱層析或乙醇沉澱法分離標記的探針。 [注意] RNA極易降解,因而實驗中的所有試劑和器皿均應在DEPC處理後,滅菌備用。 現以Klenow片段標記3'末端為例說明末端標記的方法。
1、材料:待標記的雙鏈含凹缺3'末端的DNA。
2、設備:高速台式離心機,水浴鍋等。
3、試劑:
(1)3種不含標記的dNTP各為200mmol/L。
(2)合適的限制酶。
(3)[α-32P] dNTP:3000Ci/mmol, 10mCi/ul。
(4)Klenow片段(5U/ml)。
(5)10×末端標記緩沖液:0.5mol/L Tris·Cl (pH7.2), 0.1mol/L MgSO4, 1mmol/L DTT, 500mg/ml BSA。
4、操作步驟:
(1)25μl反應體系中用合適的限制酶酶切1μg的DNA。
(2)按下列成分加入試劑並混勻: 已酶切的DNA 1mg (25ml) 10×末端標記緩沖液 5ml 2mmol/L 3種dNTP 1ml [a-32P]-dNTP 適量 加水至 50ml
(3)加入1單位的Klenow片段,室溫下反應30分鍾。
(4)加入1ml 2mmol/L 第四種核苷酸溶液, 室溫保溫15分鍾。
(5)70℃加熱5分鍾,終止反應。
(6)用酚/氯仿抽提後,用乙醇沉澱來分離標記的DNA,或用Sephdadex G-50柱層析分離標記的DNA。
[注意]
1、利用本方法可對DNA分子量標准進行標記,利用它可定位因片段太小而無法在凝膠中觀察的DNA片段。
2、對DNA的純度不很嚴格,少量制備的質粒也可進行末端標記合成探針。
3、末端標記還有其他的一些方法,如利用T4多核苷酸激酶標記脫磷的5'端突出的DNA和平末端凹缺DNA分子,也可利用該酶進行交換反應標記5'末端。 利用寡核苷酸探針可檢測到靶基因上單個核苷酸的點突變。常用的寡核苷酸探針主要有兩種:單一已知序列的寡核苷酸探針和許多簡並性寡核苷酸探針組成的寡核苷酸探針庫。單一已知序列寡核苷酸探針能與它們的目的序列准確配對,可以准確地設計雜交條件,以保證探針只與目的序列雜交而不與序列相近的非完全配對序列雜交,對於一些未知序列的目的片段則無效。
1、材料:待標記的寡核苷酸(10pmol/μl)。
2、設備:高速離式離心機,恆溫水浴鍋等。
3、試劑:
(1)10×T4多核苷酸激酶緩沖液:0.5mol/L Tris·Cl (pH7.6), 0.1mol/L MgCl2 , 50mmol/L DTT, 1mmol/L Spermidine·HCl, 1mmol/L EDTA (pH8.0)。
(2)[γ-32 P] ATP(比活性7000Ci/mmol; 10mCi/ml)。
(3)T4多核苷酸激酶(10單位/ml)。
4、操作步驟:
(1)100ng寡核苷酸溶於30ml水中。置65℃變性5分鍾,迅速置冰溶中。
(2)立即加入下列試劑:
10×激酶緩沖液 5ml
[g-32P]ATP(比活性7000Ci/mmol;10mCi/ml) 10ml
T4多核苷酸激酶 2ml
加水至 50ml
混勻後置37℃水浴20分鍾。
(3)再加入20單位T4多核苷酸激酶,置37℃水浴20分鍾後立即置冰浴中。
(4)Sephadex G-50柱層析。
此方法是在每個探針的5'末端多加了一個磷酸,理論上,這會影響其與DNA的雜交。因此,建議使用Klenow DNA聚合酶的鏈延伸法獲得高放射性的寡核苷酸探針。
除了常見的同位素標記探針外,還有利用非同位素標記探針和雜交的方法,許多公司都有不同的非同位素標記探針的雜交系統出售,可根據這些公司所提供的操作步驟進行探針的標記和雜交。 許多載體如pBluescript, pGEM等均帶有來自噬菌體SP6或E.coli噬菌體T7或T3的啟動子,它們能特異性地被各自噬菌體編碼的依賴於DNA的RNA聚合酶所識別,合成特異性的RNA。在反應體系中若加入經標記的NTP,則可合成RNA探針。RNA探針一般都是單鏈,它具有單鏈DNA探針的優點,又具有許多DNA單鏈探針所沒有的優點,主要是: RNA:DNA雜交體比DNA:DNA雜交體有更高的穩定性,所以在雜交反應中RNA探針比相同比活性的DNA探針所產生信號要強。 RNA:RNA雜交體用RNA酶A酶切比S1酶切DNA:RNA雜交體容易控制,所以用RNA探針進行RNA結構分析比用DNA探針效果好。
噬菌體依賴DNA的RNA聚合酶所需的rNTP濃度比Klenow片段所需的dNTP濃度低,因而能在較低濃度放射性底物的存在下,合成高比活性的全長探針。 用來合成RNA的模板能轉錄許多次,所以RNA的產量比單鏈DNA高。並且用來合成RNA的模板能轉錄多次,可獲得比單鏈DNA更高產量的RNA。
反應完畢後,用無RNA酶的DNA酶Ⅰ處理,即可除去模板DNA,而單鏈DNA探針則需通過凝膠電泳純化才能與模板DNA分離。
另外噬菌體依賴於DNA的RNA聚合酶不識別克隆DNA序列中的細菌、質粒或真核生物的啟動子,對模板的要求也不高,故在異常位點起始RNA合成的比率很低。因此,當將線性質粒和相應的依賴DNA的RNA聚合酶及四種rNTP一起保溫時,所有RNA的合成,都由這些噬菌體啟動子起始。而在單鏈DNA探針合成中,若模板中混雜其他DNA片段,則會產生干擾。但它也存在著不可避免的缺點,因為合成的探針是RNA,它對RNase特別敏感,應而所用的器皿試劑等均應仔細地去除RNase;另外如果載體沒有很好地酶切則等量的超螺旋DNA會合成極長的RNA,它有可能帶上質粒的序列而降低特異性。

9. 非放射性標記各有哪些優缺點

常見的有地高辛(DIG)標記和生物素(Biotin)標記。
DIG:,地高辛標記的探針在高溫下與尼龍膜進行交聯效果較好,易產生較高的背景,需要在實驗中進行無菌操作;DIG使用的發光底物為鹼性磷酸酶化學發光底物,該底物具有持續的發光功能,發光能力可維持24~48h,因此,可進行多次曝光;
Biotin:生物素標記的探針需要通過紫外照射進行交聯,採用親和素耦合的HRP,避免了檢測過程中由於細菌污染造成的高背景問題,易取得信噪比良好的結果;同時由於生物素與鏈親合素間的反應結合親合力較半抗原與抗體間的結合親合力高,因此Biotin標記更易取得穩定的結果;;Biotin化學發光分析使用的發光底物為ECL,其持續發光的能力不如鹼性磷酸酶化學發光底物,一般為6~8h

閱讀全文

與探針標記方法優缺點分析相關的資料

熱點內容
如何科學減肥瘦身方法 瀏覽:389
蘋果二手手機可以刷機方法 瀏覽:235
格列齊特應該怎麼服用方法 瀏覽:259
雅詩蘭黛眼霜的正確使用方法 瀏覽:56
送貨正確方法和步驟 瀏覽:693
電腦表格匯總方法 瀏覽:822
小孩便秘的最佳治療方法 瀏覽:267
vivo緩存設置在哪裡設置方法 瀏覽:197
led孔燈閃爍故障解決方法 瀏覽:938
治療半月板前角損傷方法 瀏覽:286
高速公路快速減速方法 瀏覽:801
銅牌製作方法和步驟 瀏覽:398
簡單的鉛筆懸浮方法 瀏覽:889
如何控制體脂的方法 瀏覽:396
皮毛如何處理方法 瀏覽:41
手機主板漏電修補方法 瀏覽:394
輕微抑鬱症的治療方法 瀏覽:504
減肥平台期解決方法 瀏覽:544
茶的質量要求與鑒別方法論文 瀏覽:485
遙控電路板連接方法 瀏覽:595