⑴ 如何學習教小學奧數
91好課 小學奧數 六年級數學 超越篇30講 超清視頻課程 網路網盤
鏈接:
若資源有問題歡迎追問~
⑵ 小學奧數如何教學
1、接觸奧數,興趣第一。 一定要首先注意興趣上的培養,幫助他們找到數學中引起他們興趣的事情,比如數字游戲等等。
2、找一位孩子最喜歡的老師。 既然剛剛接觸奧數,興趣是第一位的,那找一位孩子喜歡的老師就是學習的重中之重。一位好的老師能夠讓孩子迅速喜歡上課堂,以自己的人格魅力感染學生。在課堂上,老師不僅是孩子的師長,也是孩子的朋友,和孩子們一起探討問題,一起思考,使孩子們養成良好的學習習慣,在喜歡老師的同時喜歡數學。
3、用一套最權威的教材。 通過長期的奧數學習,可以使學生的數學學習能力和素質得到培養,思維能力、智力潛能得到很好的開發,現已被眾多學有餘力和學有興趣的學生所青睞。奧數課程可以使您的孩子「開思維之竅,入解題之門」,幫助孩子奠定堅實的基礎,攀登數學的顛峰!
4、從最合適的起點開始。 剛剛接觸奧數,學不懂不是孩子不適合學數學,是起點不合適。
⑶ 小學奧數學的有什麼技巧嗎
鏈接:https://pan..com/s/1oDcLLrFGajY3k0FY3hGABA
學生在學習數學過程中,思維應佔有重要地位。而思維又是學生在學習數學知識和掌握方法的基礎上形成的,是數學知識與學生主體認識相互作用的結果。思維訓練已成為當前數學教學的重要內容。為了使學生獲取數學思維能力,就必須以學生已有的數學概念為基礎,運用學生已有的數學知識,靈活地處理新的問題,學生通過數學判斷和推理等形式認識數學對象,掌握新知識。
⑷ 如何輔導孩子學奧數
低齡段的孩子有必要學奧數嗎?除去升學等功利性的考慮,我們這么多孩子學奧數,到底學到了些什麼?可以鍛煉孩子的思維方式。「數學思想方法的教學不但可以起到培養思維能力的作用,還可以提高解決問題的能力。因為僅就數學的三個基本思想而言,如抽象思想、推理思想、模型思想,就已經包括了思維能力和解決問題能力的培養。因此,搞好數學思想方法的教學,有可能提高學習效率和減輕學生課外學習的負擔。」每天學的要復習,每半學期也要進行一下綜合復習。對奧數講義,我們要復習,不要預習。因為奧數是分專題的,每個專題都有它自己的體系和解題方法,家長雖然能夠解答出其中的一部分題,但那是大人的思維,孩子的大腦很可能還沒有發展到接收這種邏輯的程度,這樣對孩子的學習是一點幫助都沒有的,甚至會適得其反,讓孩子覺得理解不了,打擊自信心。但有一些基礎知識比如一二年級的計算問題家長完全可以幫助孩子練習,打好基本功。但復習是必不可少的。因為我們課上時間有限,時間安排的又緊,再加上難度和深度大,孩子可能上課的時候聽明白了,但回到家就又忘了,需要及時反復鞏固。如果家長陪聽了,孩子有不會的家長可以按照老師思路講解一下,如果家長沒有陪聽,可以讓孩子問問老師。每天學的要復習,每半學期也要進行一下綜合復習。注意歸納總結。
對作業,家長要督促孩子完成家庭作業。奧數講義的每一講後邊都有配套的練習題,可以讓孩子更好的鞏固課上所學知識,最好讓孩子獨立完成。如果實在有題不會做,沒關系,想到哪一步就寫到哪一步,哪怕過程不會寫,只寫出解題思路也可以。
⑸ 小學奧數課怎麼上才能吸引學生
理論上本吧不解決教學法的問題。我覺得你講得有趣,才能吸引學生,或者利用有意思的教輔具。
⑹ 解決奧數問題的基本與常用方法
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。
⑺ 如何學習奧數
1.我們在學習奧數的時候,先要來培養孩子的興趣愛好,所以在學習的時候,孩子對這門課是否感興趣是很重要的一點。培養孩子的興趣就是讓孩子愛學,而不是家長硬要著孩子去學。但是在完成這個任務的是時候,一方面需要家長的引導,另一方面需要我們老師良好的教學藝術,讓孩子喜歡學這門課,是最關鍵的。
2. 還有在學習的時候,要培養孩子的學習方法,在學的時候,一是學會課前預習,在老師講新知識之前,學生要認真閱讀要學的內容,課前自學例題,還有在看書時,要動腦思考。二是善於解決難題,學生的思路往往是由疑問開始的,學生的肯提出問題是學會創新的關鍵。還有在學習時,經常提出問題,可以開拓自己的思維空間,能很好的提高解決問題的能力。
3. 還有要養成良好的學習習慣,培養好的習慣是最重要,但是這些對於學奧數是很有幫助的,小的時候,養成好的習慣是很重要的,在以後的日子也會用上,良好的學習習慣對於學習來說是由很大的幫助的,要是有壞習慣是很難改的。
(7)奧數教學方法和措施擴展閱讀:
一、切忌題海戰術
不要盲目進行題海戰術,欲速則不達。一定要精選題,精練習,要難易程度不同比例進行練習,要在有經驗的老師指導下練習。否則,會把題目越積越多,從而打擊孩子學習熱情與自信心,後果嚴重時,會導致對奧數的反感。
二、要有信心
只要能夠按照要求去做,突破瓶頸,事在人為!
三、把學習當成興趣
學習奧數並不痛苦,很多學生把奧數當作樂趣。數學實在是很美的,方程是美麗的,解方程的過程是一種享受。只有將之作為興趣愛好,才能更高效的進行學習。愛奧數,從而精奧數。
四、要學會研究性學習
要把一道題當作一類題進行研究。要留意總結,留意拓展,留意自己「編題」。用多種方法解一道題,做「一當十」,形成優秀的思維習慣,這不止是六年級決勝小升初,更重要的是對後續理科學習,益處無窮。
⑻ 如何學好小學奧數的幾個小竅門
學好奧數網路網盤免費下載
鏈接:
學生在學習數學過程中,思維應佔有重要地位。而思維又是學生在學習數學知識和掌握方法的基礎上形成的,是數學知識與學生主體認識相互作用的結果。思維訓練已成為當前數學教學的重要內容。為了使學生獲取數學思維能力,就必須以學生已有的數學概念為基礎,運用學生已有的數學知識,靈活地處理新的問題,學生通過數學判斷和推理等形式認識數學對象,掌握新知識。
⑼ 奧數如何學習效果好
用方法學當然最好,一切都講方法。
一、數形結合的思想方法
數與形是數學教學研究對象的兩個側面,把數量關系和空間形式結合起來去分析問題、解決問題,就是數形結合思想。「數形結合」可以藉助簡單的圖形、符號和文字所作的示意圖,促進學生形象思維和抽象思維的協調發展,溝通數學知識之間的聯系,從復雜的數量關系中凸顯最本質的特徵。它是小學數學教材編排的重要原則,也是小學數學教材的一個重要特點,更是解決問題時常用的方法。
例如,我們常用畫線段圖的方法來解答應用題,這是用圖形來代替數量關系的一種方法。我們又可以通過代數方法來研究幾何圖形的周長、面積、體積等,這些都體現了數形結合的思想。
二、集合的思想方法
把一組對象放在一起,作為討論的范圍,這是人類早期就有的思想方法,繼而把一定程度抽象了的思維對象,如數學上的點、數、式放在一起作為研究對象,這種思想就是集合思想。集合思想作為一種思想,在小學數學中就有所體現。在小學數學中,集合概念是通過畫集合圖的辦法來滲透的。
如用圓圈圖(韋恩圖)向學生直觀的滲透集合概念。讓他們感知圈內的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。利用圖形間的關系則可向學生滲透集合之間的關系,如長方形集合包含正方形集合,平行四邊形集合包含長方形集合,四邊形集合又包含平行四邊行集合等。
三、對應的思想方法
對應是人的思維對兩個集合間問題聯系的把握,是現代數學的一個最基本的概念。小學數學教學中主要利用虛線、實線、箭頭、計數器等圖形將元素與元素、實物與實物、數與算式、量與量聯系起來,滲透對應思想。
如人教版一年級上冊教材中,分別將小兔和磚頭、小豬和木頭、小白兔和蘿卜、蘋果和梨一一對應後,進行多少的比較學習,向學生滲透了事物間的對應關系,為學生解決問題提供了思想方法。
四、函數的思想方法
恩格斯說:「數學中的轉折點是笛卡兒的變數。有了變數,運動進入了數學,有了變數,辯證法進入了數學,有了變數,微分和積分也就立刻成為必要的了。」我們知道,運動、變化是客觀事物的本質屬性。函數思想的可貴之處正在於它是運動、變化的觀點去反映客觀事物數量間的相互聯系和內在規律的。學生對函數概念的理解有一個過程。在小學數學教學中,教師在處理一些問題時就要做到心中有函數思想,注意滲透函數思想。
函數思想在人教版一年級上冊教材中就有滲透。如讓學生觀察《20以內進位加法表》,發現加數的變化引起的和的變化的規律等,都較好的滲透了函數的思想,其目的都在於幫助學生形成初步的函數概念。
五、極限的思想方法
極限的思想方法是人們從有限中認識無限,從近似中認識精確,從量變中認識質變的一種數學思想方法,它是事物轉化的重要環節,了解它有重要意義。
現行小學教材中有許多處注意了極限思想的滲透。 在「自然數」、「奇數」、「偶數」這些概念教學時,教師可讓學生體會自然數是數不完的,奇數、偶數的個數有無限多個,讓學生初步體會「無限」思想;在循環小數這一部分內容中,1 ÷ 3 = 0.333…是一循環小數,它的小數點後面的數字是寫不完的,是無限的;在直線、射線、平行線的教學時,可讓學生體會線的兩端是可以無限延長的。
六、化歸的思想方法
化歸是解決數學問題常用的思想方法。化歸,是指將有待解決或未解決的的問題,通過轉化過程,歸結為一類已經解決或較易解決的問題中去,以求得解決。客觀事物是不斷發展變化的,事物之間的相互聯系和轉化,是現實世界的普遍規律。數學中充滿了矛盾,如已知和未知、復雜和簡單、熟悉和陌生、困難和容易等,實現這些矛盾的轉化,化未知為已知,化復雜為簡單,化陌生為熟悉,化困難為容易,都是化歸的思想實質。任何數學問題的解決過程,都是一個未知向已知轉化的過程,是一個等價轉化的過程。化歸是基本而典型的數學思想。我們實施教學時,也是經常用到它,如化生為熟、化難為易、化繁為簡、化曲為直等。
如:小數除法通過「商不變性質」化歸為除數是整數的除法;異分母分數加減法化歸為同分母分數加減法;異分母分數比較大小通過「通分」化歸為同分母分數比較大小等;在教學平面圖形求積公式中,就以化歸思想、轉化思想等為理論武器,實現長方形、正方形、平行四邊形、三角形、梯形和圓形的面積計算公式間的同化和順應,從而構建和完善了學生的認知結構。
七、歸納的思想方法
在研究一般性性問題之前,先研究幾個簡單的、個別的、特殊的情況,從而歸納出一般的規律和性質,這種從特殊到一般的思維方式稱為歸納思想。數學知識的發生過程就是歸納思想的應用過程。在解決數學問題時運用歸納思想,既可認由此發現給定問題的解題規律,又能在實踐的基礎上發現新的客觀規律,提出新的原理或命題。因此,歸納是探索問題、發現數學定理或公式的重要思想方法,也是思維過程中的一次飛躍。
如:在教學「三角形內角和」時,先由直角三角形、等邊三角形算出其內角和度數,再用猜測、操作、驗證等方法推導一般三角形的內角和,最後歸納得出所有三角形的內角和為180度。這就運用歸納的思想方法。
八、符號化的思想方法
數學發展到今天,已成為一個符號化的世界。符號就是數學存在的具體化身。英國著名數學家羅素說過:「什麼是數學?數學就是符號加邏輯。」數學離不開符號,數學處處要用到符號。懷特海曾說:「只要細細分析,即可發現符號化給數學理論的表述和論證帶來的極大方便,甚至是必不可少的。」數學符號除了用來表述外,它也有助於思維的發展。如果說數學是思維的體操,那麼,數學符號的組合譜成了「體操進行曲」。現行小學數學教材十分注意符號化思想的滲透。
人教版教材從一年級就開始用「□」或「( )」代替變數 x ,讓學生在其中填數。例如: 1 + 2 = □ ,6 +( )=8 , 7 = □+□+□+□+□+□+□;再如:學校有7個球,又買來4個。現在有多少個?要學生填出□ ○ □ = □ (個)。
符號化思想在小學數學內容中隨處可見,教師要有意識地進行滲透。數學符號是抽象的結晶與基礎,如果不了解其含義與功能,它如同「天書」一樣令人望而生畏。因此 ,教師在教學中要注意學生的可接受性。
九、統計的思想方法
在生產、生活和科學研究時,人們通常需要有目的地調查和分析一些問題,就要把收集到的一些原始數據加以歸類整理,從而推理研究對象的整體特徵,這就是統計的思想和方法。例如,求平均數是一種理想化的統計方法。我們要比較兩個班的學習情況,以班級學生的平均數作為該班成績的標志是有一定說服力的,這是一種最常用、最簡單方便的統計方法
小學數學除滲透運用了競賽數學網介紹的上述各數學思想方法外,還滲透運用了轉化的思想方法、假設的思想方法、比較的思想方法、分類的思想方法、類比的思想方法等(詳見《拉分題賞析》)。從教學效果看,在教學中滲透和運用這些教學思想方法,能增加學習的趣味性,激發學生的學習興趣和學習的主動性;能啟迪思維,發展學生的數學智能;有利於學生形成牢固、完善的認識結構。總之,在教學中,教師要既重視數學知識、技能的教學,又注重數學思想、方法的滲透和運用,這樣無疑有助於學生數學素養的全面提升,無疑有助於學生的終身學習和發展。