A. 测定糖的含量的方法有哪些
糖的测定方法
一般有四种方法:
1、 直接滴定法。
原理为 糖还原天蓝色的氢氧化铜为红色的氧化亚铜。缺点:水样中的还原性物质能对糖的测定造成影响。
2、 高锰酸钾滴定法。
所用原理同直接滴定法。缺点:水样中的还原性物质能对糖的测定造成影响,过程较为复杂,误差大。
3、硫酸苯酚法。
糖在浓硫酸作用下,脱水形成的糠醛和羟甲基糠醛能与苯酚缩合成一种橙红色化合物,在10-100mg范围内其颜色深浅与糖的含量成正比,且在485nm波长下有最大吸收峰,故可用比色法在此波长下测定。苯酚法可用于甲基化的糖、戊糖和多聚糖的测定,方法简单,灵敏度高,实验时基本不受蛋白质存在的影响,并且产生的颜色稳定160min以上。
缺点:如果水样呈橙红色(大部分水样为黄色),会对比色法造成较大的干扰。
4、蒽酮法
糖在浓硫酸作用下,可经脱水反应生成糠醛和羟甲基糠醛,生成的糠醛或羟甲基糠醛可与蒽酮反应生成蓝绿色糠醛衍生物,在一定范围内,颜色的深浅与糖的含量成正比,故可用于糖的测定。
缺点:,不同的糖类与蒽酮试剂的显色深度不同,果糖显色最深,葡萄糖次之,半乳糖、甘露糖较浅,五碳糖显色更浅。
综合比较;采用蒽酮法能将最为准确地测定尾水中糖的含量。
(一) 直接滴定法
Ⅰ、原理
v 一定量的碱性酒石酸铜甲、乙液等量混合,立即生成天蓝色的氢氧化铜沉淀,这种沉淀很快与酒石酸钠反应,生成深蓝色的可溶性酒石酸钾钠铜络合物。在加热条件下,以次甲基蓝作为指示剂,用标液滴定,样液中的还原糖与酒石酸钾钠铜反应,生成红色的氧化亚铜沉淀,待二价铜全部被还原后,稍过量的还原糖把次甲基蓝还原,溶液由蓝色变为无色,即为滴定终点。根据样液消耗量可计算出还原糖含量。
样品经除去蛋白质后,在加热条件下,以次甲基蓝做指示剂,滴定标定过的碱性酒石酸铜溶液(用还原糖标准溶液标定碱性酒石酸铜溶液),根据样品溶液消耗体积计算还原糖量。
Ⅱ、仪器和试剂
1.仪器
酸式滴定管,可调电炉(带石棉板),250ml容量瓶。
2.试剂
1. 盐酸。
2. 碱性酒石酸铜甲液:称取15g硫酸铜(CuSO4·5H2O)及0.05g次甲基蓝,溶于水中并稀释至1000mL。
3. 碱性酒石酸铜乙液:称取50g酒石酸钾钠与75g氢氧化钠,溶于水中,再加入4g亚铁氰化钾,完全溶解后,用水稀释至1000 ml,贮存于橡胶塞玻璃瓶内。
4. 乙酸锌溶液:称取21.9 g乙酸锌,加3ml冰乙酸,加水溶解并稀释至100ml。
5. 亚铁氰化钾溶液:称取10.6g亚铁氰化钾,用水溶解并稀释至100ml。
6. 葡萄糖标准溶液:准确称取1.0000g经过96℃±2℃干燥2h的纯葡萄糖,加水溶解后加入5ml盐酸,并以水稀释至1000L。此溶液相当于1mg/ml葡萄糖(注:加盐酸的目的是防腐,标准溶液也可用饱和苯甲酸溶液配制)。
7. 果糖标准溶液:按⑹操作,配制每毫升标准溶液相当于1mg的果糖。
8. 乳糖标准溶液:按⑹操作,配制每毫升标准溶液相当于1mg的乳糖。
9. 转化糖标准溶液:准确称取1.0526g纯蔗糖,用100ml水溶解,置于具塞三角瓶中加5ml盐酸(1+1),在68℃~70℃水浴中加热15min,放置至室温定容至1000ml,每ml标准溶液相当于1.0mg转化糖。
Ⅲ、实验步骤
1.样品处理
⑴ 乳类、乳制品及含蛋白质的食品:称取约2.50~5.00g固体样品(吸取25~50ml液体样品),置于250 ml容量瓶中,加50 ml水,摇匀。边摇边慢慢加入5ml乙酸锌溶液及5ml亚铁氢化钾溶液,加水至刻度,混匀。静置30 min,用干燥滤纸过滤,弃去初滤液,滤液备用。(注意:乙酸锌可去除蛋白质、鞣质、树脂等,使它们形成沉淀,经过滤除去。如果钙离子过多时,易与葡萄糖、果糖生成络合物,使滴定速度缓慢;从而结果偏低,可向样品中加入草酸粉,与钙结合,形成沉淀并过滤。)
⑵ 酒精性饮料:吸取100ml样品,置于蒸发皿中,用1 mol/L氢氧化钠溶液中和至中性,在水浴上蒸发至原体积1/4后,移入250ml容量瓶中,加水至刻度。
⑶ 含多量淀粉的食品:称取10.00~20.00g样品,置于250ml容量瓶中,加200ml水,在45℃水浴中加热1h,并时时振摇(注意:此步骤是使还原糖溶于水中,切忌温度过高,因为淀粉在高温条件下可糊化、水解,影响检测结果。)。冷后加水至刻度,混匀,静置,沉淀。吸取200ml上清液于另一250ml容量瓶中,慢慢加入5ml乙酸锌溶液及5ml亚铁氢化钾溶液,加水至刻度,混匀,沉淀,静置30 min,用干燥滤纸过滤,弃去初滤液,滤液备用。
⑷ 汽水等含有二氧化碳的饮料:吸取100ml样品置于蒸发皿中,在水浴上除去二氧化碳后,移入250ml容量瓶中,并用水洗涤蒸发皿,洗液并入容量瓶中,再加水至刻度,混匀后备用。(注意:样品中稀释的还原糖最终浓度应接近于葡萄糖标准液的浓度。)
2. 标定碱性酒石酸铜溶液:吸取5.0ml碱性酒石酸铜甲液及5.0ml乙液,置于150ml锥形瓶中(注意:甲液与乙液混合可生成氧化亚铜沉淀,应将甲液加入乙液,使开始生成的氧化亚铜沉淀重溶),加水10 ml,加入玻璃珠2粒,从滴定管滴加约9 ml葡萄糖标准溶液或其他还原糖标准溶液,直至溶液兰色刚好褪去为终点,记录消耗的葡萄糖标准溶液或其他还原糖标准溶液总体积,平行操作三份,取其平均值,计算每10 ml(甲、乙液各5 ml)碱性酒石酸铜溶液相当于葡萄糖的质量或其他还原糖的质量(mg)。(注意:还原的次甲基蓝易被空气中的氧氧化,恢复成原来的蓝色,所以滴定过程中必须保持溶液成沸腾状态,并且避免滴定时间过长。)
3. 样品溶液预测:吸取5.0 ml碱性酒石酸铜甲液及5.0 ml乙液,置于150 ml锥形瓶中,加水10 ml,加入玻璃珠2粒,控制在2 min内加热至沸,趁沸以先快后慢的速度,从滴定管中滴加样品溶液,并保持溶液沸腾状态,待溶液颜色变浅时,以每两秒1滴的速度滴定,直至溶液蓝色褪去,出现亮黄色为终点。如果样品液颜色较深,滴定终点则为兰色褪去出现明亮颜色(如亮红),记录消耗样液的总体积。(注意:如果滴定液的颜色变浅后复又变深,说明滴定过量,需重新滴定。) 当试样溶液中还原糖浓度过高时应适当稀释,再进行正式测定,使每次滴定消耗试样溶液的体积控制在与标定碱性酒石酸酮溶液时所消耗的还原糖标准溶液的体积相近,约在10ml左右。当浓度过低时则采取直接加入10ml样品溶液,免去加水10ml,再用还原糖标准溶液滴定至终点,记录消耗的体积与标定时消耗的还原糖标准溶液体积之差相当于10ml试样溶液中所含还原糖的量。
4. 样品溶液测定:吸取5.0 ml碱性酒石酸铜甲液及5.0 ml乙液,置于150 ml锥形瓶中,加水10 ml,加入玻璃珠2粒,在2 min内加热至沸,快速从滴定管中滴加比预测体积少1 ml的样品溶液,然后趁沸继续以每两秒1滴的速度滴定直至终点。记录消耗样液的总体积,同法平行操作两至三份,得出平均消耗体积。
5. 计算
样品中还原糖的含量(以某种还原糖计)按下式计算。
X=〔A/(m×V/250×1000)〕×100
式中:X--样品中还原糖的含量(以某种还原糖计),单位 g/100g;
A—碱性酒石酸铜溶液(甲、乙液各半)相当于某种还原糖的质量,单位 mg;
m--样品质量,单位 g;
V--测定时平均消耗样品溶液的体积,单位 ml;
计算结果保留小数点后一位。
注意:
滴定结束,锥形瓶离开热源后,由于空气中氧的氧化,使溶液又重新变蓝,此时不应再滴定。
(二)高锰酸钾滴定法
v 原理 将样液与一定量过量的碱性酒石酸铜溶液反应,还原糖将二价铜还原为氧化亚铜,经过滤,得到氧化亚铜沉淀,加入过量的酸性硫酸铁溶液将其氧化溶解,而三价铁盐被定量地还原为亚铁盐,用高锰酸钾标准溶液滴定所生成的亚铁盐,根据高锰酸钾溶液消耗量可计算出氧化亚铜的量,再从检索表中查出氧化亚铜量相当的还原糖量,即可计算出样品中还原糖含量。
(三)硫酸苯酚法
Ⅰ、原理
糖在浓硫酸作用下,脱水形成的糠醛和羟甲基糠醛能与苯酚缩合成一种橙红色化合物,在10-100mg范围内其颜色深浅与糖的含量成正比,且在485nm波长下有最大吸收峰,故可用比色法在此波长下测定。苯酚法可用于甲基化的糖、戊糖和多聚糖的测定,方法简单,灵敏度高,实验时基本不受蛋白质存在的影响,并且产生的颜色稳定160min以上。
多糖在硫酸的作用下先水解成单糖,并迅速脱水生成糖醛衍生物,然后与苯酚生成橙黄色化合物。再以比色法测定。
Ⅱ、试剂
1. 浓硫酸:分析纯,95.5%
2. 80%苯酚:80克苯酚(分析纯重蒸馏试剂)加20克水使之溶解,可置冰箱中避光长期储存。
3. 6%苯酚:临用前以80%苯酚配制。(每次测定均需现配)
4. 标准葡聚糖(Dextran,瑞典Pharmacia),或分析纯葡萄糖。
5. 15%三氯乙酸(15%TCA):15克TCA加85克水使之溶解,可置冰箱中长期储存。
6. 5%三氯乙酸(5%TCA):25克TCA加475克水使之溶解,可置冰箱中长期储存。
7. 6mol/L 氢氧化钠:120克分析纯氢氧化钠溶于500ml水。
8. 6mol/L 盐酸
Ⅲ、操作。
1.制作标准曲线:准确称取标准葡聚糖(或葡萄糖)20mg于500ml容量瓶中,加水至刻度,分别吸取0.4、0.6、0.8、1.0、1.2、1.4、1.6及1.8ml,各以蒸馏水补至2.0ml,然后加入6%苯酚1.0ml及浓硫酸5.0ml,摇匀冷却,室温放置20分钟以后于490nm测光密度,以2.0ml水按同样显色操作为空白,横坐标为多糖微克数,纵坐标为光密度值,得标准曲线。
2.样品含量测定:
①取样品1克(湿样)加1ml 15%TCA溶液研磨,再加少许5%TCA溶液研磨,倒上清液于10毫升离心管中,再加少许5%TCA溶液研磨,倒上清液,重复3次。最后一次将残渣一起到入离心管。注意:总的溶液不要超出10毫升。(既不要超出离心管的容量)。
②离心,转速3000转/分钟,共三次。第一次15分钟,取上清液。后两次各5分钟取上清液到25毫升锥形比色管中。最后滤液保持18毫升左右。(测肝胰腺样品时,每次取上清液时应过滤。因为其脂肪含量大容易夹带残渣。)
③水浴,在向比色管中加入2毫升6mol/L 盐酸之后摇匀,在96℃水浴锅中水浴2小时。
④定容取样。水浴后,用流水冷却后加入2毫升6mol/L 氢氧化钠摇匀。定容至25毫升的容量瓶中。吸取0.2 ml的样品液,以蒸馏补至2.0ml,然后加入6%苯酚1.0ml及浓硫酸5.0ml,摇匀冷却室温放置20分钟以后于490nm测光密度。每次测定取双样对照。以标准曲线计算多糖含量。
Ⅳ、注意
(1)此法简单、快速、灵敏、重复性好,对每种糖仅制作一条标准曲线,颜色持久。
(2)制作标准线宜用相应的标准多糖,如用葡萄糖,应以校正系数0.9校正μg数。
(3)对杂多糖,分析结果可根据各单糖的组成比及主要组分单糖的标准曲线的校正系数加以校正计算。
(4)测定时根据光密度值确定取样的量。光密度值最好在0.1——0.3之间。比如:小于0.1之下可以考虑取样品时取2克,仍取0.2ml样品液,如大于0.3可以减半取0.1ml的样品液测定。
(四)蒽酮法
Ⅰ、实验原理
糖在浓硫酸作用下,可经脱水反应生成糠醛和羟甲基糠醛,生成的糠醛或羟甲基糠醛可与蒽酮反应生成蓝绿色糠醛衍生物,在一定范围内,颜色的深浅与糖的含量成正比,故可用于糖的测定。
该法的特点是几乎可以测定所有的碳水化合物,不但可以测定戊糖和己糖,而且可以测所有的寡糖类和多糖类,其中包括淀粉、纤维素等(因反应液中的浓硫酸可以把多糖水解成单糖而发生反应。所以,用蒽酮法测出的碳水化合物含量,实际上是溶液中全部可溶性碳水化合物总量。在没有必要细致划分各种碳水化合物的情况下,用蒽酮法可以一次测出总量。此外,不同的糖类与蒽酮试剂的显色深度不同,果糖显色最深,葡萄糖次之,半乳糖、甘露糖较浅,五碳糖显色更浅。故测定糖的混合物时,常因不同糖类的比例不同造成误差,但测定单一糖类时,则可避免此种误差。
Ⅱ、试剂:
蒽酮试剂,0.20 g蒽酮溶入100 mL 95%浓硫酸中,冰箱保存;
Ⅲ、方法:
样品2.0 mL加5.0 mL蒽酮试剂,混匀,然后水浴煮沸10 min,取出冷却至室温,在620 nm处测定其吸光度,根据标准曲线计算水样中糖的浓度。(标线以葡萄糖为标样)
B. 有几种方法测定葡萄糖含量各自的原理是什么
有两种方法来测定。
第一种用菲林试剂来测定,原理为:
CH2OH(CHOH)4CHO+2[Ag(NH3)2OH](水浴加热)→CH2OH(CHOH)4COONH4+2Ag↓+3NH3+H2O
注意事项:⑴ 试管内壁必须洁净
⑵ 银氨溶液随用随配不可久置;
⑶ 水浴加热,不可用酒精灯直接加热;
⑷ 可加入氢氧化钠,以促进反应进行;
⑸ 银镜可用稀HNO3浸泡洗涤除去。
加热还原生成的银附着在试管壁上,形成银镜,所以,这个反应也叫银镜反应。
第二种用新制的氢氧化铜溶液来测定,原理为:
葡萄糖溶液与新制氢氧化铜悬浊液反应生成砖红色沉淀。(浓度高时生成黄色沉淀)
CH2OH(CHOH)4CHO+2Cu(OH)2---加热→CH2OH(CHOH)4COOH+Cu2O↓+2H2O
注意事项:⑴ 新制2Cu(OH)2悬浊液要随用随配、不可久置。
⑵ 配制新制Cu(OH)2悬浊液时,所用NaOH溶液必须过量。
⑶ 反应液必须直接加热至沸腾。
⑷ 葡萄糖分子中虽然含有醛基,但是d-葡萄糖中不含有醛基。
葡萄糖是自然界分布最广且最为重要的一种单糖,它是一种多羟基醛。
纯净的葡萄糖为无色晶体,有甜味但甜味不如蔗糖(一般人无法尝到甜味),易溶于水,微溶于乙醇,不溶于乙醚。天然葡萄糖水溶液旋光向右,故属于“右旋糖”。
葡萄糖在生物学领域具有重要地位,是活细胞的能量来源和新陈代谢中间产物,即生物的主要供能物质。植物可通过光合作用产生葡萄糖。在糖果制造业和医药领域有着广泛应用。
化学性质
它是自然界分布最广泛的单糖。葡萄糖含五个羟基,一个醛基,具有多元醇和醛的性质。
用途:
生物培养基。金属还原剂。滴定硼酸的络合物形成剂。微量分析。测定全血葡萄糖。可直接被人体吸收。
正常人体每分钟利用葡萄糖的能力为每公斤体重6毫克。是一种能直接吸收利用,补充热能的碳水化合物,是人体所需能量的主要来源,在体内被氧化成二氧化碳和水,并同时供给热量,或以糖原形式贮存。能促进肝脏的解毒功能,对肝脏有保护作用。是生物体内最为常见的能源物资。
C. 葡萄糖的验证方法
食品中葡萄糖的测定方法,一般采用《国际食糖分析方法统一委员会》规定的“兰━
挨农法”(Lane and Eynon's Method)和“姆松━华尔格法”(Munson and Walker's Met-
hod),即菲林氏溶液氧化还原滴定法。此法虽沿用已久,但测定结果只是近似值。因使用
菲林氏溶液滴定葡萄糖(还原糖)时,其他具有还原能力的单糖会干扰测定结果。本标准采
用的酶━比色法和酶━电极法是在检索了近20年107篇国外文献的基础上,经过反复实验、
验证而制定的。酶━比色法和酶━电极法使用的葡萄糖氧化酶(GOD)具有专一性,只能催
化葡萄糖水溶液中的β—D—葡萄糖起反应(被氧化),因此测定结果是真实值。本标准的
酶━比色法为仲裁法;酶━电极法为快速法。
葡萄糖与新制的氢氧化铜加热至沸腾生成红色沉淀
【总结】碳水化合物
碳水化合物 组成 生成 检验 用途
葡萄糖 化学式C6H1206 光6CO2+6H20= C6H1206+6C02绿色植物光合作用产生 与新制的氢氧化铜加热至沸腾生成红色沉淀 在体内经缓慢氧化转化为二氧化碳和水,释放出能量。C6H1206+602→6CO2+6H20+(能量)
淀粉 高分子化合物 绿色植物可将葡萄糖转化为淀粉,谷类、甘薯中含有淀粉 淀粉与碘水(或碘酒)作用呈现蓝色 主食,酿酒
纤维素 高分子化合物 绿色植物可将葡萄糖转化为纤维素 通过食草动物体内微生物的作用,将纤维素转化为葡萄糖
D. 检验葡萄糖的方法
(1)在试管中加入几毫升10%NaOH溶液,滴加5%的CuSO4溶液4-5 滴,可看到蓝色沉淀现象.
(2)立即加入适量的待测溶液,在酒精灯上加热至沸,观察到产生红色沉淀现象,即可证明含有葡萄糖.
E. 如何测定葡萄中的葡萄糖含量
葡萄糖氧化酶法。
1.原理
葡萄糖在葡萄糖氧化酶的作用下产生葡萄糖酸和过氧化氢,过氧化氢在过氧化物酶的作用下使邻联甲苯胺生成蓝色物质,该有色物质在625 nm波长下与葡萄糖浓度成正比。通过侧定蓝色物质的吸光度值可计算样品中葡萄糖的含量。
2.仪器
①实验室常用设备。
②722型分光光度计。
3.试剂
除特殊说明外,实验用水为蒸馏水,试剂为分析纯。
①三氯乙酸(40%):称取4.0 g三氯乙酸,用水溶解并稀释至100 mL。
②无水乙醇。
③2 mol·L-1NaOH溶液:称取8 g NaOH,用水溶解并稀释至100 mL。④1%邻联甲苯胺溶液:称取0.1 g邻联甲苯胺溶解于10 mL无水乙醇中,倒人棕色瓶中,4℃冰箱保存。
⑤乙酸缓冲液(pH5.O):称取14.28 g乙酸钠(CH。COONa.3H20)溶于水中,加入2.7mL冰乙酸,使pH为5.O,用水定容至1L。
⑥葡萄糖氧化酶溶液:称取一定量的葡萄糖氧化酶(Sigma公司)用水溶解,使酶含量为100U/mL。4℃冰箱保存一周。
⑦过氧化物酶溶液:0.010 g辣根过氧化物酶溶于10 mL7J(~,4℃冰箱保存一周。
⑧酶溶液:取100 mL乙酸缓冲液,分别加入邻联甲苯胺溶液、葡萄糖氧化酶溶液、过氧化物酶溶液各l mL,混匀。4℃冰箱可保存7周。
⑨酶空白液:取100 mI。乙酸缓冲液,分别加人邻联甲苯胺溶液、过氧化物酶溶液各l mL,混匀。4℃冰箱保存1周。(注意酶空白液中不含葡萄糖氧化酶)
⑩葡萄糖标准液:将葡萄糖标准品(纯度大于99%)于80℃干燥至恒量。精确称取O·050 g,用水移人100 mL容量瓶中,定容至刻度线。此标准液相当于浓度为0.5 mg.mI。_。。
4.操作步骤
①样品处理
a.固体样品:称取0.5~5 g已粉碎的样品于锥形瓶中,加入50 mL水后沸水浴15 min。冷却后,转移至100 mL容量瓶中并用水定容至刻度,反复摇动混匀样品,过滤,弃初始几滴滤液。收集滤液,如果滤液澄清,可直接用于测定或稀释后用于测定。如果滤液浑浊,吸取20mL滤液转移至另一容量瓶中,加人无水乙醇至刻度。混合后静置至少30 min,过滤,滤液用于测定。
b·液体样品或少糖、淀粉等碳水化合物水解液:吸取2~10 mL样品或水解液,加入4倍
量无水乙醇(使乙醇最终浓度为80%,以沉淀不溶性多糖和部分蛋白质),混合。静置至少30
min,过滤后滤液定容备用(如果过滤后滤液仍浑浊,或样液体积过少,可于3 000 r/min离心15
min,上清液备用)。
c.新鲜牛乳等样品:吸取0.5~2 mL样品,用水稀释,加入3 mL 40%三氯乙酸溶液(用于沉淀蛋白质),用水定容至100 mL,过滤。吸取5 mL滤液,用2 m01.L一,NaOH调节pH至中性,用水定容至i0 mL,备用。
②测定
a-标准空白管的制备:在试管中加入0.5 mL水和5 mL酶溶液。
b·标准管的制备:5支试管中先分别加入葡萄糖标准液0.1、0.2、0.3、0.4、0.5 mL,再分别加入水0.4、0.3、0.2、0.1.0.0 mL,最后各加入酶溶液5 mL。
c·样品空白管的制备:在试管中加人0.5 mI。样品提取液和5 mI。酶空白液。
d·样品测定管的制备:在试管中加人0.5 mL样品提取液和5 mL酶溶液。
将上述各试管中溶液混合后于37℃水浴反应15 rain,625nm测定吸光度值。(注意:反应时间应严格控制,因葡萄糖与酶溶液的成色反应与反应时间密切相关,
5.计算
根据吸光度值求出葡萄糖标准曲线的回归方程,采用插入法求出测定管中葡萄糖含量,再根据稀释定容体积和称样量,计算出样品中葡萄糖含量。
6.说明
①此法适用于谷类、乳类、饮料、酒类等食品样品和血液样品。检出量为0.02 mg。
②此方法中的酶溶液只能和葡萄糖反应,特异性强,灵敏度高。
③如果样品提取液为无色,不需做样品空白。有色样品或样品提取液浑浊,则应做样品空白以减少干扰。
F. 测定葡萄糖含量的方法
葡萄糖注射液中葡萄糖含量的测定
摘要 运用氧化还原滴定的原理设计葡萄糖注射液中葡萄糖含量的测定方案并具体实施。从而进一步掌握Na2S2O3及I2标准溶液的配制和标定方法,巩固氧化还原滴定的操作技能。学会间接碘量法测定葡萄糖含量的方法和原理,进一步掌握返滴定法技能。其中,葡萄糖分子中含有醛基,能被IO-定量地氧化为羧基。故可将一定量过量的I2在碱性条件下加入葡萄糖溶液中,使醛基完全转化为羧基。再将其酸化,用Na2S2O3标准溶液滴定析出的I2。所用指示剂为淀粉。根据所加I2标准溶液的量及滴定所耗Na2S2O3标准溶液的量结合反应式中各物质之间的计量关系,便可计算葡萄糖的含量。该方法简便易行且准确度高,基本符合实验要求。
关键词 葡萄糖注射液 间接碘量法 返滴定法
1引言
葡萄糖注射液中葡萄糖含量的测定目前有以下几种方法 方案一:旋光测定法
根据葡萄糖分子结构中的五个碳都是手性碳原子,具有旋光性,可采用旋光法测定含量。取出旋光计的测定管,先用蒸馏水为空白对仪器进行校正。用供试液体(5%葡萄糖注射液)冲洗数次,缓缓注入供试液体适量(注意勿使发生气泡)。置于旋光计内,读取旋光度,连续测定3次,取平均值。 方案二:间接碘量法。
碘与NaOH作用能生成NaIO,而C6H12O6能定量地被NaIO氧化。在酸性条件下,未与C6H12O6作用的NaIO可转变为I2析出,只要用标准Na2S2O3溶液滴定析出的I2,便可计算C6H12O6的含量。
本实验采用第二种方案进行葡萄糖注射液中葡萄糖含量的测定。
2实验原理
在碱性溶液中,碘与氢氧化钠作用可生成次碘酸钠(NaIO),葡萄糖能定量的被次碘酸钠氧化成葡萄糖酸(C6H12O7)。过量的NaIO可以转化为NaIO3和NaI。在酸性条件下,NaIO3和NaI作用析出I2,然后用Na2S2O3标准溶液滴定析出的I2,便可计算出葡萄糖的含量。其反应如下:
1、I2与NaOH作用: I2+2NaOH=NaIO+NaI+H2O
2、C6H12O6和NaIO定量作用: C6H12O6+ NaIO=C6H12O7+NaI 3、总反应式: I2+C6H12O6+2NaOH=C6H12O7+2NaI+H2O
4、C6H12O6作用完后,过量的NaIO发生歧化反应: 3NaIO=NaIO3+2NaI 5、在酸性条件下NaIO3和NaI作用: NaIO3+5NaI+6HCl=3I2+6NaCl+3H2O 6、析出过量的碘用Na2S2O3标准溶液滴定: I2+2Na2S2O3=Na2S4O6+2NaI 实验还涉及到Na2S2O3和 I2溶液的标定
1、Na2S2O3的标定 Cr2O72-+6I-+14H+=2Cr3++3I2+7H2O I2+2S2O32-=S4O62-+2I
-
Cr2O72-~3I2~6S2O32-
3
223
227
223
2200.256)(6OSNaOSNaOCrKOSNa
VcVcVc
2、碘的标定 I2+2S2O32-
=S4O62-+2I
-
V
Vc3
22322OSNaOSNac2/1
3、葡萄糖注射液中葡萄糖的含量
计算式:
%10050
6
126
L
gOHCW标示量
葡萄糖含量
3实验仪器及材料
3.1 仪器
称量瓶、电子台秤、分析天平、容量瓶(250ml)、移液管(25ml)、量筒(10ml)、锥形瓶(25ml,3个)、酸式滴定管(50ml)、烧杯(50ml)、玻璃棒、碘量瓶 3.2 药品
K2Cr2O7(S)、盐酸(6mol/L)、KI溶液(100g/L)、淀粉(5g/L)、Na2S2O3溶液(0.1mol/L)、I2溶液(0.05mol/L)、NaOH溶液(1mol/L)、葡萄糖注射液(5%)
4 实验方法
4.1 0.1mol/L Na2S2O3标准溶液的标定 4.1.1 K2Cr2O7标准溶液的配制
准确称取1.2~1.3g分析纯K2Cr2O7固体于小烧杯中,加少量的水溶解并转入到250mL的容量瓶中,用水稀释到刻线,摇匀。并计算其准确浓度
)
(100000
.25100021101612632232222
LgOHCMOSNavOSNacIvIc葡萄糖含量=
4.1.2 Na2S2O3溶液的标定
准确移取25mlK2Cr2O7标准溶液于碘量瓶中,加5mL 6mol/L HCl溶液和10mL 100g/LKI,立即密塞摇匀,置暗处5min,然后冲洗瓶盖并用蒸馏水稀释至100 mL左右,用待标定Na2S2O3溶液滴定至K2Cr2O7标准溶液呈浅黄绿色时,加2mL 5g/L淀粉,继续滴定至蓝色刚好褪去,记录所需体积,平行测定3次,计算Na2S2O3溶液的准确浓度。 4.2 0.05mol/L I2溶液的标定
准确移取25mLI2标准溶液于锥形瓶中,加50ml蒸馏水,用Na2S2O3标准溶液滴定至溶液呈浅黄绿色,加2ml 5g/L淀粉,继续滴定至蓝色刚好褪去,溶液呈无色即为终点。 4.3 葡萄糖含量的测定
用移液管移取5%葡萄糖注射液25.00ml于250ml容量瓶中,加水稀释至刻线,摇匀。然后移取25.00ml上述溶液于碘量瓶中,准确加入I2标准溶液25ml,慢慢滴加NaOH边加边摇,直至溶液呈浅黄色,将碘量瓶加塞摇匀,于暗处放置10~15min,加2ml 6mol/L HCl酸化,立即用Na2S2O3标准溶液滴定,至溶液呈浅黄色,加2ml 5g/L淀粉,继续滴定至蓝色消失即达到滴定终点,记录数据,平行滴定3次,计算其含量。
G. β-葡聚糖的测定方法
β-葡聚糖含量的测定方法,大致可归纳为如下几类:
(1)粘度法:其原理是大麦抽提液的粘度主要由β-葡聚糖产生(Burnett,1966;White等,1983)。这种方法可靠性较差,因为不同来源的β-葡聚糖的分子量不同;而在葡聚糖含量相同时,分子量较大者产生的粘度较大,这样β-葡聚糖粘性的大小并不完全取决于其含量,也取决于分子量大小(Sanlinier等,1994)。另外,抽提条件对其粘度有明显的影响。
(2)沉淀法:其原理是利用特定的盐或有机溶剂沉淀抽提液中的β-葡聚糖(Wood,1986)。该方法的局限性在于抽提不能完全排除其它物质的干扰。在高温下抽提时,抽提液中含有其它成分如淀粉等,因而干扰测定的结果。
(3)酶法:Anderson等(1978)采用特定的β-葡聚糖内切酶得到寡糖,经酸解后采用葡萄糖氧化酶/过氧化酶试剂测定葡萄糖的含量。此法后经Henry等(1988)修改为测定还原糖的含量,这样虽然精确性和可靠性有所降低,但因测定更为迅速而实用性明显提高。另外,Martin等(1981)和郑祥建等(1995)用纤维素酶测定谷物中β-葡聚糖的含量。这主要根据纤维酶不能分解微晶纤维素,而谷物中的纤维素多为微晶状,因而不至于干扰β-葡聚糖的测定结果。由于酶法不需要抽提,选用的酶为特定的,因而精确性和可靠性较高。
(4)荧光法:主要是利用荧光物质(Calcoflour)可与β-葡聚糖特异性结合,而与其它多糖如纤维素、戊聚糖的亲和力很弱这一特性进行测定。Wood等(1984)利用此法测定了燕麦的β-葡聚糖含量。Sendry等(1989)则利用改进的Calcoflour-FIA法测定了啤酒和麦芽汁的β-葡聚糖含量。由于此法操作简单,可进行大批量的样品测定,因此有较好的实际应用价值
(5)刚果红法:根据刚果红与β-葡聚糖结合具有高度专一性,将刚果红加入样品溶液中,在一定温度下准确反应一定时间后,测定其吸光度,根据β-葡聚糖标准曲线可知样品中β-葡聚糖的含量。
H. 如何测定葡萄糖含量
可以通过以下方法测量葡萄糖含量:
1、如果糖样中没有别的带醛基的有机物,可以用DNS法测还原糖。
2、如果糖样中有别的带醛基的有机物,可以考虑采用高效液相色谱法(HPLC)。
3、其它也有一些方法,比如碘量法等。
I. 葡萄糖可以用什么检验现象是什么
因为葡萄糖含有醛基,所以检验葡萄糖就等于检验醛基。有两种方法用银氨溶液,发生银镜反应,可以在装葡萄糖试管上看到银。也可以用热的氢氧化铜,反应生成红色氧化亚铜,这是检验常用两种方法。
❤您的问题已经被解答~~(>^ω^<)喵
如果采纳的话,我是很开心的哟(~
o
~)~zz
J. 求三种葡萄糖的测定方法(除了碘量法)
1、乙酰化法,用过量乙酸酐酯化Glc,用NaHCO3除去多余的乙酸酐,然后用碱处理Glc乙酰化产物,测水解出来的乙酸根的量,n(Glc):n(乙酸根)=1:5
2、高碘酸法:用高碘酸盐处理Glc,Glc一般是吡喃糖,遇高碘酸盐反应产生甲酸,测生成的甲酸的量,n(甲酸):n(Glc)=1:1
3、糠醛-蒽酮法:用热的12%HCl处理Glc,然后用蒽酮处理,形成蓝绿色复合物,然后用分光光度法
4、糠醛-间苯二酚法:用热的12%HCl处理Glc,然后用间苯二酚处理,形成红色复合物,然后用分光光度法
——PS第三、四招都不大好用,Glc作为己醛糖,与12%HCl进行糠醛反应的时间慢,而且如果共热的时间太长,还会形成暗黑色的腐黑物(糠醛反应,一般用来测戊糖或者己酮糖)
另
如果lz测的Glc里面含有别的糖,那必须先预处理掉