A. 什么事元素分析法
元素分析是用来鉴定被测物质由哪些元素(或离子)所组成,这类方法称为定性分析法;用于测定各组分间(各种化学成分)量的关系(通常以百分比表示),称为定量分析法。物质的五大元素分析所采用的化学分析方法可分为经典化学分析和仪器分析两类。前者基本上采用化学方法来达到分析的目的,后者主要采用化学和物理方法(特别是最后的测定阶段常应用物理方法)来获取结果,这类分析方法中有的要应用较为复杂的特定仪器。发展迅速,且各种分析工作绝大部分是应用仪器分析法来完成的,但是经典的化学分析方法仍有其重要意义。有些大型精密仪器测得的结果是相对值,而五大元素分析仪器的校正和校对所需要的标准参考物质一般是用准确的经典化学分析方法测定的。因此,仪器分析法与化学分析法是相辅相成的,很难以一种方法来完全取代另一种。
B. 什么是三元素分析法
关于 三元素分析方法溶液配制及操作方法(仅供参考) 溶液配制:
(一)硅之测定(亚铁还原硅钼兰光度法)
1、方法提要 试样溶于稀销酸,滴加高锰酸钾氧化,硅酸离子全部转化成正硅酸离子,在一定酸度下与钼酸铵作用,生成硅铝杂多酸。然后在草酸存在下用亚铁还原成硅钼兰,借此进行硅的光度测定。
2、试剂 (1)稀硝酸(1+5) (2)高锰酸钾溶液(2%) (3)碱性钼酸铵溶液: A、钼酸铵溶液(9%) B、碳酸铵溶液(18%) A、B两溶液等体积合并,贮于塑料瓶中备用。 (4)草酸溶液(2.5%) (5)硫酸亚铁铵溶液(1.5%) 称硫酸亚铁铵15g,先将稀硫酸(1+1)1ml湿匀亚铁盐,然后以水稀释至1L,溶解后摇匀备用。
3、分析步骤 称取试样30mg,加至高型烧杯(250ml)中,杯内加有预热之稀硝酸(1+5)10ml,品溶清,逸去黄色气体,加高锰酸钾(2%)2-3滴,继续加热至沸,立即加入碱性钼酸铵溶液10ml摇动10秒钟,再加入草酸(2.5%)40ml,硫酸亚铁铵(1.5%)40ml摇匀以水作参比,扣除空白,1cm专用比色皿,直读含量。更多质量检测、分析测试、化学计量、标准物质相关技术资料请参考国家标准物质临床化学标准物质
注意事项 (1)溶解样品时应低温溶解。
(二)锰之测定(过硫酸铵银盐光度法)
1、方法提要 钢铁试样,在硝,磷酸介质中,以银离子为催化剂,用过硫酸铵氧化将低价锰子变成高锰酸,借此进行锰的光度测定。
2、试剂 (1)定锰混合液 硝酸450ml,磷酸72ml,硝酸银7.2g,用水稀释到2L、摇匀,贮于棕色瓶中备用。 (2)过硫酸铵溶液(15%)或固体。
3、分析步骤 称试样50mg,置于高型烧杯(250ml)中,溶于预热定锰混合液15ml,待试样溶解毕,加入过硫酸铵溶液(15%)10ml(联测时加固体过硫酸铵约1g)继续加热至沸并出现大气泡约10秒钟后,加水40ml倾入比色皿中,直读含量。
4、注意事项 (1)过硫酸铵加入后,需控制煮沸10秒钟。 (2)记取含量时,要等少量小气泡逸去后读取。 (三)磷之测定(氟化钠——氯化亚锡磷钼兰光度法)
1、试样在硝酸介质中,以高锰酸钾氧化,使偏磷酸氧化成正磷酸,与钼酸铵生成磷钼杂多酸,以氯化亚锡还原成磷钼兰进行光度测定。酒石酸离子消除硅的干扰。氯化钠络合铁离子,生成无色络合物,并抑制硝酸分子的电离作用。
2、试剂 (1)稀销酸(1+2.5) (2)高锰酸钾溶液(2%) (3)钼酸铵——酒石酸钾溶液 取等体积的钼酸铵溶液(10%)与酒石酸钾钠(10%)混匀备用。 (4)氟化钠(2.4%)——氯化亚锡(0.2%)溶液; 氟化钠24g溶于800ml水中,可稍加热助溶、氯化亚锡2g,以稀盐酸(1+1)5ml,加热至全部溶清;加入上述溶液,以水稀释至1L,必要时可过滤。当天使用,经常使用时,可配大量氟化钠溶液,使用时取出部分溶液加入规定量之氯化亚锡。
3、分析步骤 称试样50mg,置于高型烧杯(250ml)中,加入预热稀硝酸(1+2.5)10ml,加热至试样溶解,逸去黄色气体,滴加高锰酸钾溶液(2%)2-3滴。继续加热沸腾,10秒钟不褪色,加入钼酸铵一酒石酸钾钠溶液10ml摇匀。再加氟化钠一氯化亚锡溶液40ml。水作参比,倾入比色皿,读取含量。
4、注意事项 (1)氧化时应使溶液至沸,并保持5—10秒钟。 (2)分析操作手续相对保持一致,以保证分析结果重现性和准确度。 (3)含量高至0.050%以上,色泽稳定时间较短,读数不应耽误,在0.080%时更短,要即刻读取。
C. 煤的工业分析与元素分析的优缺点
工业分析:1. 水分
(1) 外在水分(Wwz)外在水分是指煤在开采、运输和洗选过程中润湿在煤的外表以及大毛细孔(直径>10-5厘米)中的水。它以机械方式与煤相连结着,较易蒸发,其蒸汽压与纯水的蒸汽相等.与煤粒度等有关,而与煤质无直接关系.
(2)内在水分(Wnz)吸附或凝聚在煤粒内部的毛细孔(直径〈10-5厘米〉中的水,称为内在水分.内在水分指将风干煤加热到105~110时所失去的水分,它主要以物理化学方式(吸附等)与煤相连结着,较难蒸发,故蒸气压小于纯水的蒸汽压. 失去内在水分的煤称为绝对干燥或干煤.
2. 灰分
1).灰分的来源和种类 煤灰几呼全部来源于煤中的矿物质,但煤在燃烧时,矿物质大部分被氧化,分解,并失去结晶水,因此,煤灰的组成和含量与煤中矿物质的组成和含量差别很大.我们一般说的煤的灰分实际上就是煤灰产率,煤灰成分及其含量与层聚积环境有关。 大量试验资料表明,SiO2含量在45~60%时,灰熔点随SiO2含量增加而降低;SiO2在其含量〈45%或〉60%时,与灰熔点的关系不够明显。A12O3在煤灰中始终起增高灰熔点的作用。煤灰中A12O3的含量超过期30%时,灰熔点在1500。灰成分中Fe2O3,CaO,MgO均为较易熔组分,这些组分含量越高,灰熔点就越低。灰熔点也可根据其组成用经验公式进行计算。
3. 挥发分和固定碳
挥发分主要是煤中有机质热分解的产物,评价煤质时为了排除水分,灰分,变化的影响,须将分析煤样挥发分换算为以可燃物为基准的挥发分,以符号VR表示。挥发分随煤化程度升高而降低的规律性十分明显,可以初步估计煤的种类和化学工艺性质,而且挥发分的测定简单,快速发分的分析结果常受煤中矿物质的影响。所以当煤中碳酸盐含量较高,矿物质在高温下分解出来的CO2,结果水等也包括在挥发分内。所以当煤中碳酸盐含量较高,分解出来的CO2产率大于2%时,需要对煤的挥发进行正。也可在测定挥发分之前,用盐酸处理分析煤样,使煤中碳中碳酸盐事先分解。在我国大我数煤中,粘土矿物,高岭土在560析出的结果水也算入挥发分,因此粘土矿物含量高的煤所测出的挥发分通常偏高。
固定碳就是测定挥发分后残留下来的机物质的产率,可按下式算出: Cgd=1000-(Wf+Af+Vf)
D. 因素分析法有哪些优点和不足
因子分析法与主成分分析法都属于因素分析法,都基于统计分析方法,但两者有较大的区别:主成分分析是通过坐标变换提取主成分,也就是将一组具有相关性的变量变换为一组独立的变量,将主成分表示为原始观察变量的线性组合;而因子分析法是要构造因子模型,将原始观察变量分解为因子的线性组合。通过对上述内容的学习,可以看出因子分析法和主成分分析法的主要区别为:
(1)主成分分析是将主要成分表示为原始观察变量的线性组合,而因子分析是将原始观察变量表示为新因子的线性组合,原始观察变量在两种情况下所处的位置不同。
(2)主成分分析中,新变量Z的坐标维数j(或主成分的维数)与原始变量维数相同,它只是将一组具有相关性的变量通过正交变换转换成一组维数相同的独立变量,再按总方差误差的允许值大小,来选定q个(q<p)主成分;而因子分析法是要构造一个模型,将问题的为数众多的变量减少为几个新因子,新因子变量数m小于原始变量数P,从而构造成一个结构简单的模型。可以认为,因子分析法是主成分分析法的发展。
(3)主成分分析中,经正交变换的变量系数是相关矩阵R的特征向量的相应元素;而因子分析模型的变量系数取自因子负荷量,即。因子负荷量矩阵A与相关矩阵R满足以下关系:
其中,U为R的特征向量。
在考虑有残余项ε时,可设包含εi的矩阵ρ为误差项,则有R − AAT = ρ。
在因子分析中,残余项应只在ρ的对角元素项中,因特殊项只属于原变量项,因此,的选择应以ρ的非对角元素的方差最小为原则。而在主成分分析中,选择原则是使舍弃成分所对应的方差项累积值不超过规定值,或者说被舍弃项各对角要素的自乘和为最小,这两者是不通的。
E. 元素分析的检测办法有哪些
原子吸收光谱法、分光光度法、原子荧光光谱法、电化学法等。元素分析服务是英格尔的特色检测之一,从常量至痕量量元素检测、卤族元素、稀土元素、土壤肥料元素、水样元素等检测都非常精准。
F. 在排列组合中位置分析法和元素分析法的区别
位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件
G. ICP法测定元素与原子吸收法相比有哪些优缺点
摘要 ICP可以检测的元素范围B~U,原子吸收同样是这个范围,请教二者各自的优势在哪些元素的检测上?
H. 相分析的方法有哪几种元素成分分析的方法有哪几种简述一下它们的优缺点
相分析的方法有很多种,元素成分分析的方法有很多种,优缺点各有各的好坏。相分析的方法有很多种,元素成分分析的方法有很多种,优缺点各有各的好坏。相分析的方法有很多种,元素成分分析的方法有很多种,优缺点各有各的好坏。相分析的方法有很多种,元素成分分析的方法有很多种,优缺点各有各的好坏。
I. 金属元素分析方法
金属材料分为:轻金属、重金属、熔敷金属、有色金属、稀有金属、贵金属、半金属等; 钢铁、紧固件、铸铁、钢管、钢筋线材、焊接材料、钢板型钢、铜材铝材、钢丝绳及各种金属挂件等各类金属及合金制品。
一,金属的物理性质
金属晶体内存在自由电子,使金属具有许多共同的特性。 1、大多数金属晶体都是银白色或白色、灰白色的,有金属光泽,不透明; 2、一般金属具有较高的熔点、沸点和硬度,但不同金属又各有差异。常温下,除汞(Hg)为液态外,一般金属都是固态。3、金属都有良好的导热性和导电性,还有良好的延性和展性,可以进行机械加工。
二,金属的化学性质
通常把元素周期表中具有金属光泽、可塑性、导电性及导热性良好的化学元素称为金属。金属最突出的特性是它们的容易失去电子的倾向。因此,从化学角度看,金属是指在溶液中容易生成正离子的化学元素,其氧化物与水结合形成氢氧化物而不形成相应的酸。金属之间在化学上的差别主要表现在电子序方面,许多化学反应,特别是氧化还原反应,决定与其电极电位的正负及其数值大小。
三,金属材料分析方法
在金属检测物中的化学成分方法还是很多,现在公司普遍采用的是用光谱仪测定.光谱仪有传统的光电管光谱仪,以及随着数码技术的发展,并在检测中发挥越来越大的作用。还有化学分析方法检测金属物中化学成分含量的,通过对金属物试块的切削、腐蚀通过显微镜用肉眼观测然后对比金属化学成分图谱判定起各种成分的含量。
四、定量检测技术
重金属分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)。除上述方法外,更引入光谱法来进行检测,精密度更高,更为准确!日本和欧盟国家有的采用电感耦合等离子质谱法(ICP-MS)分析,但对国内用户而言,仪器成本高。也有的采用X荧光光谱(XRF)分析,优点是无损检测,可直接分析成品,但检测精度和重复性不如光谱法。最新流行的检测方法--阳极溶出法,检测速度快,数值准确,可用于现场等环境应急检测。
J. 进行土壤重金属元素含量分析测试方法都有哪些
2.土壤中重金属检测方法 2.1 原子荧光光谱法
原子荧光光谱法是以原子在辐射能量分析的发射光谱分析法。利用激发光源发出的特征发射光照射一定浓度的待测元素的原子蒸气,使之产生原子荧光,在一定条件下,荧光强度与被测溶液中待测元素的浓度关系遵循Lambert-Beer定律,通过测定荧光的强度即可求出待测样品中该元素的含量。
原子荧光光谱法具有原子吸收和原子发射两种分析方法的优势[4],并且克服了这2种方法在某些地方的不足。该法的优点是灵敏度高,目前已有20多种元素的检出限优于原子吸收光谱法和原子发射光谱法;谱线简单;在低浓度时校准曲线的线性范围宽达3~5个数量级,特别是用激光做激发光源时更佳,但其存在荧光淬灭效应,散射光干扰等问题[5]。该方法主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用[6]。突出在土壤中的应用如何,以下各方法均是这个问题,相比之下2.5写的比较好
应用原子荧光光谱法测定土壤的重金属快速准确,测定周期约为2小时,具有检出限低、精密度好,干扰少和操作简单方便,值得推广应用。 2.2 原子吸收光谱法
原子吸收光谱法又称原子吸收分光光度分析法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法[7]。其基本原理是从空心阴极灯或光源中发射出一束特定波长的入射光,通过原子化器中待测元素的原子蒸汽时,部分被吸收,透过的部分经分光系统和检测系统即可测得该特征谱线被吸收的程度即吸光度,根据吸光度与该元素的原子浓度成线性关系,即可求出待测物的含量[8]。
原子吸收光谱法在农业方面,主要应用与土壤、肥料及植物中的中微量元素分析、水质分析、土壤重金属环境污染分析、土壤背景值调查及农业环境评价分析等方面。该方法的优点是:选择性强、灵敏度高、分析范围广、抗干扰能力强、精密度高[9]。其不足之处有多元素同时测定有困难,对非金属及难熔元素的测定尚有困难,对复杂样品分析干扰也较严重,石墨炉原子吸收分析的重现性较差
[10]
。
2.3 电感耦合等离子体发射光谱法
电感耦合等离子体发射光谱是根据被测元素的原子或离子,在光源中被激发而产生特征辐射,通过判断这种特征辐射的存在及其强度的大小,对各元素进行定性和定量分析[11]。
电感耦合等离子体发射光谱法应用于环境水样、土壤样品中的微量元素进行分析,在元素分析测试中的应用技术具有简便、快速、分析速度快;检出限低,多数可达0.005μg/ml以下[12];测量动态线性范围宽,一般可达5~6个数量级,可同时进行高含量元素和低含量元素的分析,可达到石墨炉原子吸收光谱仪的部分检出水平;可多种元素同时分析,可定性、定量分析金属元素,也可分析部分非金属元素,提高了分析效率,基体效应小,低背景干扰、高信噪比、精密度高、准确性好等优点[13]。 2.4 激光诱导击穿光谱法
激光诱导击穿光谱技术是一种最为常用的激光烧蚀光谱分析技术。其工作原理是:激光经过会聚透镜会聚,高峰值功率密度使未知样品表面物质气化、电离,激发形成高温、高能等离子体(温度可达10 000K),等离子体辐射出来的原子光谱和离子光谱被光学系统收集,通过输入光纤耦合到光谱仪的入射狭缝中,光谱数据通过数据采集控制器传输到计算机, 研究该光谱就可以分析计算出被测物质的成分与浓度[14]。原子光谱和离子光谱的波长与特定元素是一一对应的,而且光谱信号强度与对应元素的含量具有一定的定量关系。因此该技术可以实时、快速地现化学元素的定性和定量分析[15]。
激光诱导击穿光谱可以真正做到现场快速分析,无须进行样品预处理,分析方便,也不受研究对象的限制[16]。但是,其测量仪器成本较高,激光脉冲能量的起伏性,样品的不均匀性,样品的特性会直接影响测量的稳定性,也就是说研究样品的特性对结果的精确性影响较大[17]。
在激光诱导击穿光谱土壤重金属污染物检测的研究中,在光源设计上采用光学反馈减少脉冲间能量波动,在数据处理上采用一系列激光能量起伏归一化校正技术,达到克服由于激光器能量起伏造成的影响;通过选择最佳的采样延迟时间,以保证所采集到信号谱的信噪比最大;选择合适的激光脉冲的峰值功率阈值, 达到克服谱线饱和现象和避免自吸收效应的发生以获得多元素的同时分析;通过研究激光聚焦焦点与样品表面之间的距离与测得信号谱线的信噪比的关系,达到提
高系统的信噪比。通过以上措施克服上述不利影响,实现了利用LIBS 技术对土壤中Cd, Hg,As,Cr,Cu,Zn,Ni,Pb 等成分的同时测量。
2.5 X射线荧光光谱法
X射线荧光光谱技术是一种利用样品对X射线的吸收随样品中的成分及其多少变化而变化来定性或定量测定样品中成分的方法[18]。
X射线荧光光谱仪在结构上基本由激发样品的光源、色散、探测、谱仪控制和数据处理等几部分组成。该X射线荧光光谱法和电感耦合等离子体质谱法、发射光谱法在元素分析结果之间的差异,结果显示它们的差异不显着。从检出限、准确度、精密度和回收率方面均能满足实验要求[19]。
土壤重金属X射线荧光光谱非标样测试方法具有前处理简单,无需标准样品,对样品无污染、无破坏性,检测速度快、稳定性高、再现性好等优点[20]。此方法是对土壤重金属检测和污染评价快速有效的方法。完全能够满足土壤环境受到污染时急需的快速定性、定量排查土壤中有毒有害重金属元素的要求。 3.总结
土壤重金属检测是一项长期的工作,要求各种检测手段向更高灵敏度、更高选择性、更方便快捷的方向发展,不断推出新的方法来解决遇到的新的分析问题。上述5种重金属的检测方法的优缺点如表Ⅰ。随着各种分析方法的建立和科学技术的不断进步,分析仪器逐渐由简单化向复杂化的方向发展,可以预见,各种分析仪器会向多功能、自动化、智能化以及小型化的方向发展,并且检测精度、灵敏度得到一定的提高,使得土壤环境检测变得更加简单准确。