导航:首页 > 研究方法 > 地质地震学研究方法

地质地震学研究方法

发布时间:2022-05-11 03:13:56

㈠ 地震地层学的研究方法

地震地层学的研究方法有两大趋向。首先,着重考虑沉积体的外形、侧向接触关系及其岩相环境等方面的对应关系,将地震剖面上的反射同相轴视为接近于理想的地质体的反映而较少考虑畸变。这种方法常用于区域地震资料的地层解释,称为区域地震地层解释。
其次,利用物探的理论分析以及改变参数扯理和模拟方法,详细地研究地震剖面中局部反射产生变化的地质原因。由于这种研究涉及具体岩性的解释,常称为岩性地震研究。又因此种研究常牵涉复杂的计算过程,往往只能限于局部地区的分析,也被称为局部地震地层研究。

㈡ 天然地震与地震勘探处理方法


地震仪器

天然地震
发生时产生的
地震波
记录下来之后,
地震学
家用这些资料就可以推断灾区地下地质结构和岩石性质。如今
地震勘探
工作者就是利用地震波来研究地下岩石性质并寻找
石油和天然气
的。所不同的是,他们不是利用天然地震时产生的地震波,而是用人工制造的、可移动的、可控制振动能量大小的地震波。所以,用人工制造的地震波进行的地质探测叫地震勘探。地震勘探工作是一个系统工程,包括地震资料采集、地震资料处理、地震资料解释。这里先介绍一下地震资料采集工作是怎样进行的。地震资料采集是在野外进行的。
野外工作
分施工设计、试验工作和生产三部分。在施工设计阶段,首先对工区进行
踏勘
,然后进行设计。设计的主要内容是明确地质任务,
设计地震
测线
位置,设计人工激发地震波的激发方式、接收地震波的接收方式,确定使用的主要设备,完成采集任务的工期,以及制订安全生产、环境保护的制度措施等等。试验工作阶段包括通过试验选择能完成地质任务的最佳激发方式、接收方式、合适的
观测系统
及仪器因素等。最后,试验内容是否全面系统,地质效果是否理想,能否转入生产等需经专家验收审定。生产工作包括测量、打井、
放炮
、接收和质量监控等工序。通过测量把每条地震测线位置、激发点位置、接收点位置等用明显的
标志物
标示在地面上。施工人员根据施工作业书和地面上的标志物有条不紊地进行打井、放炮、接收,直至全部完成地震资料采集任务。质量监控贯穿在试验阶段和整个生产过程中,尤其对采集工作的各个环节要进行质量监督和控制,只有这样才能保证野外采集和
后序
工作的质量。

㈢ 地震与地质构造之调查与研究有哪些

这方面首推中国地质学创建者之一、翁文灏最为杰出,1921年在《地质汇报》第3号上发表了《甘肃地震考》,他以近代科学的观点和方法,分析和论述了地震现象,特别在第四部分中说:“……此盖地壳构造,新经变动,基础未固,易生摇撼也。由是理论,穷其究竟,大抵甲类地震,原于外力,即所谓动力起于地质构造之外(诸如:壳内火山喷发,岩浆上冲等);而地质构造,特予以易受动力之弱点;乙类地震,则震动之因,在地质构造之中,原动力之力,即自地质变动之日,虽无外力,亦将自动……”。简要分析,表明作者对构造地质起因,并提出地壳内外变动,决定地震的强弱和频率以及性质、烈度震级等。文中还引述了1913年出版的上海黄司铎编的,J.Tobar.H.Gauthier校补的,法文《中国地震表》(Catalogue das tremblenents de Terre Signales en Chine Dapres les sourees chinoises)集古今图书之大成,值得参阅。
1922年他在出席了比利时布鲁塞尔召开的13届国际地质大会,并发表了《中国地质构造对产生地震的影响》,最早向国际上介绍中国地质构造格局及与中国历代地震的影响,受到重视。论文发表在《第13届国际地质大会论文集》(1922)。
1933年在《会志》上发表《地震对中国某些地质构造的影响》(《会志》2卷3-4),文中附有一张珍贵的中国地震分布图,突出地反映出大地震与大断裂的密切关系,并按其构造特点划分若干地震带,列举出各地震带的历史地震震中表,同时文中还对云南洱海大地震研究成果做了介绍,翁文灏先生作为中国地震构造研究的创建者,是当之无愧的。
1938年常隆庆在《地质论评》第3卷3期上发表《四川叠溪地震调查记》中,论及了地震地质构造的特点。
着名地震学家李善邦等,也对荷泽地震做过调查与研究,较早地提出断层错动是发震的主因的科学论断;1940年米尼尔、李亚卫在《地质论评》5卷第5期上发表《地震与地动》,文中高度评价德国魏格纳的大陆漂移理论所倡导的活动论和大陆水平运动,同时也评述了美国泰勒和乔利以及奥地利着名学者休斯及其《地球的面貌》对地震构造理论的推动与影响;1947年王竹泉在《论评》12卷1-2期上发表《河北滦县地震》等。

㈣ 地震灾变事件地层——地质学的分支学科

Earthquake Catastrophic Event Stratigraphy——A Branch of Geology

乔秀夫宋天锐

地震是地球动力作用的表现,它是地球内部结构失去平衡突然释放出巨大能量的灾变事件。现代地震引起地表发生变化,地震诱发沙土液化、地面下沉对建筑物基底的破坏、地裂缝对交通的破坏,地震引起陆内的泥石流、滑坡以及近海的海啸造成的破坏等均直接影响到人们的生命、财产,因此被广泛关注。地震学家正力图解决难度很大的近期地震预报问题。

人类历史时期有文字记载的地震可称为历史地震,研究历史地震记录,从统计学角度可以了解一个地区发生地震的周期。史前地震一般称为古地震

古地震的时限、含义在地震学家中有不同的认识。本书采用史前地震,即赋存于全新世及其之前古老地层的地震记录为古地震的观点。。古地震记录保存于地层中,地震地质学家与第四纪地质学家侧重研究全新世时期地层中的地震记录,目的是从更大的时间尺度研究发生地震的长周期,结合区域构造分析,提出地震活动较长周期的预报。对于全新世之前的地震记录,地震地质学家一般很少涉及,因为与解决现代地震预报的目标距离太遥远。

全新世及之前地层中的地震记录应是地质学家研究的范畴。古地震记录与现代地震记录的不同之处在于古地震形成的地貌已不被保存。如地裂缝在现代发生地震后可以看到中间下陷的狭长的“V”形地表裂缝,但古地震在地层中常常观察到一组相向的正断层组成的地堑以及层内的坍塌角砾,且其中被沉积物充填满。地层中地震引起的变形记录有两种情况,即已成岩的坚硬沉积物与尚未成岩、富含水的软沉积物在地震发生时所受到的影响与变形是不同的。总的讲,坚硬沉积物主要是脆性变形;而软沉积物则是受到强地震水平剪切的振动影响,引起富含水软沉积物的液化泄水与变形,形成一系列层内的软沉积物变形构造。有一些软沉积物变形构造已被识别解释为地震成因,尚有一些软沉积物变形未被识别,或者被作为其他成因解释。区域性、有固定层位的软沉积物的液化变形是鉴别地层中地震事件的重要依据。

地层中的地震事件记录是地层学、沉积学、构造地质学(变形构造、新构造与大地构造)与地震学的交叉学科,地震灾变事件地层是地质学中的一个分支学科。与其他分支学科相比较,研究状况处于相对滞后的状态,这是因为地质学受到均变论的长期影响,相当多的地质学家不注意也不很相信地层中有地震灾变记录的存在。实际上,古地震事件一定非常频繁,因为人类历史中已出现过多次大规模地震灾难事件,那么,几十亿年的历史长河中应该有更多的地震灾变事件发生。从构造角度,我国大陆壳系由众多块体组成,这些块体在地史中曾有多次碰撞挤压与分离,在挤压环境与拉张环境下均相应发生地震。仅仅因为我们不认识古地震的标志而完全忽略了这些重要地质记录。传统的地层学研究中不包括地震灾变记录,沉积学家则将一些地震事件记录作为其他正常沉积成因解释,而构造地质学家则将众多地层中地震成因变形(同沉积变形)解释为后期构造变形。另一方面,野外地质调查中对地层中的一些奇特的地震记录只描述了现象而未深入进行成因解释。如在我国北方长期工作的野外地质学家对各种碳酸盐岩中的泥、亮晶脉早已注意(20世纪60~70年代),并进行描述,但未深入研究;南方二叠纪的碳酸盐岩岩墙也早有报导(20世纪70年代),但用正常沉积充填作用解释。实际这些都应是地震事件记录,相当多的地震记录在野外调查时被遗漏。在我们过去的区域地质调查填图的报告中,对构造变动、火山活动描述及讨论很多,唯独看不到与之相关联的对地史中地震事件的报道,这是地层学、沉积学、构造地质学研究中的遗漏与失误!

中国地质学家于20世纪80年代开始注意地层中的地震灾变记录,90年代有了很大进展,90年代之后有关地层中地震记录的研究受到很大注意,出版了相当数量的论文及专着。我们对古地震或称地史中地震事件的研究,与国外大体同步、同水平,并且有自己特色,这些特色是:

(1)理论基础:引起软沉积物液化泄水及变形有多种动力,但是区域性、有固定层位的软沉积物变形是由地震诱发的。

(2)多学科的交叉研究,注意与现代地震现象与资料对比,重视模拟实验结果,比较注意地震事件灾害过程的研究,并用类似沉积学中的序列,即地震灾变相序表示,以便于野外地质调查时能对所研究剖面灾变事件有预见性。

(3)将地震记录与区域断裂构造和岩浆活动联系研究是国内研究的重要特点。

(4)最近我们应用了对现代地震地质研究的方法,即找寻基底岩系与盖层之间巨大滑脱剪切作用形成的假玄武玻璃岩(Pseudotachylyte),以确定盖层中软沉积物变形的地震成因与地震年代。假玄武玻璃被认为是确认地震变形与确定地震年代的活化石。

(5)注意到在地史不同时期地震诱发的软沉积物变形是不同的,特征也有很大区别。

(6)应用地层中地震记录,解释区域大地构造、解决一个构造带中地层等时对比等问题是我国地质学家在古地震研究中重要特色。古地震记录是呈现区域性分布,与某个断裂相关,或与某些岩浆活动有关。因此可以建立起古地震带,包括板块边缘俯冲带附近及板内伸展构造强烈地区的古地震带。这些地震带的确立是对一个地区最深刻的地球动力学解释。

古地震的研究不可能直接解决现代地震预报问题,但它是地史中地球动力学与地史学研究的重要内容,是揭示一个地区地史与构造发展中的渐变与突发的灾变史;它可以从更长的地史时间尺度提供一个地区的地震活动性。如我们在中国北方建立的震旦纪古郯庐地震带,中元古代的燕辽地震带,至今仍是一个继承性地震活动带。

如何在野外调查古地震记录,尚未写入目前1:5万或其他比例尺地质调查的地层或沉积岩规范中,这是一个需要探索与总结的科学问题,但是一些原则性建议可提供参考。

(1)对地层中的一些奇特软沉积物变形构造与沉积现象应试图用灾变观点审视,避免用正常沉积学原则勉强去解释。

(2)进行对现象认真的客观描述,为室内研究采样、拍照。特别是这些记录在地层中与正常沉积的关系。变形构造分析是研究地震诱发软沉积物变形的基本方法,科学的排除法则是野外宏观调查时应有的思路。

(3)灾变记录的地层时代,空间分布,是否呈带状区域分布,与哪些断层相关联,灾变记录地层附近有无同时期岩浆活动等。

(4)综合性研究,指两个方面:一是对所有灾变记录综合研究,注意他们之间的相互关系与顺序。例如对地震成因的液化脉,除研究脉本身外,尚需研究与之伴生的微断层及各种软沉积物变形构造。若仅限于脉的本身研究则不可能揭露事件的全过程与本质。二是指多学科的研究,即地层、沉积、构造、相关的断裂及火成岩的综合研究。地震灾变事件的研究中,地层仅是一个载体,沉积学是研究的切入点,软沉积物的液化泄水与变形构造分析是野外研究的本质问题,最后应研究地震记录的区域构造背景。

本书的内容包括三个部分:

(1)中国地质调查局《中国大陆及边缘关键地史阶段地震事件研究》项目中部分研究成果。新撰写了第1,2,4,10,14,18,22等七章。

(2)选择了一些地震成因变形的宏观记录(执行中国地质调查局项目中拍摄的),供野外地质调查时参考。更多的地震成因变形记录尚有待于野外调查时识别。

(3)精选了一部分作者等已发表的有关地层中地震记录的文献,我们认为这些文献对于野外地质调查时识别与研究地层中地震灾变记录是有参考意义的,这些文献也是研究项目立项的基础。对纳入本书的论文,根据近年来的研究,对其中一些论文均已做了修改与较大补充,与原文已有相当区别,有一些是在原文基础上的再创作研究成果,但仍沿用原论文题目,目的是便于读者引用,也可看到本书作者对有关问题的认识过程与新的解释。这些文献包括对不同地震时期、不同地层类型中地震记录的识别、描述、地震记录的成因机制与背景论述,应用地震记录解释区域构造与地层对比等。

本书未对古地震记录的特征做全面介绍与描述,只是一般性的评述了当前国内古地震研究的现状,我们希望读者能在本书有关内容中找到自己感兴趣与需要的材料。本书内容不可能也没有这种科学水平总结所有古地震事件的特征,只能起到一个启发与引导作用,更多古地震事件在地层中的特征需要所有地质学家今后共同努力去识别、总结。

我们高兴地看到,20世纪90年代以后,我国地质调查填图中开始注意古地震记录的研究,反映在1:5万地质图幅(吉林省、辽宁省、山东省、安徽省、江苏等省有关1:5地质图)对古地震均有详细描述,并与地层和大构造结合讨论,从而提高对客观地质记录的解释,提高了图幅的科学质量。中国地质调查局在有关的区域地质调查总结中(2003年),也将古地震调查作为区调进展之一。我们坚信,古地震的调查、研究必将成为提高不同比例尺基础地质调查的科学内容。随着地质调查中对古地震事件的识别将不断丰富这一新的地质学分支学科内容;古地震将成为地球系统科学与地球过程中必须研究与关注的内容。

什么是地震勘探法

对地震和穿过地球的波的传播特征的科学研究。在野外还包括地震效果的研究,比如海啸、各种不同的地震源,例如火山、构造运动、海洋的和大气圈的以及人造地震(如爆炸引起的地震)等。

在早期的石油勘探中,勘探人员只能对可以从地表看到的地质构造进行钻探,一般是背斜和地层上拱形成的凸起等。但人们很快就认识到这种做法效果不佳,因为许多构造被沉积岩层覆盖,在其下面才是由地壳运动形成的圈闭。此外,若这些圈闭恰好位于海底,则人们也完全无法用肉眼看到。勘探人员研发出地震反射方法,而它的原理就是由爆炸或用一个重物向下撞击地面而产生的非常简单的地震波。

地震勘探法示意图

这些震动从各个方向向地层深处传送地震波。当这些波遇到一个地质层系时,就会被反射回地表(就像光射到镜面发生反射一样),而其他声波则会继续向下传播直到更深处的岩层,如此反复多次发生。人们在距这种波发生的一定距离处安置极为灵敏的接收器(地质检波器),就可以接收并记录下一系列复杂的地震反射波。最先到达的是那些沿着地表运动的波,然后是被第一套地质层系反射的波,接着是第二套地质层系反射的波,以此类推。在这种方式中,可以记录从发射器发出后经地质层系反射后到达接收器的时间。

通过对比改变发射器与接收器的位置,就可以描绘出一幅按时间和二维(2D)空间构成的基底地质层系图像,然后,再计算出不同地质层系的波的传播速度,这样就可以得到一幅地层深部的岩石层系图像,而这正是地质学家和钻井工程师最为感兴趣的。根据这些图像,绘制出更加详细的地层剖面图。利用这种以时间和深度表示的一系列完整的二维图像,绘制出地下岩层的地质图并用于评价油气圈闭。为了获得更为精确和更加可靠的地下岩层图像,人们应用三维地震技术,它比二维地震的投资更为昂贵,但却更加精确有效。通常,人们可以从三维地震图上直接识别出地质层系中的油气层。为了获得地层体积(三维空间)的图像,需将接收器成排安置。不久将会出现的四维(4D)地震技术,可以使勘探工作进入四维空间——包含了时间的范畴。在油气勘探开发的实践中,三维地震技术采用规律的时间间隔,屡获建树。通过对比这些三维地震记录,人们可以对一个油田的生产阶段进行跟踪评价。在海上勘探中,三维地震记录是由轮船拖曳的一系列接收器(检波器)完成的。海上地震勘探要比陆地上的容易,因为,那里没有会使发射器和地震波接收器发生位移的自然障碍物。

如果石油在地下像巨大的湖泊一样存在,那么开采就是一件十分简单的事情。但是,实际情况却要复杂得多。油气隐藏在多孔的岩石内,就像水吸附在海绵中一样,它们在岩石内呈分散状,并可迅速流过较大的区域,致使它们难以被发现且难以开采。地震勘探已成为了解地下情况最强有力的技术手段。地震勘探最早于20世纪20年代投入使用,这项技术利用地下岩层反射到地表的声波可以看清地下的特征。用多个检波器收集反射到地表的声波,所记录的数据有助于建立简单的二维地质图像。现在,综合测量技术与强大的计算机结合起来,可以创立高精度的三维图像,并且用来更详细地揭示地下储层的特征。先进的成像软件可以帮助地球物理学家控制地震数据的质量,并过滤掉由地下盐岩和火山岩等层系构成的阻碍物引起的干扰。这些阻碍物影响根据反射声波的方向和速度而对地下油层的精确确定。很不幸,地震成像还不很成熟,而且从未达到100%的可信度,在数据记录阶段可能出现错误。在山区或热带森林内(在这些地区的工作进度会减慢)就很难获得地震数据。此外,具有致密与松软差异表层的陆地区域也会导致地震反射波发生改变,而且往往难以对折返时间进行校正。在深部剖面上,也可能获得地震图像,但它们并不能反映真实的地下情况(呈“伪像”),就像海市蜃楼一样。

㈥  浅层地震法

12.1.1基本原理

浅层地震勘探(Shallow Seismic Prospecting)是地质灾害勘查的重要手段,它具备分辨能力强,空间定位准确的技术特点。所有的地球物理勘探方法都是以研究岩石的某一种物性为基础,地震勘探所依据的是岩石弹性。其勘探原理是:用炸药或非炸药震源人为的激发地震波;沿测线的不同位置用地震勘探仪器检测、记录地震波;分析、研究这些记录,从而获得勘探地区(段)地下地质信息。激发地震波,接收地震波,处理、分析地震波记录是实施地震勘探的三个主要技术环节。激发、接收地震波称为地震勘探数据采集,处理、分析地震波称为地震勘探数据处理。

地震勘探可以看成是一个特殊的、以地层为传输讯道的通讯系统。震源激发的地震波是通讯系统的输入信号,它在地层中传播时发生波的折射、反射、吸收、干涉、叠加等物理过程,从而携带了地层的结构和岩性等信息,因此地震波可以看成是携带地层信息的载体。用数字地震勘探仪器接收地震波信号并转换成二进制数值,存贮在磁记录介质上,为用计算机处理地震数据提供了方便的信息源。地震勘探数据处理充分运用了现代数据通讯中信号处理方法、波动场的层析成像方法和计算机数值计算方法,从而提高信号的信噪比,可靠地提取蕴含在地震波中的地质信息,或进行层析成像处理,获得地下被勘查的地质体的数字图像。

由于将地震勘探的本质理解为以地质体为介质的通讯过程,地震波是通讯过程的信息载体,使得地震勘探数据采集和处理吸收了现代数字通讯技术的最新成果,实现了数字化,拥有更强的解决地质问题的能力。

地球物理勘探工作者习惯将200~300m以上探测深度的地震勘探称为“浅层地震勘探”,它符合水文、工程地质勘查和地质灾害的勘查深度。在地质灾害勘查中应用浅层地震勘探可以解决下列地质问题:

(1)按照速度值的变化,对各种类型的松散沉积物较详细地分层;

(2)查明覆盖层下的基岩埋深和起伏形态;

(3)查明基岩风化壳厚度和变化形态;

(4)查明基岩断层、破碎带,确定断层断距、断层性质,确定破碎带宽度和埋深;

(5)查明隐伏岩溶发育带,确定溶洞位置;

(6)查明隐伏溶洞和覆盖层之间,由于水力联系而形成的覆盖层中的溶蚀地段和土洞;

(7)应用在松散覆盖层中的详细分层能力,查明基岩断层在第四系地层中的形迹,从而判断是否是活动断裂;

(8)可以获取地质体的弹性力学参数和抗压能力。

12.1.1.1纵波、横波、瑞雷(Ralyleigh)表面波

在地震勘探应力波动场范围内,地质体可视为弹性介质,依据固体介质弹性波理论,地震勘探震源在地质体中激起三种类型的地震波:纵波、横波、表面波。纵波和横波是在弹性体内部传播,又称为体波。传播纵波介质的质点振动方向与波传播方向一致,它是由胀缩力性质的震源所激发,例如放置在爆炸孔中的炸药包。横波振动方向与传播方向相互垂直,它是具有旋转力特征的激励震源激发,如水平方向敲击置于地面上的木板块,对地面作用的剪切力,是常用的激发横波震源。仅存在于介质与空气接触的自由界面下,一个波长范围内的表面波被称为瑞雷表面波,它沿介质表面传播,质点振动轨迹呈椭圆状。

利用纵波作为信息载体称为纵波地震勘探,横波地震勘探是利用横波作为信息载体。应用瑞雷表面波进行勘探称为表面波勘探法,是近年发展起来的地震勘探方法的一个分支,本书另辟章节论述。

对同一弹性参数的固体,纵波比横波有较快的传播速度,它们都是弹性参数的函数(具体计算公式详见手册附录)。通过综合测试纵、横波速度,可以推断被探测体的弹性模量和泊松比等力学参数。

地质体中的横波速度不像纵波速度那样受湿度影响大,横波速度与地质体力学强度有很好的正相关关系,速度值愈大,强度愈高。

介质对横波能量的吸收衰减比纵波小,因此在纵、横波混合的直达波组中,横波的振幅要大于纵波,但横波的频率比纵波低。在相同频率的条件下,横波速度较低,波长较短,因此它比纵波有较高的水平和垂直分辨力。

限于目前的技术水平,只能用机械震源激发横波,激发能量相对较小,最大探测深度一般不超过100m,远不如纵波所能达到的探测深度。

由于横波地震勘探的分辨能力较强,可以判断被探测地质体的力学强度,在地质灾害勘查工作中应当加以重视,特别是横波反射地震勘探,但是其技术方法和装备要比纵波勘探复杂,常用的横波“叩板”震源比较笨重并且勘探深度相对较小。

图12-1地震波入射到速度界面上发生的物理现象

12.1.1.2地震波反射、折射

由不同的时代、不同的岩性组成的地层,可以近似地看成弹性层状介质,分层的主要依据是地震波速度。相邻两种介质之间存在速度界面,地震波入射到速度界面上,部分能量被反射,剩余的能量透过界面入射到下部介质中,即入射波在速度界面上发生波的反射和透射这一物理现象。如果地震波的入射速度v1低于透入速度 v2,就会出现入射角小于透射角的现象(称之为远离法线的透射),因而就会存在使透射角为90°的入射角。在这种极端的情况下,透射波就在透射介质一侧,沿着速度界面以v2速度传播,此时的透射波称为滑行波,入射角称为临界角(图12-1)。滑行波沿着界面滑行的过程中,引起界面各个质点振动,它可以看作为二次震源,在入射介质(v.)中激起波的传播,这种由滑行波派生的在上覆介质中传播的波被称为折射波,速度界面被称为折射面。

反射波携带有反射界面空间位置的信息,折射波除了携带有折射界面位置信息外,还有折射界面的速度信息。由于只有在临界角入射时才能出现折射波,因此在离开震源某个距离以外才能接收到折射波。地面上接收不到折射波的地段称盲区。只有下层介质的速度大于上层时,才会出现折射波。折射波是由滑行波派生出来的,因此它的能量较小,为了接收折射波需要较强的激发能量。这些都是开展折射波勘探时,必须考虑的地球物理条件。

用反射波作为信息载体的地震勘探称为反射波地震勘探,它又可分为反射纵波地震勘探和反射横波地震勘探。用折射波作为信息载体称为折射波地震勘探,在目前的技术条件下,只利用折射纵波。

反射波地震勘探是地质灾害勘查中最常用的方法,它的技术成熟,装备轻便、精良,微机控制的数字化地震仪器、谐振频率100Hz的高频检波器、不同级别能量的震源,能够满足地质调查要求的各种勘探深度。应用源于石油地震勘探的多次覆盖技术,使用计算机处理、分析资料,能够实现地质灾害勘查工作提出的多种任务要求,是地质学家优先选择的方法。

1970年以前,浅层反射地震勘探技术尚处于研究、开发阶段,折射波地震勘探在地质灾害勘查工作中得到使用,特别是该方法能够测得界面速度值,很受使用者欢迎。但它要求被勘查地层的下层纵波速度大于上层,并且不适合多于二层以上介质的勘探。由于存在盲区,勘查场地太小就无法施工;由于要求能量较大的震源,因而只能使用炸药。这些都限制了浅层折射波地震勘探的使用。

12.1.2观测方法

地震勘探的信息载体——地震波是用人工震源激发的。地质灾害勘查时常用的震源类型有炸药震源和机械锤击震源两种。炸药震源的优点是装备简便,能适应不同勘探深度的要求,激发出的地震波的频带较宽,主频较高,有利于高分辨率地震勘探,但是这种震源存在安全隐患,不符合环境保护的要求,不适于在城市、工矿区等人口密集的地方使用。

锤击震源使用安全、便捷,可以激发纵波也可以激发横波,目前是激发横波的主要震源类型。但锤击震源激发能量相对较弱,勘探深度一般不超过100m,激发出的地震波频带窄,主频低,分辨率低。目前国外开发出了用于浅层地震勘探的陆地气枪震源和电火花震源,有广阔的应用前景。

浅层地震勘探的观测方法是:在地表安置地震检波器,将地震波到达时引起的地表微弱振动转换成微弱的电信号,经由电缆送至地震仪记录。地震仪有多个信号通道,常用的24通道地震仪,与24个检波器连接。我们将安置在地表并与电缆连接的检波器称之为排列,检波器之间距离称为道距,检波器与激发点之间距离称为偏移距,最接近炮点的距离称为最小偏移距。

激发点位置,排列位置,激发点和排列沿测线移动方式就组成了地震勘探观测系统。道距、组成排列的地震道数目、最小偏移距离、激发点和排列沿测线移动的距离等,统称为观测系统参数。

地震仪在工作时预置的采样间隔,每道采样点数目,地震放大器的前置滤波器截止频率等,称为观测仪器的参数。

在地震勘探现场采集数据时,正确设置观测系统和观测仪器的参数是确保完成地质任务的技术关键,要慎之又慎,应当在开工前进行参数选择试验,特别是在缺少经验的新勘探区。

采用多次覆盖观测系统采集反射波数据可使地下每个地震波反射点数次被不同偏移距激发的地震波勘查。同一反射点被重复勘查的次数称为覆盖次数。通过多次覆盖数据处理可以提高反射信号的信噪比,有利于提取微弱的反射信号,从而提高了识别地下地质情况的能力。覆盖次数愈多,效果愈好,但勘探成本要相应提高。人们常用6~12次覆盖,3次覆盖属于“经济型”的勘查。

折射波观测的关键是要避开盲区,这就要了解勘探地区的物性,判断是否具备折射波勘查的地球物理前提。采用固定激发点,移动检波器排列的方式,连续追踪折射波,在排列两端轮流激发,才能组成完整的对比观测系统,获得与排列对应的完整的折射界面形态。测线较长时,激发点与排列距离太大,无法可靠接收折射波,此时应当移动激发点,但要确保它与上个激发点有一段重复接收段,保证折射界面的连接。可靠地追踪、对比和连接折射波是观测系统设计原则。

横波反射的观测系统与纵波基本相同,只是横波反射采用横波震源激发和用横波检波器接收。“叩板”是目前常用的震源,采用炸药或压缩气体的震源处于研究、开发阶段。

数字地震仪的通道数目是使用者关注点之一,24道仪器是必不可少的,如果能够装备有48道或96道仪器则更为理想。多道仪器可以降低成本,提高覆盖次数。模数转换器拥有的位数则是关注点之二,位数多,仪器的动态范围大,接收的地震信号保真度高,地震波承载的信息丢失少,这就提高了数据处理和信息提取的效果和解决地质问题的能力。

12.1.3技术要求

提高地震勘探的分辨率是技术要求的主导思想。所谓分辨率,就是对被勘查地质体探查的精细程度,可分为垂直和水平两种分辨率。垂直分辨率愈高,就愈能精细地划分地层;水平分辨率高,对地质体水平方向的定位精度就高,例如准确地确定断层的水平位置。

理论研究和实践均证明,缩短地震波振动延续周期,或者是扩展地震波的频带宽度,可以提高分辨率。为了提高水平分辨率,除了上述要求外,还要适当地缩小检波器的道距。

由于大地介质对地震波传播的作用相当于低通滤波器,高频成分吸收衰减的程度较低频部分强,两者相差可达30~40dB。因此补偿高频成分的丢失,就可以扩展地震波频带宽度,从而提高分辨能力。提高激发和接收的信号频率,防止在数据处理时损失信号的高频成分,是技术要求的关键。

此外,应当严格遵守《浅层地震勘查技术规范》各项规定和技术要求。附录中收录了此规范文本。

12.1.3.1测线布设

根据地质任务的要求在勘探区布置地震测线时,测线的方位要尽可能地垂直于被勘探体的走向,避开地物障碍和地形剧烈起伏的地段。如果无法避免,允许测线有转折或弯曲,但要符合《浅层地震勘查技术规范》要求。测线要通过勘探区内钻孔,或者以钻孔为中心另行布置十字测深短测线,以了解反射层位和地质层位关系。如果有地层出露,要进行出露地层的波速测量,这有助于资料的地质解释。

12.1.3.2地震波激发

由于炸药震源激发的地震波主频率值与药量成反比,为了提高主频率,增加方法的分辨率,应当用小炸药量激发地震波。在松散的地层中激发的地震波频率较低,应将炸药放入注水的爆炸孔中激发地震波。炸药包直径与孔径接近,紧密耦合,可提高激发能量。爆炸速度高的炸药(例如T.N.T)特性阻抗与岩土体的特性阻抗接近,能够达到阻抗匹配,能量损失小,有利于激发地震波。

勘查目的层较浅时,人工锤击是最方便的震源。应用地震仪多次叠加的功能,在同一个激发点处,多次锤击,使地震信号叠加,增强信号能量。在激发点上安放铁质或玻璃钢垫板,锤击垫板,激发的信号重复性好,主频率较高。

用三角架支撑,拉起重锤,自由落下撞击地面,激发地震波,称为机械锤击震源,其能量较强,但是频率低,装置较笨重。

国内开发了一种称为“震源弹”震源,形似猎枪子弹,放入配套的“震源枪”中,插入地面上预先挖好的孔中激发,激发能量和频率均能满足地质灾害勘查要求,比炸药安全,能够在城市中使用。

12.1.3.3地震波接收

应当采用谐振频率高的检波器接收地震波。当前,100Hz的高频检波器是最佳选择。采用涡流型检波器就更为理想,动圈式的检波器在谐振频率以上灵敏度变化不大。涡流式检波器灵敏度随频率提高而增加,更加有利于补偿地震波高频损失,提高分辨能力。

检波器将振动信号转换为电信号后,通过地震电缆送到地震仪信号输入端,为提高分辨率必须将地震信号通过低截滤波器,使得低频成分得到衰减,压制低频求得其与高频成分处于相同数量级,显然也就是扩展了带宽,提高了分辨能力。低截滤波器的频率是可调的,正确选择频率是技术要求的重要内容。

尽量提高A/D转换器的位数,使相对较弱的高频成分获得足够位数的转换值,有助提高分辨率。目前,浅层地震仪A/D转换器已从过去的12bit(二进制位)或18bit提高到24bit。

12.1.3.4浅层地震勘探的应用条件

在地质灾害勘查中应用浅层地震勘探方法,要分析解决地质任务的有效性,注意浅层地震勘探的应用条件:

(1)被探查的地质目的物(层)与围岩体有速度差异;

(2)如果是采用折射法,还要求被探查的地质目的物(层)的速度大于上覆地层速度值;

(3)被探查的地质目的物(层)在垂直方向上的尺度不小于地震波有效信号主波长λ的八分之一,即A/8(Widess分辨准则),否则目的物不能被地震勘探发现;

(4)工作地区如果存在有人文噪声干扰(例如城市或工矿区),必须采用有效的抗干扰措施,否则会降低方法的信噪比,影响地质效果,甚至无法工作。

12.1.4数据处理方法

12.1.4.1折射波数据处理方法

将记录在磁介质中的折射波数据送入计算机后,采用相位对比的方法识别折射波并拾取折射波到达各个观测点上的时间值。为了达到较好的效果,可采用计算机自动识别和拾取与人工检测相结合的方法。随后,启动折射波资料处理程序,最终输出折射界面形态图和界面速度值。

时间场法和哈莱斯(Hales)法是常用的处理解释方法,用于折射波数据自动解释。

12.1.4.2反射波数据处理方法

反射波数据处理方法涵盖波动场理论、信号处理理论、计算数学等学科的丰富内容。

反射波数据处理的目的之一是提高信噪比,让背景噪声掩盖的反射信号显现出来。视觉能力研究表明,人眼视力动态范围约60dB(1000倍),如果地震仪A/D转换器低于10bit,它就低于视觉动态范围,此时地震监视记录中看不到反射波信息。目前地震仪 A/D转换器已高达18~24bit,远远超过视觉动态范围,采集的反射信号通过数据处理,可提取出丰富的地质信息。

反射波处理的第二个目的,是使反射波正确归位,即采用动校正、波动方程偏移等各种方法,将反射信号回归到产生它的界面上去。正确归位后的反射波表征了界面的位置和形态,是一种波动场成像的方法。

反射波数据处理,按地震处理作业流程的先后次序,可分为下列各项。

(1)预处理:

解编:将地震数据读取到计算机,解编成处理程序认可的格式。

编辑:用删除或拷贝的方法编辑不正常地震道的数据。

动平衡:将地震数据按其自身大小加权放大,实现各数据之间相对平衡。

(2)获取处理参数:

富氏分析:求得有效反射信号的功率谱,为选择带通滤波器的中心频率和频带宽度提供依据。

速度扫描:求得动校正的速度组,为动校正提供速度参数。

(3)提高信噪比处理:

数字滤波:地震信号通过带通滤波器,增强反射信号,压制噪声干扰。

相干加强:相邻地震道进行互相关运算,用相关系数作权值,调整地震道的数据。由于反射信号有较好的波形相似性,调整后获得加强,随机噪声相关系数接近于零,受到了压制。

图12-2偏移归位

水平叠加:将同一反射点上的数据进行动校正,消除时差,叠加在一起,起到加强信号压制干扰作用。

(4)归位处理:

动校正:将不同偏移距的地震信号都校正为自发自收的零偏移距,此时地震信号之间的时差是由反射点位置不同引起,反映了反射界面形态。

偏移:动校正后的归位界面深度,是界面垂线与地面交点的距离。如果是倾斜界面,则不是它的真正深度,需要偏移处理,校正成与地面垂直的直线距离,参见图12-2。

12.1.5成果表达形式

12.1.5.1折射波法

折射界面剖面图和界面速度分布图是折射波法勘探成果表达的最终形式。通常可以用计算机绘图仪输出最终处理结果。

12.1.5.2反射波法

在地质灾害勘查时,反射波法勘探成果常用反射波剖面图的形式表达。该图能直观、形象地反映被勘查地层的空间分布形态,断层位置,断层的性质(正断层或逆断层),基岩破碎带位置和宽度等地质现象,溶洞以双曲线形态的绕射波出现,双曲线极小点位置是溶洞的顶点。

反射波剖面是归位后的地震波场的分布图,异常的波动现象代表着介质中地质情况变化,例如地层界面、断层、溶洞等。

熟悉地震波动场正演特征和积累成果地质解释的经验,是深化认识反射剖面图的基础。

12.1.6资料解释原则

资料解释的目的,是对地震勘探成果进行地质推断和解释,用地质理念和规律表述勘查成果。

资料解释应当遵循两条原则:

(1)用于地质解释的波动场异常是真实的,而不是由采集误差,环境噪声干扰,地形起伏影响等非地质因素引起;

(2)波动场异常的地质解释、推断要有充分的依据,要从己知推到未知。例如,有已知钻孔剖面,已知探区的区域地质规律等,使推断成果符合地质规律。

要正确对比、追踪有效地震波。在相位对比时,要注意相位之间的错开、尖灭、分叉等地震波场异常现象。在地震波干涉带上,要正确认识、追踪、对比波组,防止混淆不同波组的相位。

要论证反射(折射)层位和地质层位对应关系,特别是勘探地区的标准反射层。标准反射层分布在整个勘探区,与勘查目的地质层位对应。例如,在滑坡地质灾害勘查时,滑面就是典型的标准反射层,通常它也是标准折射层。

由于地震仪器的测时精度可以达到毫秒级,时间测定是精确的。应当注意取得准确的速度值,它有助于提高成果定量解释精度。

数据处理提供了时深转换的速度值。如果条件允许,可以进行简易的速度测井。

12.1.7仪器设备

灾害地质勘查常用的浅层地震勘探仪器设备参见表12-1。

表12-1常用的浅层地震勘探仪

续表

㈦ 人类现代对地震有什么研究

进入现代以来,人类对地震的认识得以从科学的角度出发,从而开辟出了一片完全崭新的研究天地。研究地震,最基本的是研究地震的发震时间、震中位置和地震强度。随着地质勘探技术的进步,人类对地球构造的认识加深,形成了以地球内部构造结构为基础,地球板块运动为模型的地壳形变引起地震的理论。与之相关地,地壳形变运动发生时,地下水水位的升降变化,以及地下水的化学组成的突变也成了预测地震的重要参考指标。随着有记录的地震观测数据的积累,人们发现地震的发生与地磁、地电的变化也存在着一些联系,通过对地磁地电的观测来预测地震也成为一个可以考虑的突破口。

地震活动性研究

早期的地震学主要研究地震发生后的各种现象,多局限于研究较大地震的地理分布和时间分布。20世纪60年代起,地震预报被提上日程,人们迫切需要知道强震发生前的诸种现象,强震前观测到的大量中小地震,为人们寻求地震前兆提供了信息。目前关于前兆性地震分布图像的研究已经比较深入,形成了地震活动空区和地震活动条带两个地震前兆模型。

在强震发生前的一定时期内,在未来的震源区附近,地震活动水平有下降趋势,从而形成地震活动空区。通过寻找地震空区预测未来强震的地点、大小和时间,是利用前兆性地震活动图像预报地震的一个有希望的方法。通过多次强震的对比分析,发现空区基本上都位于具有较强地震活动背景的地区。空区不仅有其平静的一面,还有外围地震活动增强的一面。通过对大量震例的分析,研究空区面积、长轴、空区持续时间等与未来地震强度的统计关系,在实际预报中可以发挥一定的效用。

地震活动条带是指在区域地震活动不断增强的背景下,地震震中由分散、凌乱状态转化为集中分布的过程中形成的,未来强震往往发生在这个条带上。通过条带内外地震强度、能量等的对比分析,可提高判定条带的准确性。

地壳形变测量法

地震大部分是发生在地壳的中上部,而地震发生时一定会伴随地壳形变的发生。因此,地壳形变与地震关系的研究,是地震预报中很重要的一项基础研究。地壳形变测量是大地测量的一部分,它是研究地震过程的重要手段。地壳形变测量工作主要是在活动构造带、多震地区和具有一定潜在地震危险的重点地区,以及大型水库区等要害地区进行的。地壳形变的测量周期比大地测量周期短得多,并经常视需要进行加密观测,还要特别注意大地震前后的及时测量。

地壳形变测量主要有垂直形变测量、水平形变测量、跨断层测量和定点形变测量几种。

垂直形变测量的目的,是测定地壳的升降运动,其主要方法是精密水准测量。在地壳形变监测区按一定计划布点,在每个观测点将水准标石(水准点)牢固地埋在地下或出露于地表的基岩上,从而组成垂直形变网。定期测量各条水准线上水准点之间的高差,经过适当处理就可以确定地壳是否发生了垂直形变。垂直形变监测网应布设在以活断层为主的构造带,大城市、大厂矿、大水库和交通枢纽为主的重点保卫区,以及地震活动区和地壳形变异常区。

资料表明,大多数浅源地震震源区均以水平错动为主,水平位移的幅度往往比垂直位移大。因此,研究水平形变也和垂直形变一样具有重要意义。地壳的水平运动是通过测定地面上一些点的平面位置变化来描述的,为此需要布设水平形变观测网。构成水平形网的基本图形是三角形,所以也称三角网。按照观测元素的不同,可以分为测角网、测边网和边角同测网。测网的布设原则和复测周期与垂直形变网的要求相同。

自从地震的断层成因说提出以来,断层位移与地震的关系受到了地学工作者的特别关注。为了了解产生地震的断层力学过程,捕捉地震前兆,地学工作者布置了各种跨断层测量。跨断层测量与获得断层两测点之间的产状、断层运动方式、两侧岩体力学性质及测点距断层面和距离有关。测值中还包含某些干扰因素的影响,应予以排除。

为了重点监测某个地区的地震发生情况,可以建立地壳形变台站来进行短水准和短基线观测。前者是用精密水准测量方法测定地面的垂直运动;后者则是用精密测距方法测定地面之间的水平位移。它们一般布设在活动断裂带上以监视断层活动。一般每时日观测一次,长期连续观测。

地下水观测

对地下水的观测和研究,主要是针对地下水的水位、水温、流量及气体—化学成分随时间变化的动态规律进行总结,研究地下水的动态规律发生异常与地震的关系,是探索地震预报的重要课题之一。经过实践检验,地下深井水网观测效果良好,对监视区内发生的强震均能观测到地下水异常,对一些地震作了一定程度的预报。在广泛开展实际观测的同时,科技工作者还对地下水前兆的物理机制进行了探讨,进一步认识到地下水动态变化与地壳岩石受力变形之间的关系,并且由于封闭性较好的深井水位灵敏度高,能很明显地反映地下含水岩体的微小变形,对地震的预测有很现实的意义。

由于水具有易流动性、不可压缩性,气具有易穿透性,因此水和气对力的作用特别敏感。地下水在地壳中的分布深度达20~30千米,这正是大多数震源分布的范围。因此,在地震孕育、岩体受力变形及破裂的过程中,含水围岩的应力—应变变化将造成地下水物理性质和化学成分的明显变化,并通过水的流动将变化信息传递到浅部来。因此,通过测定地下水(气)物理性质、化学成分随时间和空间的变化来预测地震成为地震预报的有效方法之一。

地磁地震关系的研究

国内外多次大震发生前,均在震中及其邻区发现过大量与电磁波有关的异常现象。现在世界各国都组织开展系统的观测和研究工作,已经或计划进行的研究课题非常广泛,有的已经取得了一定成果。例如,对震前电磁波异常进行了分类,指出存在两种不同起因的电磁波异常:一类是在孕育过程中,由震源体产生的某种电磁辐射,称之为辐射异常;另一类是由于震源体及其邻区介质物理性质的变化,导致该区电磁波传播特性的变化引起的电磁波异常,称之为传播异常。前者可能发生在孕育直到发震的整个过程中,压电效应、动电效应、热电效应等均能导致岩石在微破裂时产生电荷的积累与释放,从而使震源区辐射出频谱很宽的电磁波。

地震孕育过程中,经常伴有地下介质电阻率的变化及大地电流和自然电场的变化。观测研究这些变化(主要是地壳上部介质电阻率的变化),提取地震前的电信息,并探讨其与地震之间的关系,以进行地震预报,是地电观测的主要任务。地震预报中的地电研究与应用主要为地壳浅层介质电阻率的变化和地壳深部介质的电性变化两个方向。同其他地球物理手段一样,用地电方法预报地震仍处于经验性阶段,离预报地震目标还相差很远,有待于继续努力探索。

地球重力场是地球的一种物理属性,重力随观测点空间位置和地球介质密度状况而变化,因此,观测重力场的变化反过来可以研究地壳的变形、介质密度的变化或质量的迁移,从而探讨与地震预报研究和现代地壳运动有关的地球动力学问题。重力场的时间变化主要反映地球的变形、地球内部质量运动,以及地球在空间运动中一些动力学要素的变化,它与现代地壳运动、地震预报研究和基础天文学等密切相关。重力场的时间变化又可分为潮汐变化和非潮汐变化两类。前者起因于外部天体(主要是太阳和月球)对地心和地球表面的引力作用;后者则主要是地球自身的变化,如地球自转速度的变化、地极移动、地壳运动、地壳变形和深部物质变异等引起的。观测地震前重力变化的较好的实例是1976年唐山地震。这次地震发生的前半年,重力场就出现了趋势性的变化,震后异常恢复。

利用卫星监测地震

随着空间卫星技术的发展,卫星在地震预报研究和应用上的作用也越来越大。我国在“九五”期间就开始了卫星预报地震的研究和应用,并取得了初步成果。我国有关专家认为,发展地震监测卫星十分必要。我国建成了相当数量的地基电磁监测台网,但我国幅员辽阔,地震多发区多,已建和筹建的电磁监测台还不能满足预报需求。而在空间轨道运行的卫星对地电磁观测覆盖范围大,不受地面自然条件限制,且空间电磁的场动态信息强于地面的信息。利用卫星实现空间电磁监测,将对地震预报起到积极的推动作用。此次汶川地震,如果我们事先有该地区连续的空间电磁监测图像,就可能会做出预报。

发展我国的地震电磁卫星对地观测技术,将空间手段与地基监测相结合,建立天地一体化的立体地震电磁监测系统,将明显增加地震前兆的信息量,为地震预测预报提供重要的科学判据。我国航天发展“十一五”规划中,明确提出了开展地震电磁监测卫星研究。汶川震后,国家国防科技工业局组织召开的航天技术应对当前地震灾害的专题研讨会上明确提出,要进一步加快包括地震电磁监测试验卫星在内的关键技术的攻关研制,不断增强航天技术服务国家防灾救灾事业的能力。

地震监测卫星的计划是20世纪90年代初,在多年研究的基础上,前苏联科学家提出的建立地震前兆全球监测卫星系统的设想。该系统的目标是对特定地区上空的电磁波、电离层等离子体特征等进行长期监测,在震前2小时~48小时做出预报。俄罗斯先后于1999年、2001年、2006年发射了3颗卫星,用来探测与地震有关的电离层变化信息,探索地震预报信息和预报技术,研究与地震等自然灾害有关的电离层、磁和等离子体变化等前兆。另外,美国、法国、乌克兰、意大利和我国的台湾地区也进行了地震电磁监测卫星的相关研究或有这方面的研究计划。

与传统的地面地震监测站相比,利用卫星监测并且预报地震的方法无疑为人们提供了新的预报的依据。虽然利用地震电磁卫星预报地震目前还处于探索阶段,但是这一方法已得到了许多科学家的认同。未来,随着科技水平的提高和科学研究的深入,地震电磁卫星有望在地震预测中发挥重要的作用。

地震研究相关学科蓬勃发展

对地震的研究直接促进了地球物理学的蓬勃发展。地球物理学自20世纪初形成以后,进入60年代后发展迅速,包含许多分支学科,涉及海、陆、空三界,是天文、物理、化学、地质学之间的一门边缘学科。地球物理学是以地球为研究对象的一门应用物理学,现已发展成为包含地震学、重力学、地电学、地磁学等多个学科及其形成的交叉学科的多分支学科。地震学与重力学、地电学、地磁学、地热学、地质学、天文物理学等学科都有着密切的关系,各学科已经形成了相互促进的关系。

㈧ 地震地层分析流程

国内外地震地层学研究已经有很多研究成果,本书以川东南地区为例,以储层识别及预测为出发点,以地震层序的对比划分和地震相研究为核心内容,地震地层学研究的主要流程如下。

(1)地震反射界面标定及解释

地震反射界面的标定解释是地震地层解释的基础,要尽可能精细地解释目标层段的层位。

(2)选择主干地震剖面进行地震层序分析

很明显,同一种地质体在不同方向的地震测线上所表现出的地震现象是不同的,所以通常在全面开始地震地层解释的时候,先选择垂直于构造走向、资料信噪比高、偏移归位较好的地震剖面进行初步分析,确定全区层序模式,然后再推广到全区进行解释。

(3)识别地震层序与体系域

层序与体系域的划分是以反射波终止现象为依据的。反射波终止现象反映的是地层之间的不整合关系,这正是层序分析的基石。地震层序分析必须在两个方向进行,否则会得出错误的结论。在一个方向的地震剖面上表现为上超现象,在另一个方向上则可能表现为整一现象。通常在两个方向上都表现为上超的,才是最可靠的上超现象。

(4)地震相分析及平面展布组合规律分析

地震相分析是分析地震反射特征与沉积相甚至储集体之间关系的一种分析方法。与地震地层分析相似,地震相分析也必须从平面组合关系上研究,地震相的组合关系更具有地质意义,但在研究工作中这往往被忽略。

(5)地震相与沉积相关系分析

通过地震反射结构、反射波组外部形态及其相互之间的关系,分析古地理环境、水流方向、海(湖)平面相对升降、水动力条件等,以沉积相分析的观点来解释地震相在平面上的分布特征,这也是地震相解释的核心。

(6)典型储集体地震相特征分析

很多的储集体在地震剖面上都有一定的特征,由于复杂储层横向变化剧烈,地震剖面上反射波组特征变化较大,通常表现为特殊的外部形态结构(比如丘形、隆起、侧积等)及内部地震属性的变化(如强振幅、低频率等)。

(7)利用地震层序和地震相研究成果对储层进行综合识别

在划分的地震层序及体系域内对地震相特征进行平面分析,综合地质和地球物理资料对储层进行综合识别。

㈨ 地震勘探的勘探方法

包括反射法、折射法和地震测井(见钻孔地球物理勘探)。三种方法在陆地和海洋均可应用。
研究很浅或很深的界面、寻找特殊的高速地层时,折射法比反射法有效。但应用折射法必须满足下层波速大于上层波速的特定要求,故折射法的应用范围受到限制。应用反射法只要求岩层波阻抗有所变化,易于得到满足,因而地震勘探中广泛采用的是反射法。 利用反射波的波形记录的地震勘探方法。地震波在其传播过程中遇到介质性质不同的岩层界面时,一部分能量被反射,一部分能量透过界面而继续传播。
在垂直入射情形下有反射波的强度受反射系数影响,在噪声背景相当强的条件下,通常只有具有较大反射系数的反射界面才能被检测识别。地下每个波阻抗变化的界面,如地层面、不整合面(见不整合)、断层面(见断层)等都可产生反射波。在地表面接收来自不同界面的反射波,可详细查明地下岩层的分层结构及其几何形态。
反射波的到达时间与反射面的深度有关,据此可查明地层埋藏深度及其起伏。随着检波点至震源距离(炮检距)的增大,同一界面的反射波走时按双曲线关系变化,据此可确定反射面以上介质的平均速度。反射波振幅与反射系数有关,据此可推算地下波阻抗的变化,进而对地层岩性作出预测。
反射法勘探采用的最大炮检距一般不超过最深目的层的深度。除记录到反射波信号之外,常可记录到沿地表传播的面波、浅层折射波以及各种杂乱振动波。这些与目的层无关的波对反射波信号形成干扰,称为噪声。使噪声衰减的主要方法是采用组合检波,即用多个检波器的组合代替单个检波器,有时还需用组合震源代替单个震源,此外还需在地震数据处理中采取进一步的措施。反射波在返回地面的过程中遇到界面再度反射,因而在地面可记录到经过多次反射的地震波。如地层中具有较大反射系数的界面,可能产生较强振幅的多次反射波,形成干扰。
反射法观测广泛采用多次覆盖技术。连续地相应改变震源与检波点在排列中所在位置,在水平界面情形下,可使地震波总在同一反射点被反射返回地面,反射点在炮检距中心点的正下方。具有共同中心反射点的相应各记录道组成共中心点道集,它是地震数据处理时所采用的基本道集形式,称为CDP道集。多次覆盖技术具有很大的灵活性,除CDP道集之外,视数据处理或解释之需要,还可采用具有共同检波点的共检波点道集、具有共同炮点的共炮点道集、具有相同炮检距的共炮检距道集等不同的道集形式。采用多次覆盖技术的好处之一就是可以削弱这类多次波干扰,同时尚需采用特殊的地震数据处理方法使多次反射进一步削弱。
反射法可利用纵波反射和横波反射。岩石孔隙含有不同流体成分,岩层的纵波速度便不相同,从而使纵波反射系数发生变化。当所含流体为气体时,岩层的纵波速度显着减小,含气层顶面与底面的反射系数绝对值往往很大,形成局部的振幅异常,这是出现“亮点”的物理基础。横波速度与岩层孔隙所含流体无关,流体性质变化时,横波振幅并不发生相应变化。但当岩石本身性质出现横向变化时,则纵波与横波反射振幅均出现相应变化。因而,联合应用纵波与横波,可对振幅变化的原因作出可靠判断,进而作出可靠的地质解释。
地层的特征是否可被观察到,取决于与地震波波长相比它们的大小。地震波波速一般随深度增加而增大,高频成分随深度增加而迅速衰减,从而频率变低,因此波长一般随深度增加而增大。波长限制了地震分辨能力,深层特征必须比浅层特征大许多,才能产生类似的地震显示。如各反射界面彼此十分靠近,则相邻界面的反射往往合成一个波组,反射信号不易分辨,需采用特殊数据处理方法来提高分辨率。 利用折射波(又称明特罗普波或首波)的地震勘探方法。地层的地震波速度如大于上面覆盖层的波速,则二者的界面可形成折射面。以临界角入射的波沿界面滑行,沿该折射面滑行的波离开界面又回到原介质或地面,这种波称为折射波。折射波的到达时间与折射面的深度有关,折射波的时距曲线(折射波到达时间与炮检距的关系曲线)接近于直线,其斜率决定于折射层的波速。
震源附近某个范围内接收不到折射波,称为盲区。折射波的炮检距往往是折射面深度的几倍,折射面深度很大时,炮检距可长达几十公里。 书 名:地震勘探 作 者: 熊章强 等 着
丛 书 名:教育部高等学校地矿学科教学指导委员会地质工程专业规划教材
出 版 社: 中南大学出版社
ISBN:9787548701057
出版时间:2010-09-01
版次:1
页数:350
装帧:平装
开本:16开
纸张:胶版纸
正文语种:中文
定 价:¥42.00 《地震勘探》全书共分八章,第一、二章介绍地震勘探的物理基础和地质基础,第三章介绍地震波的时距关系,第四、五章介绍野外地震数据采集和抗干扰技术,第六、七章介绍地震资料的数据处理和地质解释,第八章简单介绍金属矿地震勘探、垂直地震剖面、地震层析、面波勘探、微动监测和声波探测等其他一些地震勘探方法与技术。
《地震勘探》资料丰富,涉及面广,涵盖了从陆上到海上以及从能源、工程到金属矿等各个地震勘探领域,可作为高等院校应用地球物理专业的教材,也可供从事物探工作的工程技术人员参考。 绪论
第一节地震勘探方法简介
一、反射波法
二、折射波法
三、透射波法
第二节地震勘探的发展
一、地震勘探发展简史
二、我国地震勘探发展简史
第一章地震勘探的理论基础
第一节弹性理论概述
一、弹性介质与粘弹性介质
二、应力与应变
三、应力与应变的关系
四、波动方程
第二节地震波的基本类型
一、地震波动的形成
二、纵、横波的形成及其特点
三、面波
第三节地震波场的基本知识
一、运动学的基本知识
二、动力学的基本知识
第四节地震波的传播
一、地震波的反射和透射
二、折射波的形成
三、绕射波
四、在弹性分界面上波的转换和能量分配
五、地震波的衰减
六、地震波的频谱
第五节地震勘探的分辨率
一、纵向分辨率
二、横向分辨率
三、影响分辨率的主要因素
习题一
第二章地震勘探的地质基础
第一节影响地震波传播速度的地质因素
一、岩性
二、密度
三、孔隙度
四、孔隙充填物
五、风化程度
六、其他因素
第二节地震介质的划分
一、各向同性介质与各向异性介质
二、均匀介质、层状介质与连续介质
三、单相介质与双相介质
第三节地震地质特征
一、工程地震地质特征
二、能源地震地质特征
三、金属矿地震地质特征
第四节地震地质条件
一、表层地震地质条件
二、深部地震地质条件
习题二
第三章地震波的时距关系
第一节直达波及折射波时距曲线
一、直达波时距曲线
二、水平层状介质中折射波时距曲线
三、隐伏层中的折射波
四、倾斜界面折射波时距曲线
五、弯曲界面折射波时距曲线
六、垂直构造的折射波时距曲线
第二节反射波时距曲线
一、水平界面的反射波时距曲线和正常时差
二、倾斜界面的反射波时距曲线
三、水平多层介质的反射波时距曲线
四、复杂情况下的反射波时距曲线
第三节连续介质中的地震波
一、连续介质中波的曲射线方程
二、连续介质中的“直达波”(回折波)
三、连续介质中的反射波和折射波
第四节特殊波时距曲线
一、全程多次反射波的时距曲线
二、绕射波时距曲线
第五节T—p域内各种波的运动学特点
习题三
第四章地震资料的野外采集
第一节地震勘探野外采集系统
一、几个基本概念
二、地震勘探对仪器的要求
三、地震仪的主要组成部分
四、数字地震仪的工作原理
第二节地震测线的布置
一、测线布置的基本要求
二、测线布置形式
第三节地震勘探观测系统
一、观测系统的概念
二、观测系统的图示方法
三、二维反射波法观测系统
四、三维反射波法观测系统
五、折射波法观测系统
第四节地震波的激发和接收
一、地震波的激发
二、地震波的接收
第五节地震波速度的测定
一、地震测井
二、声波测井
三、PS测井
第六节海上地震勘探
一、海上地震特殊干扰波
二、海上震源
三、海上定位
四、海上地震数据采集方法
习题四
第五章抗干扰技术
第一节有效波和干扰波
一、震源干扰波
二、外界干扰波
第二节地震组合法
一、组合检波基本原理
二、组合的滤波特性
三、组合对随机干扰的统计效应
四、组合参数的选择
第三节多次覆盖法
一、共反射点叠加原理
二、多次覆盖观测系统
三、共反射点多次波的剩余时差
四、共反射点多次叠加效应
五、影响共反射点叠加效果的因素
六、多次覆盖技术叠加参数的选择
第四节其他抗干扰技术
一、垂直叠加
二、频率滤波
三、最佳窗口接收
四、最佳偏移距接收一地震映像技术
第五节抗干扰与分辨率的关系
一、抗干扰与分辨率
二、振幅分辨率与时间分辨率
习题五
第六章反射波地震数据处理
第一节预处理
一、解编和剪辑处理
二、切除
三、抽道选排
四、真振幅恢复
第二节数字滤波处理
一、滤波器的基本概念
二、一维频率滤波
三、二维视速度滤波
第三节反滤波处理
一、反射波地震记录的形成
二、反滤波的基本概念
三、地震子波的提取
四、最小平方反滤波
五、预测反滤波
第四节速度分析处理
一、速度分析原理
二、速度谱
三、速度扫描
四、速度分析精度的影响因素
五、层速度的计算
第五节校正和叠加处理
一、静校正
二、动校正
三、水平叠加
第六节偏移处理
一、偏移的基本概念
二、克希霍夫偏移
三、波动方程偏移
习题六
第七章地震资料解释
第一节地震反射波资料的构造解释
一、时间剖面与地质剖面的差别
二、时间剖面的对比
三、地震波场分析
四、地震反射层位的地质解释
五、地震反射断层的地质解释
六、特殊地质现象解释
七、深度剖面、构造图、等厚图的绘制
第二节地震反射信息的地震地层解释
一、地震层序划分
二、地震相分析
三、地震相的地质解释
第三节地震折射波资料的解释
一、折射波记录的对比
二、折射波时距曲线的绘制
三、折射界面的构制
四、£o差数时距曲线法的自动化解释
五、特殊问题
习题七
第八章其他地震勘探方法与技术
第一节金属矿地震勘探
一、散射波地震勘探的基本原理
二、散射地震波的分类及基本特征
三、金属矿地震勘探数值模拟研究
四、散射波成像原理及地震采集技术
五、硬岩环境下的地震数据采集技术
第二节垂直地震剖面(VSP)法
一、VSP基本原理
二、VSP资料的采集
三、VSP资料的处理和解释
四、VSP资料的应用
第三节地震层析技术
一、层析技术概述
二、层析成像的基本理论(拉冬变换)
三、地震波井间层析成像原理
四、反演计算与图像生成
五、地震层析技术在工程勘察中的应用
第四节瑞雷波勘探
一、瑞雷波的波场特征
二、瑞雷波法勘探原理
三、瑞雷波传播速度的计算
四、瑞雷波勘探的资料解释
五、瑞雷波勘探在工程勘察中的应用
第五节微动观测
一、微动的概念
二、常时微动的性质
三、常时微动测量方法
四、常时微动的资料处理和解释
五、常时微动在工程中的应用
第六节声波探测
一、声波探测概述
二、声波探测原理及工作方法
三、声波探测在工程地质中的应用
习题八
参考文献

㈩ 主要研究内容、思路和方法

根据国内外相关研究成果,结合本次研究拟解决的主要地质问题,采取如下技术路 线:在充分利用前人研究成果、地球物理信息和试油资料及相邻区块油气勘探开发成果的 基础上,以12口钻井的岩矿资料和测井资料,以及HZ9-2和HZ27-4两个构造带的三维数 据体为主要分析对象,运用储层沉积学、层序地层学、测井地质学、地震地层学等多学科 交叉的综合研究方法,对深层储层沉积-层序特征、岩石学特征、成岩后生作用特征、储 集物性特征和控制因素及其分布规律等进行深入系统的综合研究。研究思路和技术路线如 下图所示,主要包括如下几个方面:

1)以测井和岩矿资料为基础,精细分析12口钻井剖面古近系的岩性相、沉积相、沉积演化序列和层序地层学特征;

2)在各项岩矿资料综合分析的基础上,深入研究深层储层的成岩作用方式、成岩演 化序列与孔隙类型、孔隙结构和物性特征;

3)充分应用粘土X衍射、有机质RO反射率、包裹体测温、微区电子探针和有机酸 流体分析资料,研究惠州凹陷古近系深层储层的埋藏史、热史、有机质和流体演化史,以 及对深层储层成岩史、孔隙演化史和次生孔隙发育带的控制;

4)在上述(2)和(3)研究成果的基础上,探讨惠州凹陷古近系深层储层原始孔隙 的保存条件、保存程度和次生孔隙形成机理,物性特征、控制因素和分布规律;

5)以HZ9-2和HZ27-4两个构造为重点区块,VSP测井资料及钻井合成地震记录为 井-震对比的主要方式进行三维地震层位标定,地震层序划分和地震相分析,在地震剖面 上对储集砂体进行追踪对比;

6)在已有构造模型和地震剖面极性的基础上,通过储层精细标定及正演模型制作,分析地震属性与深层储层岩性信息的关系,充分运用地震属性分析技术、地震相分析技 术、地震地层反演技术,对HZ9-2和HZ27-4构造有利储集单元的纵横向分布规律进行预 测,研究方法主要有如下几点:

(1)依据地震层序模式与沉积、层序研究成果,建立HZ9-2和HZ27-4构造的一维储层 地质模型;

(2)分析此两构造的深层储层地震响应特征,研究地震属性与沉积、层序和储层岩性信 息的相关性,提出深层储层的地震预测模式,在反演参数(GR、波阻抗)试验的基础 上,进行基于储层地质模型测井约束的地震地层反演,在区块范围内进行大尺度的深层储 层横向预测;

(3)以地震地层反演结果为主要依据,参考地震属性、地震相分析结果,根据沉积体系 模式与层序地层特征,编制对HZ9-2和HZ27-4古近系深层储层分布预测图,描述储层纵 横向分布规律。

7)以上述5)和6)的综合研究成果为依据,对HZ9-2和HZ27-4古近系深层储层的 油气勘探潜力进行综合评价,在此基础上,总结和归纳形成古近系深层储层的成因特征、控制因素、形成条件和分布规律,提出适合惠州凹陷古近系深层储层定量预测和评价的研 究思路和技术方法(图1-1)。

图1-1 研究思路和技术路线工作流程图

阅读全文

与地质地震学研究方法相关的资料

热点内容
咖啡机的使用方法图解 浏览:976
微生物遗传型的鉴定方法有哪些 浏览:428
怕丢人怎么办最有效的方法 浏览:908
怎么判断浮漂的准确方法 浏览:602
阶段性鼻炎治疗方法 浏览:133
具体研究方法及研究计划 浏览:260
什么方法可以最快消肿 浏览:776
心房颤动有什么非药物治疗方法 浏览:802
拆千纸鹤方法视频 浏览:209
样品预处理有哪些预处理方法优缺点 浏览:895
绑丝方法视频教程 浏览:755
怎样快速解决痛经的方法 浏览:789
七年级列方程的方法与技巧 浏览:898
穿越火线如何玩别人号的方法教学 浏览:738
早起锻炼身体有哪些方法 浏览:776
收纳包手工制作方法视频 浏览:688
面粉食用方法怎么填 浏览:674
怎么才是吃石榴的正确方法 浏览:118
插锁式管道安装方法 浏览:666
腰肌如何锻炼方法图片 浏览:491