导航:首页 > 研究方法 > 公式推导是什么教学方法

公式推导是什么教学方法

发布时间:2022-05-21 00:15:19

⑴ 我们在学习一种新的图形时通常用什么方法推导它们的公式

我们常用的方法是转化。这是数学中最常用的数学思想,在你说的问题里就是把没学过的图形转化为学过的图形问题,在其他地方就是把没学过的知识转化为学过的知识,比如学异分母分数化为同分母分数等

⑵ 中学数学教学常用方法哪些

1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。 反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。 8、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。 9、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。 几何变换包括:(1)平移;(2)旋转;(3)对称。 10.客观性题的解题方法 选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。 填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。 要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。 (1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。 (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。 (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。 (4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。 (5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法

⑶ 液体压强公式推导过程中运用了什么思想方法

微观粒子压强公式的推导。

【1】、定义单位体积V(长宽高:x,y,z),假设所有分子个数为N个。

4.1、e=1/2*m*v^2;(v^2:速度平方的平均值)

4.2、根据3.3和4.1;【P压强总】/e={N/V*1/3*(mv^2)}/{1/2*m*v^2}=(2/3)*N/V=2/3*n

4.3、P压强总=2/3*n*e-------证毕。得到课本上的公式。

⑷ 简述圆柱体积公式推导过程,并说明运用了什么思想方法

圆柱体积公式推倒过程是利用(转化)的数学思想,在此过程中(形状)变了,(体积)没变.拼成图形的高于圆柱的(高)相等,他们的底面积(相等)所以圆柱的体积公式为(底面积x高)

⑸ 教学三角形的面积公式的推导采用什么方法应该怎样一步步进行归纳,概括

采纳用割补法,将三角形分成几块,
重新拼接成长方形,
用长方形的面积推理三角形的面积。

⑹ 给学生讲数学公式推导过程的作用是什么

(1)每一个数学公式的推导,都体现出某种数学思想方法,教学中必须揭示推导公式过程中隐含的数学思想和方法,指出它的名称、内容和规律,并有意识地对学生进行训练。
数学思想是数学的灵魂,它可以迁移到数学以外的各门学科和各种工作中去。数学思想方法的教学必须贯彻明确性的原则。如等差数列和等比数列的通项公式、欧拉公式的推导过程,隐含着递归思想;诱导公式与两角和的余弦公式的推导过程,隐含着数形结合的思想;球的表面积及体积的计算公式的推导过程,隐含着极限的思想,……等等。
(2)从不同的数学思想方法的角度去认识数学公式,加深对公式的理解,为公式的灵活运用打下基础。

⑺ 小学数学常用的教学方法有哪几种

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

⑻ 小学数学教学方法有哪些

1、营造良好的学习环境,使学生主动参与数学活动

现代教育家认为,要使学生积极、主动地探索求知,必须在民主、平等、友好合作的师生关系基础上,创设愉悦和谐的学习气氛。教师应鼓励学生大胆地提出自己的见解,即使有时学生说得不准确、不完整,也要让他们把话说完,保护学生的积极性。和谐愉快的学习氛围为学生提供了充分展现自我的机会,作为教师只有善于协调好师生之间的互动关系,方可让多数学生有机会发表自己的见解。

2、用多种教学方式,使学生把数学与生活联系在一起

人的思维过程始于视角器官。课本上的主题图具有情感上的吸引力,容易让学生产生主动学习的意识,激发他们的求知欲与好奇心。因此,在小学数学教学中,教师要充分利用创设主题图,激发学生对新知识学习的热情,为学生学习新知识做好铺垫,让学生把数学与生活联系在一起。

数学来源于生活,让学生感受到数学就在他们的周围。因此,从学生已有的生活经验出发,创设生活中的情境,强化感性认识,从而达到学生对数学的理解。

⑼ 数学三,定理和公式的推导方法用不用记下来

在数学教学中,有些教师为了让学生取得理想的成绩,于是花大量的时间让学生背公式、定理,并反复做大量的练习。教师认为这样做学生的成绩肯定会不错的,但结果并不是他们所想的那样,学生的成绩并不理想,教师觉得非常纳闷:“这道题老师已经讲了很多遍,学生也做了很多次,怎么还会出错呢?”
中国论文网 http://www.xzbu.com/9/view-5057420.htm
一、让学生体验数学公式、定理的推导过程,是学生理解这些公式、定理的前提
着名数学家华罗庚说过:“学习数学最好到数学家的纸篓里找材料,不要只看书上的结论。”这就是说,对探索结论过程的数学思想方法学习,其重要性决不亚于结论本身。其实,很多教师都忽略了一个最重要的问题:数学公式、定理是解题的工具,能正确理解和使用公式、定理,是学好数学的基础。有的教师在平时教学中,常常为了节省教学时间,把公式、定理的推导过程省略掉,有时虽有展示公式、定理的来源,但还是以教师的讲授为主,学生没有真正参与公式、定理发现的全过程。所以,从表面上看似乎是节省时间,但这种形式的教学往往使学生的头脑中留下只有公式、定理的外壳,忽略了他们的因果关系,不清楚他们使用的条件和范围,当需要使用公式时总是不能记住,如果能记住也不懂使用。
多元智能理论要求学生不是盲目接受和被动记忆课本的或教师传授的知识,而是主动自我探索,将学习过程变成自己积极参与的建构知识的过程。学生能够灵活运用数学公式、定理是理解这些公式、定理的前提;而理解这些公式、定理就需要学生亲身体验公式、定理的推导过程,只有在这个过程中,学生才明白它们的来龙去脉、运用的条件和范围。
二、重视数学公式、定理的推导过程,让学生在推导过程中使用这些解题工具
数学公式、定理、定律等结论是通过观察和分析,归纳和类比法等方法得出猜想,然后寻求合乎逻辑的证明;或者从理论推导出发得出结论。因此,在公式、定理、定律等的教学中要引导学生积极参与这些结论的探索发现的推导过程,不断在数学思想方法指导下,找出每个结论因果关系,让学生经历创造性思维活动,并引导学生总结得出结论。
以前在教导完全平方公式(a±b)2=a2±2ab+b2的时候,为了节省时间,直接把结论告诉学生,认为他们会用就行了。让学生背熟公式后只要通大量的练习学生一定会掌握公式。但事实上还有很多学生由于不理解公式形成过程,只是把公式的的外形记住了,到用起来的时候,不是漏了2ab,就是错写b2的符号。于是在我所教的两个班当中做了一个这样的实验,一个班继续是直接给公式,让他们背熟后直接做题。一个班让他们亲自动手推到公式。
先从几何意义出发,采用小组自主探究的学习方式,让学生准备一个大正方型、一个小正方形和两个以大正方形的边长为长小正方形的边长为宽的长方形让他们利用手头上的图形去拼一个大正方形。通过拼图的方法,使学生在动手的过程中发现律。
以小组为单位用手上已有的四个图形拼成一个正方形,并观察图形回答下列问题:
(1)整体看:求总面积
(2)部分看:求四块面积和
(3)结论(a+b)2=a2+2ab+b2
总面积由有四部分组成:两个大小不同的正方形和两个长方形。正方形的面积分别是a2和b2,两个长方形的面积就是2ab是整个面积的重要组成部分,学生通过拼图的方法加深了对公式中2ab的理解,有效防止日后漏掉2ab的情况。
在学生探究出(a+b)2=a2+2ab+b2的基础上,提问:你能用多项式乘法法则说明理由吗?让学生运用多项式乘以多项式的法则推导完全平方公式:(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2并说出每一步运算的依据,加以论证完全平方公式。运用多项式乘以多项式法则的计算过程让学生再次感受2ab的存在。从代数、几何两个方面证明公式,让学生充分了解公式的形成过程,加深学生对公式的印象,也加强了公式的可信度。而且让学生知道猜想的结论必须要加以验证。让学生体会了数形结合及转化的数学思想。
再让学生观察特征,熟记公式熟。让学生用语言叙述完全平方公式。鼓励学生自主探究这个公式的结构特征:(1)公式展开是三项;(2)两个平方项同正;(3)中间符号前后要一致。让学生弄清楚公式的来龙去脉,我设计了这样四道判断题,让学生对对公式结构由一个更深的理解。
(1)(a+b)2=a2+b2 ( )
(2)(a-b)2=a2-2ab-b2 ( )
(3)(a+b)2=a2+ab+b2 ( )
(4)(2a-1)2=2a2-2a+1 ( )
通过第一道判断题四小题让学生深刻认识公式的结构特征(第一道题让学生掌握公式一定有三项不要漏写2ab,第二道题让学生掌握平方项为正,第三道题让学生知道不要漏写2ab中的2,第四道题让学生知道公式中的a不止是一个字母还可以是一个式子,当a是一个式子时一定要加括号。
最后通过填下表的形式,组织学生展开讨论,由表格再次巩固公式的结构特征:首尾平方总得正,中间符合看首尾项的积,同号得正,异号得负,中间的两倍记牢,进而总结步骤为:
(一)确定首尾平方和符号;(二)确定中间项的系数和符号,得出结论。
上完新课后我让两个班一连五天进行小测,统计运用公式的出错率
发现第一天新学两个班出错率差不多,但是日子越长学习的公式越来越多时,背公式班公式出错率又变大,特别是中下生他们没有体会到公式的产生过程只是简单记住公式的外形,日子越久记忆越模糊,所以出错率又越来越高。相反经过了公式推导的班,体会到公式的内涵,日子越久对公式的理解越来越清晰,所以出错率越来越低。
通过一段时间的尝试,我们发现学生对数学公式、定理的掌握不只是停留在记得的层面上,他们都能理解其内涵。通过这样的体验学习,学生的学习成绩有了显着的提高,学生对数学的兴趣更浓了,学生的学习积极性也更高了。
实践表明,数学公式、定理的教学,如果再用传统的“填鸭式”,不但不会提高学生的成绩,反而会让学生的厌学情绪越来越浓。所以,我们一定要重视公式、定理的推到过程,让学生不仅明白该公式、定理是什么,而且要明白公式、定理是怎样形成的,这样的学习才有意义。

阅读全文

与公式推导是什么教学方法相关的资料

热点内容
花王泡沫染发使用方法 浏览:91
有什么方法杀蛐蛐 浏览:832
异步电机轻载震荡抑制方法研究 浏览:476
学习技能计算方法 浏览:503
触点插座开关安装方法 浏览:118
植物接种方法一般分为什么和什么 浏览:111
大众车钥匙使用方法 浏览:910
平衡核心力的训练方法 浏览:380
底盘悬挂检查的方法和步骤 浏览:917
如何记叙自己的方法 浏览:257
手机扁平化解锁方法 浏览:716
常用细胞克隆化方法 浏览:893
检测毛囊需要用哪些检查方法 浏览:301
如何学习好日语的方法 浏览:86
食盐除了食用还有什么方法 浏览:182
二苯胺鉴定最简单方法 浏览:65
win10系统界面大小设置在哪里设置方法 浏览:820
边缘区b细胞淋巴瘤有效治疗方法 浏览:868
福建金刚板安装方法 浏览:333
被强力胶粘住要用什么方法 浏览:290