『壹』 125x88用簡便方法計算
125x88用簡便方法計算的結果等於11000。
解:125x88
=(25x5)x(4x2x11)
=(25x4)x(5x2)x11
=100x10x11
=11000
即125x88的結果等於11000。
(1)01258用簡便方法計算擴展閱讀:
1、加法結合律
加法結合律為(a+b)+c=a+(b+c)。
例如,8+1+9=8+(1+9)=8+10=18
2、加法交換律
a+c=c+a。
例如,8+5=5+8=13。
3、乘法結合律
(axb)xc=ax(bxc)。
例如,3x2.5x4=3x(2.5x4)=3x10=30。
4、乘法分配律
(a+b)xc=axc+bxc。
參考資料來源:網路-簡便計算
『貳』 從1 到100用簡便方法怎麼算
巧算:
(1+99)+(2+98)+(3+97)+(48+52)+(49+51)共有49個100,還有一個50,一個100,所以和是5050。
或者1+2+3+4+...+100
=(1+100)+(2+99)+(3+98)+...+(49+52)+(50+51) 共有50個括弧
=(1+100)*50
=5050
公式:首項加末項乘以項數除以2
在這道題裡面首項為1,末項為100,項數是100
所以為 (1+100)*100/2=5050
通常對連續的數進行簡便運算時,採取首尾相加的方法,因為連續的數集是一個等差數列,首尾相加可以得到一個相等的數,再計算項數,即公式:為首項加尾項乘以項數除以2。
『叄』 102×0.85的簡便計算怎麼算
102×0.85的簡便計算:
102×0.85
=(100+2)x0.85
=100x0.85+2x0.85
=85+1.7
=86.7
(3)01258用簡便方法計算擴展閱讀
簡便計算方法:
擴縮法
就是運用積不變規律及商不變性質,將算式中的數據擴大或縮小相同的倍數,從而使計算簡便,做有些除法式題,可根據商不變性質進行簡算。
例題
8500÷25
=(8500×4)÷(25×4)
=34000÷100
=340
在這道題中利用商不變規律,使被除數8500、除數25同時擴大4倍,得到整百數除多位數的算式很容易口算出結果。
在有些乘法式題中,又可以利用積不變規律進行計算。
『肆』 簡便運算的16種運算方法是什麼
一、運用乘法分配律簡便計算
乘法分配律指的是:
例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
(4)01258用簡便方法計算擴展閱讀:
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。
乘法結合律
乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
『伍』 125×48用簡便方法怎麼計算
圖
『陸』 用簡便方法計算是什麼意思
簡便方法是一種特殊的計算,運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
在數學當中運用簡便計算方法可以很大程度節省做題的時間。
(6)01258用簡便方法計算擴展閱讀:
簡便計算的作用:
1、簡便計算使得學生在短暫的時間內快速准確地算出正確答案。
2、簡便運算與四則混合運算的演算法是有區別的,它不按四則混合運算的運算順序進行運算,而是運用各種運算性質和運算定律進行運算,是一種特別的運算方式。
3、「簡便運算」的試題種類很多,一般可分為兩大類:用「運算定律」和「運算性質」進行運算。
4、在數學當中運用簡便計算方法可以很大程度節省做題的時間。
『柒』 用簡便方法計算怎樣做
乘法分配律
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算
乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a
加法交換律
加法交換律用於調換各個數的位置:a+b=b+a
加法結合律
(a+b)+c=a+(b+c)
性質
編輯
減法1
a-b-c=a-(b+c)
減法2
a-b-c=a-c-b
除法1
a÷b÷c=a÷(b×c)
除法2
a÷b÷c=a÷c÷b
『捌』 用簡便方法計算
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使很復雜的式子變得很容易計算出。
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×56、
除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
『玖』 25×48用簡便方法怎麼算
25×48的簡便方法的計算步驟是:
25×48
=25×(4×12)
=25×4×12
=100×12
=1200
解題分析:因為25乘以4等於一百是簡便演算法中利用的常見式子,又因為48是4的倍數,所以講48拆成4與12的乘積,然後利用乘法的結合律進行計算,先得到100然後與12相乘,以達到減少計算量的目的。
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。
乘法結合律可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
『拾』 125×48用簡便方法怎麼計算
125×48=125×(8×6)
=125×8×6
=1000×6
=6000