㈠ 小學五年級簡便計算題
1、27×17/26
解析:此題先用加法分配律,把27轉換成(26+1),再利用乘法結合律,使得運算簡便。
27×17/26
=(26+1)×17/26
=26×17/26+1×17/26
=17+17/26
=17又17/26
2、1.2×2.5+0.8×2.5
解析:運用提取公因數的方法,公式:ac+ab=a(b+c),提取公因數2.5,1.2和0.8相加正好湊整數,使得運算簡便。
1.2×2.5+0.8×2.5
=(1.2+0.8)×2.5
=2×2.5
=5
3、2.96×40
解析:此題先利用乘法分配律,把2.96×40轉換成29.6x4,再利用乘法結合律來簡便計算。
2.96×40
=29.6x4
=(30-0.4)x4
=30×4+0.4×4
=120-1.6
=118.4
4、0.36 x 1.5 - 0.45
解析:此題運用乘法分配律,把0.45轉換成1.5 x 0.3 ,即可提取公因數1.5,再根據乘法結合律進行簡便計算。
0.36 x 1.5 - 0.45
= 0.36 x 1.5 - 1.5 x 0.3
=1.5 × (0.36 - 0.3)
=1.5 × 0.06
= 0.09
5、46×44/45
解析:此題先利用加法分配律把46轉換成(45+1),再利用乘法結合律:(a×b)×c=a×(b×c)使得運算簡便。
46×44/45
=(45+1)×44/45
=45×44/45+44/45
=44+44/45
=44又44/45
6、1.6×7.5×1.25
解析:此題利用乘法分配律把1.6,轉化成2×0.8,再利用乘法結合律:(a×b)×c=a×(b×c)湊整,進行簡便計算。
1.6×7.5×1.25
=2×0.8×7.5×1.25
=(2×7.5)×(0.8×1.25)
=15×1
=15
7、0.72×10.1
解析:此題先利用加法分配律,把10.1轉換成10+0.1,再利用乘法結合律使得運算簡便。
0.72×10.1
=0.72×(10+0.1)
=0.72×10+0.72×0.1
=7.2+0.072
=7.272
㈡ 五年級下冊分數簡便運算計算題100道 (要脫式,要加減)
分數簡便運算計算題:
1、3/7+3/7=6/7
2、7/10+2/10=9/10
3、4/7-3/7=1/7
4、3/14+7/14=5/7
5、4/11+5/11=9/11
6、4/15+2/15=2/5
7、9/10-3/10=6/10
8、7/13+5/13=12/13
9、6/13+5/13=11/13
10、2/8+3/8=5/8
11、9/13-9/13=0
在數的運算中
有加(+)、減(-)、乘(×)、除(÷)四種運算,我們在數學上又為了能更簡便計算,簡稱稱作簡算,簡算有以下幾種(公式詳見在常用特殊數的乘積、及簡算公式)
加法:(加法交換律) (加法結合律)(近似數)
乘法:(乘法交換律)(乘法結合律)(乘法分配律)(乘法分配律變化式(四個))
減法:(減法的基本性質)(近似數)
除法:(除法的基本性質)(商不變的性質)
以上內容參考:網路-簡算
五年級下冊簡便計算方法有如下:
1、24.6-3.98+5.4-6.02
解析:此題利用加法交換結合律,湊整再計算。
24.6-3.98+5.4-6.02
=(24.6+5.4)-(3.98+6.02)
=30-10
=20
2、27×17/26
解析:此題先用加法分配律,把27轉換成(26+1),再利用乘法結合律,使得運算簡便。
27×17/26
=(26+1)×17/26
=26×17/26+1×17/26
=17+17/26
=17又17/26
3、528-99
解析:利用湊整法和減法結合律計算,先利用湊整法把99變換為(100-1),再運用a-b-c=a-(b+c)來簡便計算。
528-99
=528-(100-1)
=528-100+1
=428+1
=429
4、1.2×2.5+0.8×2.5
解析:運用提取公因數的方法,公式:ac+ab=a(b+c),提取公因數2.5,1.2和0.8相加正好湊整數,使得運算簡便。
1.2×2.5+0.8×2.5
=(1.2+0.8)×2.5
=2×2.5
=5
5、2.96×40
解析:此題先利用乘法分配律,把2.96×40轉換成29.6x4,再利用乘法結合律來簡便計算。
2.96×40
=29.6x4
=(30-0.4)x4
=30×4+0.4×4
=120-1.6
=118.4
㈣ 五年級下冊用分數簡便計算題大全及答案
1、7/9+5/13+2/9+8/13
=(7/9+2/9)+(5/13+8/13)
=1+1
=2
2、24×(1/2-1/3+1/4-1/8)
=24×1/2-24×1/3+24×1/4-24×1/8
=12-8+6-3
=7
簡算:
在數的運算中,有加(+)、減(-)、乘(×)、除(÷)四種運算,在數學上又為了能更簡便計算它們,簡稱稱作簡算,簡算有以下幾種(公式詳見在常用特殊數的乘積、及簡算公式):
加法:(加法交換律) (加法結合律)(近似數)
乘法:(乘法交換律)(乘法結合律)(乘法分配律)(乘法分配律變化式(四個))
減法:(減法的基本性質)(近似數)
除法:(除法的基本性質)(商不變的性質)
㈤ 數學五年級下冊簡便計算題大全帶答案
4/7+2/7+1/7,6.6 -1又14 / 40
㈥ 五年級簡便計算50題
五年級簡便計算例子解析101×26+101×44
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
101×26+101×44
=101×(26+44)
=101×70
=7070
(6)五年級下冊簡便方法的題擴展閱讀{計算結果}:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:
步驟一:0×101=0
步驟二:7×101=7070
根據以上計算結果相加為7070
存疑請追問,滿意請採納
㈦ 五年級下冊數學分數加減簡便計算題
1、十一分之五+七分之二+十一分之六+七分之五
2、八分之九-十二分之七-十二分之五
3、四分之一+十七分之五-十七分之二
4、十五分之十四-(十五分之七-十六分之七)
5、十二分之七+十八分之十一+十二分之一+十八分之七
6、二十分之十三+十四分之十一-二十分之七
分數計算方法:
1、與整數運算中的「湊整法」相同,在分數運算中,充分利用四則運演算法則和運算律(如交換律、結合律、分配律),使部分的和、差、積、商成為整數、整十數...從而使運算得到簡化。
2、在一個只有加減法運算的算式中,給算式的一部分添上括弧,如果括弧前面是加號,那麼括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。
3、在一個有括弧的加減法運算的算式中,將算式中的括弧去掉,如果括弧前面是加號,那麼去掉括弧後,括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。
㈧ 五年級下冊簡便運算題大全
常見以下幾類題型:
一、運用加法結合律進行簡算
(a+b)+c=a+(b+c) 或a+b+c+d=(a+c)+(b+d)
例1、5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=10+10
=20
例2、37.24+23.79-17.24
=37.24-17.24+23.79
=20+23.79
=43.79
二、運用乘法結合律進行簡算:這種題型往往含特殊數字之間相乘
(a×b)×c=a×(b×c)
特殊數字之間相乘:
25×4=100 125×8=1000 25×8=200 125×4=500
例3、 4×3.78×0.25
=4×0.25×3.78
=1×3.78
=3.78
例4、 125×246×0.8
=125×0.8×246
=100×246
=24600
2.5×0.125×8×4等,如果遇到除法同樣適用,或將除法變為乘法來計算。如:8.3×67÷8.3÷6.7等。
三、利用乘法分配律進行簡算:
(a+b)×c=a×c+ b×c
(a-b)×c=a×c- b×c
做這種題,一定不要急著去算,先要分析各數字之間的特殊關系。也就是先要仔細觀察,找到做題的竅門。
例5、(2.5+12.5)×40
=2.5×40+12.5×40
=100+500
=600
例6、3.68×4.79+6.32×4.79
=(3.68+6.32)×4.79
=10×4.79
=47.9
例7. 26.86×25.66-16.86×25.66
=(26.86-16.86) ×25.66
=10×25.66
=256.6
例8、 5.7×99+5.7
= 5.7×(99+1)
=5.7×100
=570
運用乘法分配律進行簡算,遇到除以一個數,先化為乘以一個數的倒數,再分配。
如:2.5×(100+0.4),還應注意,有些題目是運用分配律的逆運算來簡算:即提取公因數。如:0.93×67+33×0.93。
四、利用加減乘除把數拆分後再利用乘法分配律進行簡算:
例9、34×9.9
=34×(10-0.1)
=34×10-34×0.1
=340-3.4
=336.6
例10、 57×101
=57×(100+1)
=57×100+57×1
=5757
例11、7.8×1.1
=7.8×(1+0.1)
=7.8×1+7.8×0.1
=7.8+0.78
=8.58
例12、25×32
=25×4×8
=100×8
=800
例13、125×0.72
=125×8×0.09
=1000×0.09
=90
例14、87×2/85
=(85+2) ×2/85
=85×2/85+2×2/85
=2+4/85
=2又4/85
五、連減與連除
a-b-c=a-(b+c)
a÷b÷c=a÷(b×c)
例15、56.5-3.7-6.3
=56.5-(3.7+6.3)
=56.5-10
=46.5
例16、32.6÷0.4÷2.5
=32.6÷(0.4×2.5)
=32.6÷1
=32.6
六、需要變形才能進行的簡便運算:做這一類題,要先觀察,找出規律,然後變形後進行簡算。
例16、86.7×0.356+1.33×3.56
=8.67×3.56+1.33×3.56
=(8.67+1.33)×3.56
=10×3.56
=35.6
例17、15.6÷4-5.6×1/4
=15.6×1/4-5.6×1/4
=(15.6-5.6)×1/4
=10×1/4
=2又1/2
例18、16/23×27+16×19/23
=27/23×16+16×19/23
=16×(27/23+19/23)
=16×2
=32
七、接近整百的數的運算。這種題型需要拆數、轉化等技巧配合。
如;302+76=300+76+2,298-188=300-188-2,等。
八、認真觀察某項為0或1的運算。
如:7.93+2.07×(4.5-4.5)等。
總的說來,簡便運算的思路是:(1)運用運算的性質、定律等。(2)可能打亂常規的計算順序。(3)拆數或轉化時,數的大小不能改變。(4)正確處理好每一步的銜接。(5)速算也是計算,是將硬算化為巧算。(6)能提高計算的速度及能力,並能培養嚴謹細致、靈活巧妙的工作習慣。