❶ 比色法的特點是什麼
比色法的特點:
1)簡單、成本低、分析速度快;
2)干擾嚴重,被測組分需要純度較高,靈敏度低。
比色法(colorimetry)是通過比較或測量有色物質溶液顏色深度來確定待測組分含量的方法。早在公元初古希臘人就曾用五倍子溶液測定醋中的鐵。1795年,俄國人也用五倍子的酒精溶液測定礦泉水中的鐵。但是,比色法作為一種定量分析的方法,大約開始於19世紀30~40年代。
常用方法
常用的比色法有兩種:目視比色法和光電比色法,兩種方法都是以朗伯-比爾定律 (A=εbc)為基礎。常用的目視比色法是標准系列法,即用不同量的待測物標准溶液在完全相同的一組比色管中,先按分析步驟顯色,配成顏色逐漸遞變的標准色階。試樣溶液也在完全相同條件下顯色,和標准色階作比較,目視找出色澤最相近的那一份標准,由其中所含標准溶液的量,計算確定試樣中待測組分的含量。
與目視比色法相比,光電比色法消除了主觀誤差,提高了測量准確度,而且可以通過選擇濾光片來消除干擾,從而提高了選擇性。但光電比色計採用鎢燈光源和濾光片,只適用於可見光譜區和只能 得到一定波長范圍的復合光 , 而不是單色光束,還有其他一些局限,使它無論在測量的准確度、靈敏度和應用范圍上都不如紫外-可見分光光度計。20 世紀30~60年代,是比色法發展的旺盛時期,此後就逐漸為分光光度法所代替。
❷ 比色管的使用方法
比色管的使用方法:
1、用滴定管將標准溶液分別滴入幾支比色管中(假設比色管為VmL規格的,標准溶液濃度為a),且每支比色管滴入的標准溶液體積不同(假設為X1、X2、X3...),再用滴管向每支比色管中加蒸餾水至刻度線處,蓋上塞子後振盪搖勻,這樣就可以根據標准液以及滴定管滴入每支比色管的標准液體積計算出每支比色管中溶液的濃度(每支比色管內溶液濃度分別為aX1/V、aX2/V、aX3/V...)。
2、這時將待測溶液裝入另一支比色管中,再將裝待測溶液的比色管與之前所配製的標准溶液進行比色(比色即為將顏色進行對比),即可粗略得出待測溶液的濃度。
3、比色時一次只將裝待測溶液的比色管與一支裝標准溶液的比色管進行對比,對比時將兩支比色管置於光照程度相同的白紙前面,用肉眼觀察顏色差異。
❸ 有什麼比色方法
第二節 比色分析測量儀器和測量方法
比色分析法通過比較溶液對光的吸收程度以測定物質的含量。
一、比色測量儀器
(一)比色測量儀器的基本部件
比色測量儀器一般包括以下五大部件(圖8-4)。
圖8-4 比色測量儀器部件示意圖
1.光源
在光電比色計和可見光分光光度計中,採用6~12v的鎢燈,其最適宜的波長范圍是360~1000nm,為使光的強度穩定,須用穩壓裝置來穩定電壓。
2.波長控制器
在光電比色計中採用濾光片作為波長控制器。濾光片是有色玻璃片,其作用是從光源發出的連續光譜中分出實驗所需的某一特定波長范圍的光,即獲得適當波長的近似單色光。
選擇濾光片的原則是濾光片最易透過的光,也就是溶液最易吸收的光。即濾光片的顏色與溶液的顏色應互為補色,這是因為有色溶液對它的互補色光有最大的吸收。581-g型光電比色計通常只有紅、綠和藍三塊濾光片。例如,要測定kmno4溶液,就應選用綠色濾光片。
分光光度計採用單色器來控制波長。它可以把連續波長的光分解,從中得出任一所需波長的更純的單色光。單色器包含有狹縫調節、透鏡系統以及色散元件。
圖8-5為自準式單色光器。光源發出的光經入射狹縫由凹 面準直鏡反射後的平行光投在棱鏡上,經棱鏡色散後的光又經準直鏡反射到出射 狹縫,轉動棱鏡便可在出射狹縫得到所需波長的單色光。
圖8-5 自準式單色光器示意圖
圖8-6 硒光電效應示意圖
3.吸收池
吸收池供比色時盛溶液用,它是用無色透明、厚度均勻的玻璃製成的。其透光的兩面嚴格平行。同一系列的測定中,所用的比色皿必須配套,即同一配套比色皿盛有同一溶液在同一波長時測得的透光率誤差不得越過0.5%。實驗時可根據溶液的濃度不同選擇。0.5,1.0,2.0,3.0cm不同規格的比色皿。比色皿要保持清潔,透光面要注意保護,不得用手直接接觸或用粗糙的濾紙擦拭,以免劃傷表面,影響吸收程度。若外壁有液珠,應用濾紙吸干後再用擦鏡紙擦凈。
4.光電轉換器
它是將光能轉換成電信號的器件,常用的有光電池和光電管。
光電池 常用的硒光電池如圖8-6,適用 於380~750nm波長范圍。當光線照射到光電池時,電子從半導體表面逸出。由於硒的半導體特性而在電路中產生光電流。將光電池與一個靈敏檢流計相聯,在照射光強度不太大且外電路電陰很小時,光電流大小與照射光的強度成正比。因此可根據光電流的大小測量透過溶液的光強度。
硒光電池的優點是光電流較大,可不必經過放大而直接用靈敏檢流計測量。有時當光電池受強光照射或連續使用時間太長時,容易產生「疲勞」,這時需使其在暗的狀態下暫作恢復,方可繼續使用。
光電管 由封裝在真空透明管中的一個半圓柱型陰極和一個絲狀陽極組成(圖8-7)。陰極凹面有光電發射材料層,被光照射可發電子。當兩極間加有電壓時,發射出來的電子就流向陽極產生光電流。發射出的電子數目與射在該表面上光束的強度成正比。光電管產生的電流啼弱,經放大器放大後可由微安電表直接指示出吸光度或透光率。
圖8-7 光電管線路示意圖
圖8-8 吸光度和透光率標尺
5.檢流計
用光電池作光電轉換器的比色測量儀器中,檢流計一般採用懸鏡式光電反射檢流計,其靈敏度較高,能測量10-9a(安培)的電流。檢流計有吸光度a和百分透光率t(%)兩種刻度標尺,可直接讀數(圖8-8)。
標尺上透光率t是等分的而吸光度a的刻度是不均勻的。透光率t可用小數或百分率表示。a與t的關系可推導為:
例如,已知某溶液對某一波長的光吸光度為0.04,其透光率可由下面方法求得。
0.04=-lgt
lgt=-0.40
t=0.398=39.8%
又如,已知某溶液對某一波長光的透光率為65%,吸光度為:
對於用光電管作光電 轉換器的儀器,由於加了放大器,可方便地連接微安電表、記錄儀,數字顯示器等指示器,也可以調節電橋平衡的方式讀數取數據。
(二)比色測量儀器
1.光電比色計
光電比色計用光電池和檢流計測量透射光的強度並直接可讀出百分透光率t(%)或吸光度a。圖8-9是581-g型光電比色計的示意圖。它是利用濾光片把鎢燈產生的白光中與測定無關的光除去,使入射光盡可能是接近溶液補色的單色光,從而提高了比色分析的准確度。
圖8-9 581-g型光電比色計光學線路示意圖
圖8-10 721型分光光度計光學系統示意圖1.光源 2.,8.聚
光透鏡 3.棱鏡 4.準直鏡 5.,11.保護玻璃 6.入射狹縫 7.
平面鏡 9.吸收池 10.光門 12.光電管 13.光柵
2.721型分光光度計
721型分光光度計的工作波長范圍為360-800nm。採用真空光電管作為光電能量 轉換元件,在整個可見光區都比較靈敏。同時採用晶體管放大電路和電表直讀結構,儀器的靈敏度和穩定性都比較好。
圖8-10為721型分光光度計的光學系統示意圖。由光源發出的連續輻射於聚光鏡上,經平面鏡轉角90度反射到入射狹縫,射入單色器。入射光經過準直鏡反身射在出射狹縫上,再經過聚光透鏡後進入比色皿。經溶液吸收後的透射光通過光門照射在光電管上轉換為光電流信號,經過入大後輸入檢流計,由電表直接顯示吸光度。
二、比色分析的測量方法
無論是光電比色計還是分光光度計,最常用的測量方法有如下兩種。
(一)標准曲線計
先配製一系列不同濃度的標准溶液,用選定的顯色劑顯色。選用合適波長的入射光(光電比色計用濾光片,分光光度計可轉動波長調節器)。測定時先以空白溶液調節透光率100%,然後分別測定標准系列的吸光度。以吸光度為縱坐標,濃度為橫坐標作圖得到一條通過原點的直線,叫做標准曲線(或稱工作曲線)。
例如,測定維生素b12時,可預先繪制維生素b12的a-c標准曲線(圖8-11),再用完全相同的方法和步驟測定被測溶液的吸光度,即可從標准曲線上找出被測溶液的濃度或含量。
這種方法叫做標准蛐線法。標准曲線可在固定儀器和方法的條件下多次使用,適合於經常性工作。但若儀器不同或測定方法及條件改變,測得的標准曲線不同。因此在更換任何測定條件時都需重新繪制標准曲線。
圖8-11 維生素b12的標准曲線
(二)直接比較計演算法
若僅對個別樣品進行測定,且a-c曲線線性良好,可水作標准曲線而直接比較測定結果。
先配製一個被測物質溶液濃度相近的標准溶液,與被測溶液在相同條件下測定吸光度。根據下式可以計算。
a標=k標c標b標
a測=k測c測b測
由於使用同一波長的入射光,採用同樣的比色皿,測定同樣的物質。所以
k標=k測
b標=b測
因此a標/a測=c標/c測
則c測=a測/a標×c標
❹ 比色測定的操作要點是什麼方法的基本原理是什麼
許多化學物質的溶液具有顏色(無色的化合物也可以加顯色劑經反應生成有色物質),當有色溶液的溶度改變時,顏色的深淺也隨之改變,濃度愈大,顏色愈深。因此,可以用比較溶液顏色深淺的方法來測定有色溶液的濃度。這種方法叫做比色分析法。 一、 朗伯—比爾定律 當一束單色光通過有色溶液時,入射光線的一部分被器皿反射回來,一部分被溶液吸收,另一部分則透過溶液,如圖所示。它們之間有以下關系: Io=Ia+Ir+It (1-1) 式中:Io—入射光強度 Ia—吸收光強度 Ir—反射光強度 It—透過光強度 由於在實際測定時,所用的比色皿都是同質料用規格的。反射光的強度為一定值,不會引起測量誤差,所以反射光的影響可以不加考慮。則上式可簡化為: Io=Ia+It (1-2) 從式1-2可知:當入射光強度Io為一定時,被吸收光強度Ia愈大,則透過光強度It愈小。也就是說:光強度的減弱僅與有色溶液對光線的吸收有關。 那麼,溶液對光線的吸收與哪些因素有關呢?實驗證明:溶液的濃度C愈大,液層厚度L愈厚(即光線在溶液中所經過的路程愈長),則溶液對光線吸收的愈多。它們之間的關系有下式決定: lg = KCL (1-3) 這個公式就是朗伯—比爾(Lambert---Beer)定律。 公式中的K稱為吸光系數,它表示有色溶液在單位濃度和單位厚度時的吸光度。在入射光的波長、溶液種類和溫度一定的條件下,K為定值。吸光系數是有色化合物的重要特性之一,在比色分析中有著重要的意義。K值愈大,表示該物質對光的吸收能力愈強,濃度改變時引起吸光度的改變愈顯著,因此比色測定時靈敏度愈高。 朗伯-比爾定律即有色溶液對一定強度光的吸收程度,與液層厚度和溶液中有色物質濃度的乘積成正比。其中朗伯定律說明吸收光與厚度間的關系;比爾定律說明吸收光與濃度間的關系。 朗伯—比爾定律在光電比色計中的應用 假定有兩種有色溶液,其中一種是已知濃度的標准溶液,另一種是待測溶液。根據公式: 在標准溶液中:As=KsCsLs (1-4) 在待測溶液中:Ax=kxCxLx (1-5) 將式1-4除以式1-5可得: = 1-6 如果上述兩種溶液的液層厚度相等、溫度相同而且是同一種物質的兩種不同濃度的溶液,測定時所選用的單色光的波長亦相同,則有: Ls=Lx、Ks=Kx ,代入式1-6可得: = 1-7 由此可見,在上述條件下,吸光度與濃度成正比。這一關系式就是光電比色計的設計依據,也是比色分析的基本計算公式之一。式中標准溶液的濃度Cs為已知,As和Ax可用光電比色計測量出來,則待測溶液的濃度Cx即可求出: Cx = × Cs 1-8 由於在實際測定時,標准溶液和待測溶液都要加以稀釋,而且在報告結果時,多以100毫升(或1000毫升)中的含量來表示。因此,在實際計算時,就需要在上式中乘上稀釋因數。 求待測溶液濃度的方法有:直接比較法(計演算法)、因數法和標准曲線法三種。這些方法在「生物化學及生物化學檢驗技術」課程中有介紹。 波長的選擇: 由於有色溶液對光的吸收具有選擇性,因此進行比色測定時,濾光片必須加以選擇,否則靈敏度很低,導致測量結果不準確。選擇濾光的一般原則是:濾光片最大透過的光線應該是溶液最大吸收的光線。從顏色上看,濾光片的顏色與待測溶液的顏色應為「互補色」。 什麼叫做互補色呢?凡是兩種顏色相加後能得到白色,則此兩種顏色就稱為「互補色」,圖中直接相對的兩種顏色,均為互補色。 為什麼選擇濾光片時,要使濾光片的顏色與待測溶液的顏色為互補色呢?這是因為濾光片和有色溶液具有相似的透光特性,與它們本身顏色相同的色光,能夠最大限度地透過。而與它們本身顏色成互補的色光都能被最大地吸收。
希望能夠幫助你,污水凈化團隊竭誠為你服務!
❺ 比色法的比色法簡介
常用的比色法有兩種:目視比色法和光電比色法,兩種方法都是以朗伯-比爾定律 (A=εbc)為基礎。常用的目視比色法是標准系列法,即用不同量的待測物標准溶液在完全相同的一組比色管中,先按分析步驟顯色,配成顏色逐漸遞變的標准色階。試樣溶液也在完全相同條件下顯色,和標准色階作比較,目視找出色澤最相近的那一份標准,由其中所含標准溶液的量,計算確定試樣中待測組分的含量。
與目視比色法相比,光電比色法消除了主觀誤差,提高了測量准確度,而且可以通過選擇濾光片來消除干擾,從而提高了選擇性。但光電比色計採用鎢燈光源和濾光片,只適用於可見光譜區和只能 得到一定波長范圍的復合光 , 而不是單色光束,還有其他一些局限,使它無論在測量的准確度、靈敏度和應用范圍上都不如紫外-可見分光光度計。20 世紀30~60年代,是比色法發展的旺盛時期,此後就逐漸為分光光度法所代替。
❻ 比色測定的基本原理是什麼操作步驟有哪些
比色測定的基本原理,操作步驟:
原理:
比色分析是基於溶液對光的選擇性吸收而建立起來的一種分析方法,又稱吸光亮度法。
步驟:
1. 用相同型號的比色管。
2. 配製等體積的系列標准樣品。
3. 配製待測樣品(與標准樣品等體積)。
4. 對比,找出相同的濃度。
❼ 什麼叫比色法操作上應該注意什麼問題
比色法是通過比較或測量有色物質溶液顏色深度來確定待測組分含量的方法。早在公元初古希臘人就曾用五倍子溶液測定醋中的鐵。原理是基於被測物質溶液的顏色或加入顯色劑後生成的有色溶液的顏色,顏色深度和物質含量成正比,則根據光被有色溶液吸收的強度,即可測定溶液中物質的含量。
操作注意事項:選擇適當的細胞接種濃度,保證細胞培養結束時濃度不至於過滿;實驗時應設置調零孔,溶媒孔,加葯孔;避免血清干擾:一般選小於10%胎牛血清的培養液進行。
比色法的原理:
利用有色物質對特定波長光的吸收特性來進行定性分析的一種方法,其原理是基於被測物質溶液的顏色或加入顯色劑後生成的有色溶液的顏色,顏色深度和物質含量成正比,則根據光被有色溶液吸收的強度,即可測定溶液中物質的含量。
如利用光電效應,將透過有色溶液後的光強度成正比例地變換為電流的強度來進行比色定量的方法。
以上內容參考:
網路-比色法
❽ 比色法原理是什麼
比色法的基本原理是朗伯(Lambert)定律,闡述為:光被透明介質吸收的比例與入射光的強度無關;在光程上每等厚層介質吸收相同比例值的光。
公式為:A=lg(1/T)=Kbc
(A為吸光度;T為透射比, 即透射光強度與入射光強度之比;c為吸光物質的濃度,單位mol/L;b為吸收層厚度,單位cm )❾ 現場快速比色方法
63.3.8.1 微珠目視比色法
方法提要
試樣經王水分解,活性炭或泡塑富集後,試樣中的金與TMK配位顯色於含有掩蔽劑、緩沖溶液及有機萃取劑的乙醇、乙酸、水、辛醇的混合介質中,然後加水改變介質成分,使有機相富集Au-TMK配合物成微珠析出,直接在坩堝中目視比色。有機萃取劑的體積小至5μL,故該法的靈敏度比一般目視比色法要高1~2個數量級。
試劑
無水乙醇。
王水。
含掩蔽劑的緩沖溶液取2g尿素、1gNaF、1gEDTA溶於pH為3.5的100mL緩沖溶液中。緩沖溶液的組成為冰乙醇-水-氫氧化銨(75+20+5),用氫氧化銨調節至pH為3.5。
TMK顯色劑(1)1mgTMK溶於100mL(90+10)乙醇-辛醇中(可用磷酸三丁酯代替辛醇)。
TMK顯色劑(2)10mgTMK溶於100mL(7+3)乙醇-辛醇中。
金標准溶液ρ(Au)=1.0μg/mL(1+9)王水介質,使用時用(1+9)王水將其稀釋為ρ(Au)=20.0ng/mL。
三氯化鐵溶液(1g/L)。
氯化鉀混合液5gEDTA、10g檸檬酸溶於100mL50g/LKCl溶液中。
十二烷基苯磺酸鈉溶液(10g/L),也可用洗衣粉替代。
校準曲線
移取0.00mL、0.10mL、0.20mL、0.30mL、0.40mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL金標准溶液(20.0ng/mL)和0.10mL、0.20mL、0.40mL、0.60mL、0.80mL、1.00mL金標准溶液(1.0μg/mL),置於10mL瓷坩堝中,加2滴FeCl3溶液、2滴KCl溶液、5滴王水,置於水浴上蒸干。再加5滴HCl蒸干後,加0.1mLKCl混合液、0.1mL含掩蔽劑的緩沖溶液、0.05mL無水乙醇、50μLTMK顯色劑(1),搖勻,加0.15mL蒸餾水。微珠析出,轉動坩堝,使分散的細小微珠集中,加2滴表面活性劑,與試樣對照比色。比出試樣中低於10ng者之後,在10ng以上的標准再補加50μLTMK顯色劑(1),滴加無水乙醇使微珠溶解,加4~5滴水,使微珠又析出,轉動坩堝使有機相集中顯出10~100ng色階,與試樣對照比色。再加100μLTMK顯色劑(2),同上操作顯示出200~1000ng色階與試樣對照比色。
分析步驟
稱取5~20g(精確至0.1g)試樣於250mL燒杯中,加40mL水、40mL王水,在電熱板上微沸1h,取下加水至100mL,以活性炭動態吸附或泡塑靜態、動態富集金。紙餅或泡塑放入10mL瓷坩堝內灰化或無臭灰化,加2滴KCl混合溶液、5滴王水,於水浴上蒸干。以下步驟同校準曲線。
如用於野外現場分析,礦樣和活性炭紙漿餅無臭灰化後採用冷浸,方法如下:試樣的冷浸用鹽酸-氯酸鉀,取樣5g加入10mLHCl、5g氯酸鉀、20mL水可溶解含900ng金的試樣。灰化後的殘渣採用冷浸,用1mL(1+1)HCl、0.1~0.3mLH2O2或0.1~0.5mL50g/L氯酸鉀溶液、0.2~2mL(1+1)HCl都可行。
63.3.8.2 泡塑吸附-硫代米蚩酮目視比色法
方法提要
試樣於聚碳酸酯溶樣瓶中,加入王水溶樣,聚氨酯泡沫塑料富集分離金,在小泡塑上用硫代米蚩酮直接顯色後目視比色。稱取10g試樣時,可測定含量大於0.004×10-6的金。方法具有無污染、易操作的特點,是一個簡易、快速的測定方法。
試劑
鹽酸。
王水。
無水乙醇。
過氧化氫。
緩沖溶液(pH3~4)稱取20g磷酸二氫鈉溶於80mL水中,用H3PO4調節pH為3~4,移入100mL容量瓶中,用水稀釋至刻度。
金標准溶液ρ(Au)=1.0μg/mL。
TMK溶液(0.02g/L)。
尿素溶液(200g/L)。
聚氨基甲酸酯泡沫塑料0.2g小方塊及0.005g(7mm×4mm)小塊二種,經水洗,水煮沸10min後備用。
EDTA溶液(50g/L)。
校準曲線
移取0.00mL、0.04mL、0.10mL、0.20mL、0.30mL、0.50mL、0.80mL、1.20mL、2.00mL的金標准溶液(1.0μg/mL)於瓷坩堝中,加入2~3mL(5+95)HCl、8滴EDTA溶液,加入一塊0.005g小泡塑,振盪15~20min,取下,用水沖洗干凈並擠干,將泡塑在尿素溶液中浸一下,擠干,再在緩沖溶液中浸泡一下,擠干。然後置於比色板上均勻地滴加50μLTMK顯色劑,5min後在泡塑上目視比色。
分析步驟
稱取10g(精確至0.1g)試樣(含炭試樣預先於600℃灼燒1~2h)於聚碳酸酯溶樣瓶中,加25mL(1+1)王水,加蓋並擰緊。放入沸水浴加熱1h,取出冷卻。向溶樣瓶中加80~90mL水,加一塊0.2g泡塑,加蓋蓋緊,於振盪器上振盪30min。取出泡塑,用水洗去礦渣,擰干。用半張定性濾紙(11cm)包裹,放入20mL瓷坩堝中,加3mL無水乙醇,放入500~600℃高溫爐中,敞開爐門明火燃燒,熄後半關爐門,繼續升溫至600~650℃,至無黑色炭粒為止。也可將坩堝放在已加熱的高溫電爐上明火點燃無水乙醇,熄後用薄石棉板圍住坩堝,繼續升溫至炭質除盡。往灰化過的坩堝中加1mL(4+6)HCl及3滴H2O2,於沸水浴上浸取10min。取下,加2~3mL(5+95)HCl、8滴EDTA溶液,搖勻,加泡塑吸附。以下操作同校準曲線。
注意事項
本法快速簡便,可在野外用於現場分析。
❿ 比色分析法有幾種結果計算方法
應該包括:
1、單標准計演算法: Cx = Cs(Ax/As);
2、標准曲線法: Cx = m/V = (A-Ao)/bV;