① 解二元一次方程有哪些方法
最常用的是加減消元法和代入消元法,以下是完整介紹:
消元法
「消元」是解二元一次方程的基本思路。所謂「消元」就是減少未知數的個數,使多元方程最終轉化為一元多次方程再解出未知數。這種將方程組中的未知數個數由多化少,逐一解決的解法,叫做消元解法。
消元方法一般分為:
代入消元法,簡稱:代入法(常用)
加減消元法,簡稱:加減法(常用)
順序消元法,(這種方法不常用)
以下是消元方法的舉例:
例1.代入消元法
代入消元法就是先利用其中一個方程,將含有其中一個未知數的代數式表示另一個未知數。然後代入另一個方程,從而將這組方程轉化成解兩個一元一次方程式的方法。
{x=2+3
{x+y=21
把 x=2+3
代入 x+y=21
即 2+3+y=21
從而求出 x=5,y=16
例2.加減消元法
加減消元法就是將兩個方程相加或相減,從而消去其中一個未知數的方法。
通常,我們先將其中一個方程的兩邊同時乘以一個不是0的數,使其中的一個系數與另外一個方程的對應系數相同。再將兩個方程相加或相減。
x+y=13
2y-x=2
把兩式相加消去 x
即 y+2y=13+2
從而求出y=5,x=8
例3.
{x-y=3 ①
{3x+8y=4②
由①得x=y+3③
3x-8y=4②
③代入②得
3(y+3)-8y=4
y=1
所以x=4
則:這個二元一次方程組的解為
{x=4
{y=1
例4.
{13x+14y=41
{14x+13y=40
27x+27y=81
y-x=1
27y=54
y=2
x=1
y=2
把y=2代入(3)得
即x=1
所以:x=1,y=2
最後 x=1 , y=2, 解出來
特點:兩方程相加減,單個x或單個y,這樣就適用接下來的代入消元.
折疊換元法
是二元一次方程的另一種方法,就是說把一個方程用其他未知數表示,再帶入另一個方程中。
例5.
x+y=590
y+20=90%x
代入後就是:
x+90%x-20=590
例6.
(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可寫為
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特點:兩方程中都含有相同的代數式,如題中的x+5,y-4之類,換元後可簡化方程也是主要原因。
折疊代元法
例7.
x:y=1:4
5x+6y=29
令x=t,y=4t
方程2可寫為:5t+24t=29
29t=29
t=1
所以x=1,y=4
此外,還有代入法可做題。
例8.
x+y=5
3x+7y=-1
解:x=5-y
3(5-y)+7y=-1
15-3y+7y=-1
4y=-16
y=-4
得:{x=9}
{y=-4}
折疊公式法
例9.
ax+by=c
a2x+b2y=c2
則x=(b2*C-b*C2)/(b2*a-b*a2) ,y=(a2*C-a*C2)/(a2*b-a*b2)
例10.提取公式過程
aX+bY=c,式⑴,
a2X+b2Y=c2,式⑵
將式⑵變形,得Y=(c2-a2X)/b2,式⑶
將式⑶代入式⑴,得aX+b((c2-a2X)/b2)=c
aX+(b*c2-b*a2X)/b2=c
乘b2,得a*b2X+b*c2-b*a2X=c*b2
(a*b2-b*a2)X=c*b2-b*c2
X=(c*b2-b*c2)/(a*b2-b*a2)
Y的解法依此類推,得Y=(a*c2-c*a2)/(a*b2-b*a2)[1]
② 二元一次方程解決方法有哪些
代入法
消元法
用代入法解二元一次方程組的基本思路是消元,消元分為代入消元法和加減消元法.
#代入消元法的一般步驟是把其中的一個未知數用另一個未知數表示出來,即將其中的一個方程寫成"y="或"x="的形式,如果題目中已經有一個方程是這種形式,則直接把這個方程代入另一個方程即可.
#加減消元法是將其中一個式子變形使它同第二個方程中的一個未知數相同或互為相反數,再將二個方程相加減從而消元的方法.
例x+y=3代號為A變形為y=3-x
2x-y=5代號為B
這才可以組成一個2元一次方程
那麼上面方程解為
把A代入B
2x-(3-x)=5
解為 x=2/3
把X=2/3代如A就可以算出Y的值了
簡單的說就是把X,Y轉成一個含有一元一次的方程!
③ 一元一次方程如何解決
1、配套問題,是用一元一次方程解應用題中一個重要的部分,配套問題的關鍵在於,利用配套問題中物品之間具有的數量關系作為依據,准確找出實際問題中的等量關系來解決問題。在實際問題中,大家常見到一些配套組合問題,如螺釘與螺母的配套,盒身與盒底的配套等。
2、解決這類問題的方法如下:
抓住配套關系。
設出未知數。
根據配套關系列出方程。
通過解方程來解決問題。
④ 方程基本解決方法有幾種(每種方法都要詳細介紹)
一元一次方程
一般解法:
⒈去分母 方程兩邊同時乘各分母的最小公倍數.
⒉去括弧 一般先去小括弧,在去中括弧,最後去大括弧.但順序有時可依據情況而定使計算簡便.可根據乘法分配律.
⒊移項 把方程中含有未知數的項移到方程的另一邊,其餘各項移到方程的另一邊移項時別忘記了要變號.
⒋合並同類項 將原方程化為ax=b(a≠0)的形式.
⒌系數化1 方程兩邊同時除以未知數的系數,得出方程的解.
二元一次方程
一般解法,消元:將方程組中的未知數個數由多化少,逐一解決.
一元二次方程
一般解法有四種:
⒈公式法(直接開平方法)
⒉配方法
⒊十字相乘法
⒋因式分解法
很高興為您解答有用請採納
⑤ 一元一次方程的解決問題列式的方法是什麼
首先未知數一定要明確,往後就不難了。依照條件,和自己設的未知數列出方程,有的題目需要運用好幾次未知數,那就是一個經驗問題了。加油吧!相信你一定能學好!! 這些方法只不過起一個過渡作用,真正學好方程並不需要。 加一點:你在看題目時先看問題,然後仔細地看有什麼條件,看看哪些是已知的,哪些是未知的。接著思考要求出答案需要哪些條件,再利用已知條件來獲得那些條件(有的簡單的題目會直接給出那些條件),最後再求出答案。 用一元一次方程解應用題只不過是把答案或者求出答案需要的條件變為x,從而更好地分析題目。 如果你算數學好的話,其實一元一次方程也不是太難。下面是一般的一元一次方程的格式: 解:(問題照抄,只是「什麼」改為x或根據題意來設) 依題意得(概括的用語,可以省略很多文字來說明,深受廣大中學的師生所喜愛):列式(就是要你把x代入式子中,就像是你把算數的檢查一樣,把x當作答案來求已知條件) 解方程(就是要你把方程解出來) 答:…… or 一元一次方程應用題是七年級上學期的重點當然也是難點,它的學習對今後不等式解應用題以及函數問題有著決定性的意義,如果沒有學好它,那今後的學習將顯得比較困難. 一般在解決問題時第一步就是要設出未知數,未知數的設法主要有以下幾種: 1,有比較關系時,如甲比乙多8,我們一般設較小的為X,這樣計算時主要用的是加法不易出錯; 2,有倍數關系時,如數學小組人數是英語小組的5倍,我們設一倍量為X,用乘法表示其餘量利於計算; 3,在分數應用題中,我們設單位'1'為X, 4,在有比的問題中,我們設一份數為X, 5,在有和的問題中,我們設其中任意一個為X都可以,比如說兩個班共有50人. 解應用題的基本步驟有: 1,依據題目要求設出合適的未知數; 2,根據題目實際情況找出等量關系,用文字關系式表示出來; 3,依據等量關系,把關系式中的每一項用數或者未知數表示出來列出方程; 4,解方程,依據題目問題計算; 5,把方程的解代入原題目檢驗. 其中的難點是第二步,找出等量關系,有些題目中的關系是比較明顯的,而有的則是隱含的,需要大家去用心體會,下面我給大家示例兩題: 1: 爺爺與孫子下棋,爺爺贏一盤記1分,孫子贏一盤記3分,兩人下了12盤(未出現和棋)後,得分相同,他們各贏了多少盤? 分析:屬於和的問題,所以任意設一個為X,設爺爺贏了X題,則孫子贏了(12-X)盤,題目中的等量關系是爺爺得分=孫子得分,爺爺得分用X表示,孫子得分用3(12-X)表示,所以本題方程為 X=3(12-X),解之得X=9,則12-X=12-9=3,所以爺爺贏9盤,孫子贏3盤. 2:在一隻底面直徑為30cm,高為8cm,的圓錐形容器中倒滿水,然後將水倒入一隻底面直徑為10cm的圓柱形空容器里,圓柱形容器中的水有多高? 分析:本題沒有明顯類型所以直接設問題,設圓柱形容器中的水有X厘米,題目中的等量關系是隱含的,是圓錐形容器中的水的體積=圓柱形容器中水的體積,分別表示後有方程 1/3*3.14*(30/2)(30/2)*8=3.14(10/2)(10/2)X,解之得X=24.
⑥ 一元一次方程的解決問題列式的方法是什麼
第一:審題 第二:找等量關系 第三:找未知數,列出方程 第四:檢驗並答.注意:求解要根據等式的性質.
1)審題:要明確已知什麼,未知什麼及其相互關系,並用x表示題中的一個合理未知數.
(2)根據題意找出能夠表示應用題全部含義的一個相等關系.(關鍵一步)
(3)根據相等關系,正確列出方程,即所列的方程應滿足等號兩邊的量要相等;方程兩邊的代數式的單位要相同.
(4)解方程:求出未知數的值.
(5)檢驗後明確地、完整地寫出答案.檢驗應是:檢驗所求出的解既能使方程成立,又能使應用題有意義.
⑦ 用一元一次方程解決實際問題的分析方法有: 、 、 。
一審二設三列四解五答六檢驗,關鍵是找等量關系
方法:順性思維,逆性思維
⑧ 解一元一次方程的方法有3種
一元二次方程的解法
一、知識要點:
一元二次方程和一元一次方程都是整式方程,它是初中數學的一個重點內容,也是今後學習數學的基
礎,應引起同學們的重視。
一元二次方程的一般形式為:ax2+bx+c=0, (a≠0),它是只含一個未知數,並且未知數的最高次數是2
的整式方程。
解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解
法:1、直接開平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例題精講:
1、直接開平方法:
直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)2=n (n≥0)的
方程,其解為x=m± .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)2,右邊=11>0,所以
此方程也可用直接開平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丟解)
∴x=
∴原方程的解為x1=,x2=
(2)解: 9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解為x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先將常數c移到方程右邊:ax2+bx=-c
將二次項系數化為1:x2+x=-
方程兩邊分別加上一次項系數的一半的平方:x2+x+( )2=- +( )2
方程左邊成為一個完全平方式:(x+ )2=
當b2-4ac≥0時,x+ =±
∴x=(這就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:將常數項移到方程右邊 3x2-4x=2
將二次項系數化為1:x2-x=
方程兩邊都加上一次項系數一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接開平方得:x-=±
∴x=
∴原方程的解為x1=,x2= .
3.公式法:把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項
系數a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
例3.用公式法解方程 2x2-8x=-5
解:將方程化為一般形式:2x2-8x+5=0
∴a=2, b=-8, c=5
b2-4ac=(-8)2-4×2×5=64-40=24>0
∴x= = =
∴原方程的解為x1=,x2= .
4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓
兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個
根。這種解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (選學) (4)x2-2( + )x+4=0 (選學)
(1)解:(x+3)(x-6)=-8 化簡整理得
x2-3x-10=0 (方程左邊為二次三項式,右邊為零)
(x-5)(x+2)=0 (方程左邊分解因式)
∴x-5=0或x+2=0 (轉化成兩個一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0 (用提公因式法將方程左邊分解因式)
∴x=0或2x+3=0 (轉化成兩個一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同學做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x2-2(+ )x+4 =0 (∵4 可分解為2 ·2 ,∴此題可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解。
小結:
一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般
形式,同時應使二次項系數化為正數。
直接開平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式
法時,一定要把原方程化成一般形式,以便確定系數,而且在用公式前應先計算判別式的值,以便判斷方程
是否有解。
配方法是推導公式的工具,掌握公式法後就可以直接用公式法解一元二次方程了,所以一般不用配方法
解一元二次方程。但是,配方法在學習其他數學知識時有廣泛的應用,是初中要求掌握的三種重要的數學方
法之一,一定要掌握好。(三種重要的數學方法:換元法,配方法,待定系數法)。
例5.用適當的方法解下列方程。(選學)
(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0
(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0
分析:(1)首先應觀察題目有無特點,不要盲目地先做乘法運算。觀察後發現,方程左邊可用平方差
公式分解因式,化成兩個一次因式的乘積。
(2)可用十字相乘法將方程左邊因式分解。
(3)化成一般形式後利用公式法解。
(4)把方程變形為 4x2-2(2m+5)x+(m+2)(m+3)=0,然後可利用十字相乘法因式分解。
(1)解:4(x+2)2-9(x-3)2=0
[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0
(5x-5)(-x+13)=0
5x-5=0或-x+13=0
∴x1=1,x2=13
(2)解: x2+(2- )x+ -3=0
[x-(-3)](x-1)=0
x-(-3)=0或x-1=0
∴x1=-3,x2=1
(3)解:x2-2 x=-
x2-2 x+ =0 (先化成一般形式)
△=(-2 )2-4 ×=12-8=4>0
∴x=
∴x1=,x2=
(4)解:4x2-4mx-10x+m2+5m+6=0
4x2-2(2m+5)x+(m+2)(m+3)=0
[2x-(m+2)][2x-(m+3)]=0
2x-(m+2)=0或2x-(m+3)=0
∴x1= ,x2=
例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (選學)
分析:此方程如果先做乘方,乘法,合並同類項化成一般形式後再做將會比較繁瑣,仔細觀察題目,我
們發現如果把x+1和x-4分別看作一個整體,則方程左邊可用十字相乘法分解因式(實際上是運用換元的方
法)
解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0
即 (5x-5)(2x-3)=0
∴5(x-1)(2x-3)=0
(x-1)(2x-3)=0
∴x-1=0或2x-3=0
∴x1=1,x2=是原方程的解。
例7.用配方法解關於x的一元二次方程x2+px+q=0
解:x2+px+q=0可變形為
x2+px=-q (常數項移到方程右邊)
x2+px+( )2=-q+()2 (方程兩邊都加上一次項系數一半的平方)
(x+)2= (配方)
當p2-4q≥0時,≥0(必須對p2-4q進行分類討論)
∴x=- ±=
∴x1= ,x2=
當p2-4q<0時,<0此時原方程無實根。
說明:本題是含有字母系數的方程,題目中對p, q沒有附加條件,因此在解題過程中應隨時注意對字母
取值的要求,必要時進行分類討論。
練習:
(一)用適當的方法解下列方程:
1. 6x2-x-2=0 2. (x+5)(x-5)=3
3. x2-x=0 4. x2-4x+4=0
5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0
(二)解下列關於x的方程
1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0
練習參考答案:
(一)1.x1=- ,x2= 2.x1=2,x2=-2
3.x1=0,x2= 4.x1=x2=2 5.x1=x2=
6.解:(把2x+3看作一個整體,將方程左邊分解因式)
[(2x+3)+6][(2x+3)-1]=0
即 (2x+9)(2x+2)=0
∴2x+9=0或2x+2=0
∴x1=-,x2=-1是原方程的解。
(二)1.解:x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a· a=0
[x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0
∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0
∴x1= +b,x2= -b是 ∴x1= a,x2=a是
原方程的解。 原方程的解。
測試
選擇題
1.方程x(x-5)=5(x-5)的根是( )
A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5
2.多項式a2+4a-10的值等於11,則a的值為( )。
A、3或7 B、-3或7 C、3或-7 D、-3或-7
3.若一元二次方程ax2+bx+c=0中的二次項系數,一次項系數和常數項之和等於零,那麼方程必有一個
根是( )。
A、0 B、1 C、-1 D、±1
4. 一元二次方程ax2+bx+c=0有一個根是零的條件為( )。
A、b≠0且c=0 B、b=0且c≠0
C、b=0且c=0 D、c=0
5. 方程x2-3x=10的兩個根是( )。
A、-2,5 B、2,-5 C、2,5 D、-2,-5
6. 方程x2-3x+3=0的解是( )。
A、 B、 C、 D、無實根
7. 方程2x2-0.15=0的解是( )。
A、x= B、x=-
C、x1=0.27, x2=-0.27 D、x1=, x2=-
8. 方程x2-x-4=0左邊配成一個完全平方式後,所得的方程是( )。
A、(x-)2= B、(x- )2=-
C、(x- )2= D、以上答案都不對
9. 已知一元二次方程x2-2x-m=0,用配方法解該方程配方後的方程是( )。
A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1
答案與解析
答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D
解析:
1.分析:移項得:(x-5)2=0,則x1=x2=5,
注意:方程兩邊不要輕易除以一個整式,另外一元二次方程有實數根,一定是兩個。
2.分析:依題意得:a2+4a-10=11, 解得 a=3或a=-7.
3.分析:依題意:有a+b+c=0, 方程左側為a+b+c, 且具僅有x=1時, ax2+bx+c=a+b+c,意味著當x=1
時,方程成立,則必有根為x=1。
4.分析:一元二次方程 ax2+bx+c=0若有一個根為零,
則ax2+bx+c必存在因式x,則有且僅有c=0時,存在公因式x,所以 c=0.
另外,還可以將x=0代入,得c=0,更簡單!
5.分析:原方程變為 x2-3x-10=0,
則(x-5)(x+2)=0
x-5=0 或x+2=0
x1=5, x2=-2.
6.分析:Δ=9-4×3=-3<0,則原方程無實根。
7.分析:2x2=0.15
x2=
x=±
注意根式的化簡,並注意直接開平方時,不要丟根。
8.分析:兩邊乘以3得:x2-3x-12=0,然後按照一次項系數配方,x2-3x+(-)2=12+(- )2,
整理為:(x-)2=
方程可以利用等式性質變形,並且 x2-bx配方時,配方項為一次項系數-b的一半的平方。
9.分析:x2-2x=m, 則 x2-2x+1=m+1
則(x-1)2=m+1.
中考解析
考題評析
1.(甘肅省)方程的根是( )
(A) (B) (C) 或 (D) 或
評析:因一元二次方程有兩個根,所以用排除法,排除A、B選項,再用驗證法在C、D選項中選出正確
選項。也可以用因式分解的方法解此方程求出結果對照選項也可以。選項A、B是只考慮了一方面忘記了一元
二次方程是兩個根,所以是錯誤的,而選項D中x=-1,不能使方程左右相等,所以也是錯誤的。正確選項為
C。
另外常有同學在方程的兩邊同時除以一個整式,使得方程丟根,這種錯誤要避免。
2.(吉林省)一元二次方程的根是__________。
評析:思路,根據方程的特點運用因式分解法,或公式法求解即可。
3.(遼寧省)方程的根為( )
(A)0 (B)–1 (C)0,–1 (D)0,1
評析:思路:因方程為一元二次方程,所以有兩個實根,用排除法和驗證法可選出正確選項為C,而A、
B兩選項只有一個根。D選項一個數不是方程的根。另外可以用直接求方程根的方法。
4.(河南省)已知x的二次方程的一個根是–2,那麼k=__________。
評析:k=4.將x=-2代入到原方程中去,構造成關於k的一元二次方程,然後求解。
5.(西安市)用直接開平方法解方程(x-3)2=8得方程的根為( )
(A)x=3+2 (B)x=3-2
(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2
評析:用解方程的方法直接求解即可,也可不計算,利用一元二次方程有解,則必有兩解及8的平方
根,即可選出答案。
課外拓展
一元二次方程
一元二次方程(quadratic equation of one variable)是指含有一個未知數且未知數的最高次項是二
次的整式方程。 一般形式為
ax2+bx+c=0, (a≠0)
在公元前兩千年左右,一元二次方程及其解法已出現於古巴比倫人的泥板文書中:求出一個數使它與它
的倒數之和等於 一個已給數,即求出這樣的x與,使
x=1, x+ =b,
x2-bx+1=0,
他們做出( )2;再做出 ,然後得出解答:+ 及 - 。可見巴比倫人已知道一元二次
方程的求根公式。但他們當時並不接受 負數,所以負根是略而不提的。
埃及的紙草文書中也涉及到最簡單的二次方程,例如:ax2=b。
在公元前4、5世紀時,我國已掌握了一元二次方程的求根公式。
希臘的丟番圖(246-330)卻只取二次方程的一個正根,即使遇到兩個都是正根的情況,他亦只取其中
之一。
公元628年,從印度的婆羅摩笈多寫成的《婆羅摩修正體系》中,得到二次方程x2+px+q=0的一個求根公
式。
在阿拉伯阿爾.花拉子米的《代數學》中討論到方程的解法,解出了一次、二次方程,其中涉及到六種
不同的形式,令 a、b、c為正數,如ax2=bx、ax2=c、 ax2+c=bx、ax2+bx=c、ax2=bx+c 等。把二次方程分成
不同形式作討論,是依照丟番圖的做法。阿爾.花拉子米除了給出二次方程的幾種特殊解法外,還第一 次
給出二次方程的一般解法,承認方程有兩個根,並有無理根存在,但卻未有虛根的認識。十六世紀義大利的
數學家們為了解三次方程而開始應用復數根。
韋達(1540-1603)除已知一元方程在復數范圍內恆有解外,還給出根與系數的關系。
我國《九章算術.勾股》章中的第二十題是通過求相當於 x2+34x-71000=0的正根而解決的。我國數學
家還在方程的研究中應用了內插法。
⑨ 解一元一次方程應用題的方法
列方程解應用題的關鍵是:仔細審題,找出能正確表達整個題數量關系的一個相等關系,再設未知數,並將這個相等關系用含未知數的式子表示出來。
主要是找數量關系的一個相等關系,你主要是多做題,就會提高你的解題水平
例1. 某商場將彩電先按原售價提高30%,然後再在廣告中寫上「大酬賓、八折優惠」,結果每台彩電比原售價多賺了112元,求每台彩電的原價應是多少元?
分析 相等關系是:實際售出價-原售價=112(元)。
解 設每台彩電的原售價為x元,根據題意,得: .
解得:x=2800
答:每台彩電的原售價是2800元。
例2. 為了鼓勵居民用電,某市電力公司規定了如下的計費方法:每月用電不超過100度,按每度0.5元計算;每月用電超過100度,超出部分按每度0.4元計算。
(1)若某用戶2006年7月份交電費72元,那麼該用戶7月份用電多少度?
(2)若某用戶2006年8月平均每度電費0.45元,那麼該用戶8月份用電多少度?應交電費多少元?
分析:
(1)由計費方法判斷7月份交電費72元時,用電量超過100度;(2)由0.5元>0.45元>0.40元知,該用戶8月份用電超過100度。
解(1)100度的電費為0.5×100=50(元)。
因為72>50,所以該用戶7月份的用電量超過了100度。設超出x度,則0.4x=72-50,x=55.
故該用戶7月份共用電100+55=155(度)。
(2)設該用戶8月份用電x度,則應交電費為0.45x元。因為8月份平均每度電費0.45元
<0.50元,所以8月份的用電量超過100度。根據題意,得0.5×100+0.4(x-100)=0.45x.
解得:x=200.則0.45x=0.45×200=90(元)。
答:該用戶7月份用電155度,8月份用電200度,應交電費90元。
練習
育英中學七年級(2)班決定派小聰、小明兩人選購圓珠筆、鋼筆共22支,捐給結對的山區某學校同學,他們去了商場,看到圓珠筆每支5元,鋼筆每支6元。
(1)若他倆購買兩類筆剛好用去120元,問鋼筆、圓珠筆各買多少支?
(2)若圓珠筆9折優惠,鋼筆8折優惠,在所需費用不超過100元的前提下,請你設計出一種選購方案。
(參考答案:(1)圓珠筆12支,鋼筆10支;(2)答案不惟一,如圓珠筆18支,鋼筆4支;圓珠筆19支,鋼筆3支等。)
⑩ 解決一元一次方程應用題有哪些訣竅
您好,寒櫻暖暖為你解答:
空洞地講不是好
我覺得多練習是最主要的。
再要熟悉每個題型的最簡方法
祝你進步!
請採納,謝謝!