① 樁基檢測的方法有幾種
可以參考JGJ 106-2014 建築樁基檢測技術規范,裡面樁基檢測方法包括:1、單樁豎向抗拔靜載試驗;2、單樁豎向抗壓靜載試驗;3、單樁水平豎向靜載試驗;4、鑽芯法;5、低應變法;6、高應變法;7、聲波透析法;其中,常規的檢測基樁完整性檢測方式有低應變、超聲波、鑽芯三種,樁身承載力的檢測方式有靜載、高應變法二種。我們公司使用的檢測設備是上海岩聯的低應變及超聲波檢測儀。希望對你能有幫助。
② 樁基完整性檢測幾種常見方法對比
某高速公路橋梁工程樁,樁徑:1600 mm;樁長:43.5 m,樁型鑽孔灌注樁。樁基驗收檢測方案為超聲波透射法檢測,分別對次樁依次採用:超聲波透射法檢測,低應變反射波法檢測,鑽孔取芯完整性檢測,鑽孔電視檢測四種檢測方法對其進行完整性判定。下面分別將這四種檢測方法的檢測過程和檢測結果公布如下,好好學習哦~
一、超聲波透射法檢測
檢測目的:基樁的完整性
儀器型號:RSM-SY7(F)
RSM-SY7(F)基樁多跨孔超聲波檢測儀
現場檢測圖
採用四隻45KHz超聲波跨孔探頭,一次提升同時完成四管,六剖面的測試,從超聲波測試結果來看,發現有五個剖面在6.8-7.0米處,出現幅值超判據情況。
再對該樁6.9米處異常點波形觀察,異常點信號首波幅值和後續諧振波信號都偏弱,但其聲速正常。由於是在同深度,多剖面信號異常,在與施工方溝通排除聲測管焊接因素的影響,在做鑽孔取芯前,使用低應變反射波法檢測進一步查明缺陷情況。
異常點信號
正常點信號
二、低應變反射波法檢測
檢測目的:基樁的完整性
儀器型號:RSM-PRT(M)
採用加速度感測器,通過改變不同的錘擊頻率及不同的采樣間隔對該樁的6.8米處的,缺陷進行核查判斷。學習交流qq群44642190
RSM-PRT(M)雙通道低應變檢測儀
低應變檢測現場
採用加速度感測器,通過改變不同的錘擊頻率及不同的采樣間隔對該樁的6.8米處的,缺陷進行核查判斷。
第一次採集結果:信號在6.8米處有較小幅值的同相反射。
第二次採集結果:變換感測器安裝位置信號在6.8米處有較大幅值的同相反射,並可見第二次、第三次缺陷反射。
第三次採集結果:採用頻率較高的鋼筋敲擊,提高缺陷位置精度,同相缺陷反射幅值較小,但也很清晰,可見微弱第二次缺陷反射。最終低應變檢測核定其缺陷位置在距樁頂6.8米處,與超聲波投射法檢測缺陷深度相符,因低應變數據缺陷較為嚴重,懷疑樁大面積斷樁,決定採用鑽孔取芯進一步驗證其缺陷情況。
三、鑽孔取芯完整性檢測
檢測目的:基樁的完整性
儀器型號:鑽孔取芯機
採用鑽機對該樁進行鑽孔取芯檢測,著重觀察該樁6.9米處混凝土完整性情況,但通過對芯樣的目測觀察,在 6.9 米處未取出連續較完整的芯樣,以鑽孔取芯檢測結果出具報告也很難判定該樁缺陷情況。芯樣照片如下:
四、鑽孔電視攝像檢測
檢測目的:基樁的完整性
儀器型號:SR-DCT(W)
SR-DCT(W)鑽孔電視
SR-DCT(W)鑽孔電視現場測試
採用SR-DCT(W)對樁鑽芯孔,進行攝像檢測,觀察測試圖片,清晰可見在6.9 米處,出現環狀裂紋。可以最終判定該樁距樁頂6.9米處,局部斷裂缺陷。學習交流qq群44642190
五、總結
本案例為多種檢測方法對基樁完整性判定的案例,採用的這幾種檢測方法,由於其檢測原理不同,對同個缺陷所反應的信號差異也顯現的較為明顯,簡單概括不同的方法有具體以下特點:
超聲波透射法檢測:
檢測深度不受限制,可以覆蓋整樁,由於是超聲換能器按一定的移距逐點檢測,通過對逐點信號聲速和波幅的變化情況,對樁的混凝土完整性進行判斷,相對低應變反射波法,其檢測范圍和數據精度要高很多。
但超聲波檢測也存在一定的盲區,比如聲測管以外的混凝土,橫向裂縫或深度范圍小的層狀缺陷。
本案例所遇到的樁缺陷就是橫向裂縫缺陷,估計是由於混凝土初凝階段,後續施工造成的。超聲波檢測如采樣移距設置不合適,很容易造成漏判,其信號反應不明顯,但在同深度,都有聲幅降低的情況。遇到這樣缺陷,雖也可以採用超聲波的斜側方法對其進一步判定,但由於缺陷深度范圍較小,估計測試效果不會太明顯。
低應變反射波法檢測:
檢測深度受樁周土(岩)力學特性和錘擊能量影響,對小尺寸缺陷反應不明顯,缺陷的分辨能力和測試深度范圍不及超聲波檢測。
但對如案例中所遇到的橫向裂縫缺陷,低應變的分辨能力強,從實測信號來看,同相缺陷反射波清晰,並可見二次三次反射,是對該樁缺陷類型和程度進一步判定的數據補充。
③ 樁基檢測方法有哪些,鑽芯檢測法
按《基樁技術規范》,樁基檢測方法有:單樁豎向抗壓靜載試驗、單樁豎向抗拔靜載試驗、單樁水平靜載試驗、鑽芯法、低應變法、高應變法、聲波透射法
④ 常用樁基檢測的檢測方法有哪些分別能檢測哪些指標
樁基檢測工作是確保樁基工程施工質量至關重要的一個環節,檢測工作質量、測試方法及結論直接關繫到建築物的安全和正常使用。
常用的樁基檢測主要方法有:靜載試驗。鑽芯法、低應變法、高應變法、聲波透射法等。
靜載實驗在確定單樁極限承載力方面,是目前最為准確、可靠的檢驗方法,下面視頻針對靜載試驗過程做了詳細的介紹。https://v.qq.com/x/page/e03989ic1ao.html
第一步:選點試驗
現場選試驗點,原則上每單位工程不應少於3點,1000m2以上工程,每100m2 至少應有1點,3000m2以上工程,每300m2至少應有1點。由委託單位及監理單位共同確定。將樁頭處理干凈且打毛至完整的水平截面,使樁頂(高於或低於自然地面)與自然地面基本標高一致為宜。
第二步:安裝千斤頂
被檢測基樁,周圍鋪設120mm厚的中砂墊層,上方正放1.5m2的承壓板,加墊板,固定油壓千斤頂。最大載入時的極限壓力均未超過千斤頂、油泵、油管額定工作壓力的80%。架設壓重平台反力裝置,設置鋼架承重平台,上堆重物,可堆放沙袋,混泥土塊等。
第三步:安裝觀測系統
安裝全自動電動油泵,壓力感測器並聯在電動油泵供油管口處。2個位移感測器對稱安裝在承壓板兩側。接收器垂直承壓板,連接到靜力載荷測試儀。
第四步:採集數據
詳細步驟見視頻介紹:https://v.qq.com/x/page/e03989ic1ao.html
⑤ 建築樁基單樁豎向抗壓靜載試驗有哪些加卸載方式
單樁豎向抗壓靜載試驗載入方式有:
一、慢速維持荷載法:工程樁驗收檢測宜採用此法
1 每級荷載施加後,應分別按第5min、15min 、30min 、15min、45min、60min 測讀樁頂沉降量,以後每隔30min 測讀一次樁頂沉降量;
2 試樁沉降相對穩定標准:每一小時內的樁頂沉降量不得超過0.lmm ,並連續出現兩次(從分級荷載施加後的第30min開始,按1.5h 連續三次每30min 的沉降觀測值計算) ;
3 當樁頂沉降速率達到相對穩定標准時,可施加下一級荷載;
4 卸載時,每級荷載應維持lh ,分別按第15min 、30min、60min 測讀樁頂沉降量後,即可卸下一級荷載;卸載至零後,應測讀樁頂殘余沉降量,維持時間不得少於血,測讀時間分別為第15min 、30min ,以後每隔30min 測讀一次樁頂殘余沉降量。
二、快速維持荷載法:當有成熟的地區經驗時,可採用此法
快速維持荷載法的每級荷載維持時間不應少於1h ,且當本級荷載作用下的樁頂沉降速率收斂時,可施加下一級荷載。
⑥ 樁基靜載試驗要求
樁基檢測規范的要求如下:
1、為設計提供依據的試驗樁檢測數量應滿足設計要求,且在同一條件下不應少於3根;當預計工程樁總數小於50根時,檢測數量不應少於2根。
2、為設計提供依據的試樣數量不計入驗收檢測的抽檢總數。
3、地基基礎設計等級為甲級和乙級的樁基,應採用單樁豎向抗壓靜載試驗進行承載力驗收檢測,檢測數量不應少於同一條件下樁基分項工程總樁數的1%,且不應少於3根,當總樁數小於50根時,檢測數量不應少於2根。
4、對抗拔樁和對水平承載力有要求的樁基工程,應進行單樁豎向抗拔靜載試驗和水平靜載試驗,抽檢數量不應少於總樁數的1%,且不得少於3根。
5、地基基礎設計等級為甲級的樁基,低應變檢測數量為100%。
6、地基基礎設計等級為乙級和丙級的樁基,評價混凝土灌注樁樁身完整性採用低應變時,抽檢數量不應少於同條件下總樁數的50%,且不得少於20根,每個承台抽檢樁數不得少於1根;對柱下四樁或四樁以上承台的工程,抽檢數量還不應少於相應樁數的50%。評價預制樁樁身完整性採用低應變時,抽檢數量不應少於同條件下總樁數的30%,且不得少於20根,每個承台抽檢樁數不得少於1根;對柱下四樁或四樁以上承台的工程,抽檢數量還不應少於相應樁數的30%。
7、對於直徑不小於800mm的混凝土灌注樁,評價樁身完整性應增加鑽芯法或聲波透射法,抽檢數量不應少於總樁數的10%,且不得少於10根。
8、對已進行為設計提供依據靜載荷試驗、且具有高應變檢測與靜載荷試驗比對資料的樁基工程,可採用高應變法,抽檢數量不應少於同條件下總樁數的5%,且不得少於10根。
⑦ 樁基檢測方法
以應力波理論為基礎的檢測樁基質量的瞬態動測法和穩態振動法使用得較為廣泛。
10.1.2.1瞬態動測法(錘擊法/反射波法)
錘擊法是一種瞬態動測法,又稱反射波法。嵌入土中的樁基,相當於一個在阻尼介質中上端自由與下端彈性聯結的彈性桿。在樁基頂端應用錘擊的辦法施加一脈沖激振力F(t),樁將產生縱向振動而產生應力波。波沿樁身傳播至樁底部分能量反射回樁頂。若激振力足夠大,樁和樁周圍一定范圍內的土將作為一個體系產生自由振動。當樁體中存在波阻抗差異面對,則在這些面上將產生反射波、透射波和多次反射波等,其波的運動學和動力學特徵將發生變化。通過儀器接收這些波,可對樁基質量作出判斷,並推算出單樁承載力。
(1)基本原理及波形特徵
利用小手錘在樁頭施加一沖擊力F(t)被激發應力波在樁身內傳播,當遇到波阻抗界面時,將產生反射波,其反射系數為
環境與工程地球物理
式中:A1,A2為樁身截面積;ρ1,ρ2為介質密度;v1,v2為波速;R表示反射波與入射波的振幅比。這里是以廣義的波阻抗Aρv替代波阻抗ρv,它取決於波阻抗的差異和截面積的變化,反射波旅行時與平均速度及波阻抗界面的深度L有關。然後利用拾振器接收初始信號,樁身缺陷和樁底產生的反射波信號,通過儀器進行處理和分析,結合地質資料對樁的完整性和混凝土的質量作出評價。完整樁一般指樁身混凝土膠結良好,均勻連續,抗壓強度達到設計要求的樁,它只存在一個樁底波阻抗界面,由圖10.1可以看出,A1ρ1v1>A2ρ2v2,所以R<0,根據入射波和反射波速度量的相位關系為同向,體現在U(t)曲線上信號為同向疊加。如圖所示其波形特徵為一衰減振動曲線,衰減快,樁底反射波明顯,解析度高。由圖分析可得一次反射波旅行時為t,樁長為L,則平均速度為
環境與工程地球物理
t可以從時程曲線上讀得,若知vc或L中任一個,便可求解。若二者均未知時,常利用統計的方法或其他實驗的方法假定vc或根據施工記錄來假定L,以求得近似解。
圖10.1完好樁及實測波形
當樁間存在缺陷,如斷裂、夾層、空洞、縮徑或擴徑時,缺陷部位的應力波傳播速度v、密度ρ或截面積A與樁身完好部位都有所不同,即存在波阻抗差異。當應力波遇到波阻抗差異界面時,將會產生反射。若根據這一反射時間計算整樁的波速,則其結果將大於完整樁時的波速。樁身在L1處斷開,Z2相當於充氣或充泥的波阻抗,反射系數R<0,曲線中主要反映了L1處多次反射波,而樁底反射不清(圖10.2)。在L1處樁產生擴徑,應力波在L1處反射系數R>0,入射波和反射波為反向疊加,從時程曲線不難確定擴徑和樁底位置。
圖10.2缺陷樁及波形
眾所周知,樁基的波速與樁身混凝土的密實程度有關。緻密的樁身,其波的傳播速度大,鬆散的樁身,其波速小。
(2)樁基完整性的分析與判別
波形准則。缺陷樁波形特徵見表10.1。圖10.3為典型模型缺陷樁的波形,由圖可見,其特徵明顯接收到的反射波波形對稱圓滑,無畸變,且呈指數衰減形態,則認為是完整樁的特徵波形,反之,則認為是缺陷樁波形(圖10.4)。主要原因是當彈性波在樁體中傳播時遇到不均勻界面或介質斷裂等情況,會產生反射波、透射波、散射波等,因其各波到達時間、振幅和相位可能存在差異,互相疊加後,造成波形畸變。
圖10.3各種類型模型樁的典型波形曲線
表10.1缺陷樁波旅行時曲線特徵表
續表
圖10.4各種模型缺陷樁的波形曲線
速度准則。一般彈性波在樁體中傳播的速度越高,表明樁體混凝土強度越大,反之越低。此外,當樁體中存在離析等缺陷時,往往也造成波速降低。但也有波速高、樁基質量不一定良好的特殊現象。如縮徑樁或斷裂較小的樁,往往波速並不降低,可由波速確定樁的質量(表10.2)。
表10.2波速樁基質量關系表
頻譜准則。當彈性波在樁體中傳播時,其頻率隨著傳播距離的增大,將不斷被樁土介質吸收和衰減,當樁體中存在不均勻界面時,該界面產生的反射波的頻率一般比樁底反射波頻率高,並且其相位也有所變化。通過頻譜分析,可確定其樁體的完整性。一般情況下,若樁體質量完好,則其振幅譜中只有一個主峰值,譜線對稱穩定,與峰值對應的相位譜表現為一相位,如圖10.5所示。若樁體存在結構缺陷或離析層等,則其振幅譜一般表現為兩個以上的峰值,其相位譜中的相位分不同情況有所不同。
圖10.5完整波形及頻譜圖
(3)樁基承載力計算
摩擦樁指樁置於松軟地層。當用重錘豎向敲擊樁周土或樁頭而被激起振動後,將在垂向作自由振動,並通過樁側摩擦力及樁尖作用力帶動樁周部分土體參與振動,形成復雜的樁-土振動體系,其裝置如圖10.6所示。樁及樁側參振的土體,可視作單質點振動體系,根據質量—彈簧—阻尼模式振動理論,可推導出樁基的剛度計算式。再根據剛度與承載力之間的直接相關關系,可計算出樁基的承載力。
圖10.6頻率法檢測裝置示意圖
A.樁基固有頻率
設樁及樁周土為一個單自由度無阻尼彈性系統,根據虎克定律和牛頓第二定律可以導出樁-土體系的振動是按正弦規律變化,其振動周期和固有頻率為
環境與工程地球物理
式中:m為折算後的樁質量與參扳上體質量之和;k為樁-土體系的抗壓剛度。
B.單樁抗壓剛度
環境與工程地球物理
式中:λ為動力修正系數,可取λ=2.365;g為重力加速度為9.81m/s2;Q1為折算後參振樁重,Q1=樁總重/3=1/3·AL0r1;Q2為折算後參振土重, 為參振土擴散半徑,即r0= ;A為樁的橫截面積(m2);L0為樁的全長(m);L為樁的入土深度(m);r1為樁的混凝土容重(kN/m3);r2為樁的下段L/3范圍內土的容重(kN/m3);φ為樁的內摩擦角;d為樁的直徑。
C.單樁臨界荷載
臨界荷載指與按靜荷載試驗測定的P-S曲線上與拐點對應的荷載。根據動靜對比關系,可得臨界荷載為
環境與工程地球物理
式中:μ為靜載與動測之間的比例系數。
它是選取不同地質條件下各種類型的樁基,進行動靜對比試驗,通過數理統計分析求得的回歸系數。
D.單樁允許承載力(Pa)
對粗長樁,特別是當樁尖以下土質遠較樁側土強時,則
環境與工程地球物理
對中小樁,特別是當樁尖以下土質較樁側土弱時,則
環境與工程地球物理
式中:Pa單位為kN;k為安全系數,一般取2.0。10.1.2.2穩態振動法(機械阻抗法)
(1)方法原理
該方法又稱為穩態正弦掃頻激振法。即對樁頂施加幅值不變的變頻激振力,利用速度導納隨激振頻率變化的特徵(圖10.7)來檢測樁基質量並計算承載力。
圖10.7樁基的導納反應曲線
A.速度導納
環境與工程地球物理
式中:F(f)為激振力;V(f)為利用檢波器在樁頂上可接收到其振動信號。
B.樁身砼的波速vc
由波動理論可知:
環境與工程地球物理
式中:Δf是導納曲線上兩諧振峰之間的頻率差;L為樁長。
應用時根據已知樁長L和測得的Δf計算vc,正常砼的波速vc=3300~4500m/s,若vc小於此范圍,說明砼的質量較差。另外,也可利用Δf和正常vc值反算樁長Lm,質量好的樁L=Lm,若Lm<L則反映了在深度處有質量問題。
C.特徵導納
所謂特徵導納是指導納頻譜曲線上振幅的幾何平均值,利用實測的特徵導納與理論計算的特徵導納作比較,可判別樁基的質量。如果實測值接近理論計算值說明樁基的質量及完整性較好。理論計算的特徵導納N和實測特徵導納Nm為
環境與工程地球物理
式中:ρc是樁基質量密度;Ac為樁的截面積;ρmax和Qmin是速度導納的最大值與最小值。
若Nm≈N為正常樁,若Nm>N,說明ρc或vc變小(存在局部混凝土鬆散)或Ac變小(局部有縮徑)。若Nm隨頻率增高而變小,表示樁徑上大下小,也為縮徑樁。若Nm<N,一般為擴徑樁。
D.動抗壓剛度
當樁在低頻(低於樁的固有頻率)激振時,位移較小,樁的振動可視為剛體運動或平動,此時導納曲線接近於直線,其斜率的倒數為樁的動抗壓剛度,即
環境與工程地球物理
式中:|U/F|和fm為導納曲線的低頻直線段上任一點M的導納值和頻率。
動抗壓剛度的意義及用處可歸納為:KD反映樁周土對樁柱的彈簧支承剛度,KD值的大小與樁的承載力有一定聯系;KD值與靜剛度KS建立統計關系,可以評價單樁承載力,並可估計在工作荷載下樁的彈性位移。
在實際工作中,通常不易獲得理想的曲線,在測得的諧振峰中常摻雜一些假峰,為區別真假峰,尚須測定隨頻率變化的速度導納相位變化曲線,即導納譜相頻曲線。相頻曲線上的零相位點所對應的導納譜幅頻曲線上的波峰,即為有效的諧振峰。
(2)檢測系統
樁的穩態激振測試系統中超低頻信號發生器輸出頻率5~1500Hz的自動掃描正弦信號給功率放大器,由它推動樁頂中心的電磁激振器向樁施加幅值不變的動態激振力,即激振力在激振頻率變化時,保持恆定,使樁產生穩態振動。
(3)模擬分析
為檢查機械阻抗法無損檢驗樁基質量的准確性,專門在某地製作了三根直徑1.8m、長約20m的原狀工程試樁。施工時預先在試樁內設置了各種缺陷,以供試驗測試後進行對比。
測試的各種導納曲線如圖10.8(a),(b),(c)所示。3#樁的導納曲線接近調制波形,幅度較大的調制波表示距樁頂8m處有反射,由於波動尚能傳到樁底,調制波的「載頻」是樁底反射,幾個波峰間的Δf基本一致,由此可計算出波速v0=3909m/s。由於3#樁Kd值大於預期值,而Nm小於理論值,可以判定距樁頂8m處有斷面擴大現象。
1#樁和2#樁由於其Lm較製作長度短,Kd值小於預期位,Nm大於預期值,是明顯的缺陷樁。其中2#樁無缺陷以下的反射,計算認為在6.11m處全斷裂,1#樁有缺陷以下的較小反射,計算認為在距樁頂3.75m處有離析,9.5m處有全斷裂。
圖10.8工程試樁及導納反應曲線
⑧ 樁基工程的樁質量檢測方法和手段是什麼
樁基檢測主要針對兩個方面,一是檢測樁身完整度(低應變、高應變),二是檢測樁承載力是否達到設計要求(靜載)。
低應變一般靠專業儀器來檢測(用連接到儀器的橡皮錘擊打樁頭,通過回傳的波線,儀器自動分析出樁的完整性);靜載可通過堆載(在架好的平台上堆混凝土塊、鋼錠等),還有用靜壓樁機配合等。