❶ 如何提高初中生的數學計算能力
在進入初中階段以後數學能力的培養是初中數學的重要任務之一,計算能力的好壞直接影響數學知識的應用,和以後內容的學習。進入初中時學生的年齡處在12----13歲左右,心理較為成熟,自控能力有所加強,但好玩、貪玩、慌張、做不下來等都導致其計算能力的培養,沒有恆心,沒有毅力,計算題都是算了半截或草草了事。 面對這樣的現狀,我在教學的實際過程中除了堅持課本中的教學之外,還嘗試了好多方法,其效果較好,我說出來供大家參考,共同交流。 一、 加強自查,也可以互查 七年級上冊的有理數、一元一次方程中都涉及到計算,我就讓學生做完題目後進行自查,可以將計算題再做一遍,將方程解帶回進行驗根,也可以將自己算的結果和同桌交流,結果不一樣的可以兩人共同檢查其中存在的問題,互相幫助糾正,對下次計算時可互相提醒,同時也可以讓父母幫助其進行檢查。 二、 對其出現的錯誤及時總結,及時提醒。 我在教學的過程中要求每名學生對自己容易出現問題的地方歸納在一起,寫成條子,壓在自己的書桌上,貼在自己眼睛能見到的牆上,比如乘方中的符號問題、底數問題、去括弧問題、方程中的去分母問題、整式中的合並同類項法則的應用等等問題。在我們解決這些問題時頭腦中就會映出條子上的內容,在實際計算中就會引起重視,克服經常會出錯的問題。 三.分散訓練,集中考核。 在學習有理數運算、一元一次方程、整式的化簡等涉及到運算的問題時,當堂作業中計算題目較多,學生易於疲勞、煩躁,做題也就不認真了,故在學習這些內容後,每天給學生兩道計算題,這樣量小,學生容易認真做,易於集中力量,准確率就高了。經過一段時間的訓練後,在進行集中考查,對出現的個別問題進行及時解決。 四、提倡運算的簡捷性和靈活性。 運算的簡捷是運算合理性的標志,是運算速度的要求,它是對學生思維深刻性和靈活性的考察。要提高學生合理進行運算的能力,"一題多解"是一個很好的訓練方法。因為通過「一題多解」,就可比較哪一種解法既正確又簡捷,從而確定合理的解法。從認知角度來看,運算的多解性是感性階段,而合理運算則是運算的理性階段。由多解性通過分析、比較來培養學生運算概括能力,從而進入合理性的階段,這是一個由量變到質變的過程。 五、培養學生良好的習慣 有部分學生,在測驗、考試之前單獨關照一下,盯得緊一點,成績會起很大變化。分析原因,不是基礎的東西沒有掌握,而是平時的習慣不行。因此,良好的學習習慣,直接影響著學生數學運算能力的形成和提高。所以,教師應要求學生認真聽課,積極思考,獨立完成作業,養成自覺檢查驗算和有錯必改的習慣。在教學中,應與應用題教學一樣,養成看到題目,首先審題的習慣,這樣數學運算起來方法會更正確、更合理,數學運算速度會不斷提高。學生數學運算出現差錯,錯寫、漏寫數字和運算符號是常有的事,因此指導好學生認真書寫也十分重要。規范的書寫格式可以表達運算的思路和數學運算步驟。誠然,培養學生良好的學習習慣,不能靠一朝一夕,也不能時緊時松,只有堅持不懈,一抓到底方能有成效。另外,老師也應以身作則,板書時、批改作業時,都要作出表率。 總之,提高學生的運算能力是一項復雜的系統工程,是一項長期的任務,不可能一蹴而就。只要我們珍惜每一次訓練機會,有計劃、有目標、有意識地進行長期的滲透,使學生逐步領悟運算能力的實質,就必然會促使學生養成正確、合理、快速進行運算的習慣,提高運算能力,提高數學效果。
❷ 能快速口算的技巧有哪些方法
一、一種做多位乘法不用豎式的方法.我們都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?這時候,大家一般都會用豎式,通過豎式計算,得數是132、156、168.其中有趣的規律:即個位上的數字正好是兩個因數個位數字的積.十位上的數字是兩個數字個位上的和.百位上的數字是兩個因數十位數字的積.例如:
12X14=168 1=1X1 6=2+4 8=2X4如果有進位怎麼辦呢?這個定律對有進位的情況同樣適用,在豎式時只要~滿幾時,就向下一位進幾.~例如:
14X16=224 4=4X6的個位 2=2+4+6 2=1+1X1 試著做做看下面的題:
12X15= 11X13= 15X18= 17X19=二、幾十一乘以幾十一的速算方法 例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81= 這些算式有什麼特點呢?是「幾十一乘以幾十一」的乘法算式,我們可以用:先寫十位積,再寫十位和(和滿10 進1),後寫個位積.「先寫十位積,再寫十位和(和滿10 進1),後寫個位積」就是一見到幾十一乘以幾十一的乘法算式,如果十位數的和是一位數,我們先直接寫十位數的積,再接著寫十位數的和,最後寫上1 就一定正確;如果十位數的和是兩位數,我們先直接寫十位數的積加1 的和,再接著寫十位數的和的個位數,最後寫一個1 就一定正確.我們來看兩個算式:21×61=41×91= 用「先寫十位積,再寫十位和(和滿10 進1),後寫個位積」這種速算方法直接寫得數時的思維過程.第一個算式,21×61=?思維過程是:2×6=12,2+6=8, 21×61 就等於1281.第二個算式,41×91=?思維過程是:4×9=36,4+9=13,36+1=37, 41×91 就等於3731. 試試上面題目吧!然後再看看下面幾題 61×91= 81×81= 31×71= 51×41=一、10-20的兩位數乘法及乘方速算方法:尾數相乘,被乘數加上乘數的尾數(滿十進位)【例1】 1 2 X 1 3 ----------1 5 6 (1)尾數相乘2X3=6 (2)被乘數加上乘數的尾數12+3=15 (3)把兩計算結果相連即為所求結果【例2】 1 5X 1 5------------2 2 5(1)尾數相乘5X5=25(滿十進位)(2)被乘數加上乘數的尾數15+5=20,再加上個位進上的2即20+2=22(3)把兩計算結果相連即為所求結果二、兩位數、三位數乘法及乘方速算a.首數相同,尾數相加和是十的兩位數乘法 方法:尾數相乘,首數加一再相乘 【例1】 5 4X 5 6---------3 0 2 4(1)尾數相乘4X6=24直接寫在十位和個位上(2)首數5加上1為6,兩首數相乘6X5=30(3)把兩結果相連即為所求結果【例2】 7 5X 7 5----------5 6 2 5(1)尾數相乘5X5=25直接寫在十位和個位上(2)首數7加上1為8,兩首數相乘8X7=56(3)把兩計算結果相連即可b.尾數是5的三位數乘方速算方法:尾數相乘,十位數加一,再將兩首數相乘【例】 1 2 5X 1 2 5------------1 5 6 2 5(1)尾數相乘5X5=25直接寫在十位和個位上(2)首數12加上1為13,再兩數相乘13X12=156(3)兩計算結果相連c.任意兩位數乘法方法:尾數相乘,對角相乘再相加,首數相乘 【例】 3 7X X 6 2---------2 2 9 4(1)尾數相乘7X2=14(滿十進位)(2)對角相乘3X2=6;7X6=42,兩積相加6+42=48(滿十進位)(3)首數相乘3X6=18加上十位進上的4為18+4=22(4)把計算結果相連即為所求結果b.任意兩位數及三位平方速算方法:尾數的平方,首數乘尾數擴大2倍,首數的平方[例] 2 3X 2 3---------5 2 9 (1)尾數的平方3X3=9(滿十進位)(2)首尾數相乘2X3=6擴大兩倍為12寫在十位上(滿十進位)(3)首數的平方2X2=4加上十位進上的1為5(4)把計算結果相連即為所求結果c.三位數的平方與兩位數的平方速算方法相同[例] 1 3 2 X 1 3 2------------1 7 4 2 4(1)尾數的平方2X2=4寫在個位(2)首尾數相乘13X2=26擴大2倍為52寫在個位上(滿十進位)(3)首數的平方13X13=169加上十位進上的5為174(4)把計算結果相連即為所求結果〖注意:三位數的首數指前兩位數字!〗三、大數的平方速算方法:把題目與100相差,相差數稱之為差數;先算差數的平方寫在個位和十位上(缺位補零),再用題目減去差數得一結果;最後把兩結果相連即為所求結果【例】 9 4X 9 4-----------8 8 3 6(1)94與100相差為6(2)差數6的平方36寫在個位和十位上(3)用94減去差數6為88寫在百位和千位上(4)把計算結果相連即為所求結果 B55 × 55 = ? 27 × 23 = ? 91 × 99 = ? 43 × 47 = ? 88 × 82 = ? 74 × 76 = ?大家能夠很快算出這些算式的正確答案嗎?注意,是很快哦!你能嗎?我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;很神氣吧!速算秘訣:(就以第一題為例好啦)(1)分別取兩個數的第一位,而後一個的要加上一以後,相乘.[5×(5+1)]=30;(2)再將末尾數相乘的得數寫在後面就可以得出正確的答案了.5×5=25;(3)3025!Bingo!其它依次類推就行了.仔細看每一個式子里的兩位數的十位是相同的,而個位的兩數則是相補的.這樣的速算秘訣只能夠適用於這種情況的算式.所以說大家千萬不要把巧算和真正的速算混淆在一起,真正的速算是任何數都能算的.一、關於9的數學速算技巧(兩位數乘法)
關於9的口訣:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81從上面的口訣口有沒有看到從1到9任何一個數和9相乘的積,個位數和十位數的和還是等於9.
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9下面我們再做一些復雜一點的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
關於兩位數的乘法,上面的題目中,前面的乘數都是9的倍數,而且個位和十位的和都等於9.
這樣我們能不能找到一種簡便的演算法呢?也就是把兩位數的乘法變成一位數的乘法呢?
我們先把上面這些數變一變.
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我們再把上面的數變一變
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
當然如果知道口訣你們可以直接把18 = 2 × 9同樣的方法你們可以拆出下面的數,也可以背口訣27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
為了找到計算上面問題的方法,我們把上面的式子再變一次.
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
現在我們來算上面的問題:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
120 - 12 = 108;
這樣就有了
18 × 12 = 2 × 108 = 216
是不是把一個兩位數的乘法變成了一位數的乘法?
而且可以通過口算就得出結果?我用這種方法教威威算乘法,他只需要我算這一個,後邊的題目就自己會算了.
上面我們的計算好象很麻煩,其實現在總結一下就簡單了.
❸ 初中數學的方法與技巧
一:平時的數學學習:
○1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.
○2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.
○3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.
○4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.
二:期中期末數學復習:
要將平時的單元檢測卷訂成冊,並且將錯題再做一遍.如果整張試卷考得都不好,那麼可以復印將試卷重做一遍.除試卷外,還可以將作業上的錯題、難題、易錯題重做一遍.另外,自己還可以做2-3張期末模擬卷.
三:數學考試技巧:
如果想得高分,在選擇、填空、計算題上是不能丟分的.在考數學的時候思想不能開小差,而且遇到難題時不能想「沒考好怎麼辦啊」等內容.在通常情況下,期末考試的難題都是不知道怎麼做,但有可能突然明白的那種.遇到這種題目要沉著冷靜,利用題目給你的一切條件進行分析,如這次考試有兩個空白的鍾,還有去年七年級期末的幾題填空.這些條件都對你的解題有很大幫助.在期中、期末考試中有充足的時間,將自己的速度壓下來,不是越快越好,爭取一次做成功.大概留35分鍾的時間檢查.
最終提醒大家:多做題有一定作用,但上課聽講、認真答題及提高准確率、總結經驗才是最重要的.還要將所學的知識用到生活中去,做到學以致用.當你運用數學知識解決了生活中實際問題的時候,你就會感受到學習的樂趣。
❹ 速算的方法與技巧
全腦速算
全腦速算是模擬電腦運算程序而研發的快速腦算技術教程,它能使兒童快速學會腦算任意數加、減、乘、除、乘方及驗算。從而快速提高孩子的運算速度和准確率。
全腦速算的運算原理:
通過雙手的活動來刺激大腦,讓大腦對數字直接產生敏感的條件反射作用,達到快速計算的目的。
(1)以手作為運算器並產生直觀的運算過程。
(2)以大腦作為存儲器將運算的過程快速產生反應並表示出。
例如:6752 + 1629 = ?
運算過程和方法: 首位6+1是7,看後位(7+6)滿10,進位進1,首位7+1寫8,百位7減去6的補數4寫3,(後位因5+2不滿10,本位不進位),十位5+2是7,看後位(2+9)滿10進1,本位7+1寫8,個位2減去9的補數1寫1,所以本題結果為8381。
全腦速算乘法運算部分原理:
假設A、B、C、D為待定數字,則任意兩個因數的積都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0 +A×D×C0/C+B×D
= AB×C0 +A×D×10+B×D
= AB×C0 +A0×D+B×D
= AB×C0 +(A0+B)×D
= AB×C0 +AB×D
= AB×(C0 +D)
= AB×CD
此方法比較適用於C能整除A×D的乘法,特別適用於兩個因數的「首數」是整數倍,或者兩個因數中有一個因數的「尾數」是「首數」的整數倍。
兩個因數的積,只要兩個因數的首數是整數倍關系,都可以運用此方法法進行運算,
即A =nC時,
AB×CD=(AB+n D)×C0+B×D
例如:
23×13=29×10+3×3=299
33×12=39×10+3×2=396
加法速算
計算任意位數的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣 ——「本位相加(針對進位數) 減加補,前位相加多加一 」就可以徹底解決任意位數從高位數到低位數的加法速算問題。
例如:(1),67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
減法速算
計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣 ——「本位相減(針對借位數) 加減補,前位相減多減一 」就可以徹底解決任意位數從高位數到低位數的減法速算問題。
例如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
乘法速算
乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗數×10。
速算嬗數|=(a-c)×d+(b+d-10)×c,,
速算嬗數‖=(a+b-10)×c+(d-c)×a,
速算嬗數Ⅲ=a×d-『b』(補數)×c 。 更是獨秀一枝,無以倫比。
(1),用第一種速算嬗數=(a-c)×d+(b+d-10)×c,適用於首同尾任意的任意二位數乘法速算。
比如 :26×28, 47×48,87×84-----等等,其嬗數一目瞭然分別等於「8」,「20 」和「8」即可。
(2), 用第二種速算嬗數=(a+b-10)×c+(d-c)×a適用於一因數的二位數之和接近等於「10」,另一因數的二位數之差接近等於「0」的任意二位數乘法速算 ,
比如 :28×67, 47×98, 73×88----等等 ,其嬗數也同樣可以一目瞭然分別等於「2」,「5 」和「0」即可。
(3), 用第三種速算嬗數=a×d-『b』(補數)×c 適用於任意二位數的乘法速算。
❺ 常用的速算方法與技巧有哪些
1.湊整法:根據運算定律和運算性質,把算式中能湊成整數(特別是整十數、整百數等)的部分合並或拆開,然後求得結果。
例如:8+4.1+1+5.9
=(8+1)+(4.1+5.9)
=10+10
=20
例如:1.25×18
=1.25×(10+8)
=1.25×10+1.25×8
=12.5+10
=22.5
例如:78×98
=78×(100-2)
=78×100-78×2
=7800-156
=7644
2.變化法:適當轉變運算方法,即以加代減,以減代加,以乘代除,以除代乘;或改變運算順序,或利用約分、加減進行化簡等。
例如:4.7×0.25+7.3÷4
=(4.7+7.3)×0.25
=3
例如:3÷4-0.5÷0.7-0.3÷0.4+5÷7
=(3÷4-0.3÷0.4)+(5÷7-0.5÷0.7)
=0
例如:3.25×0.8×0.125÷(0.1253)
=
=1
3.特性法:利用「0」與「1」在運算中的特性,進行簡便運算。
例如:(1.9-1.9×0.9)÷(3.8-2.8)
=(1.9×(1-0.9)÷1
=0.19
4.常用數據法:利用一些常用數據,通過數的等值變形而使計算簡便。
常用數據如:25×4=100;125×8=1000;=0.25=25%;=0.75=75%;=0.8=80%;=0.04=4%等等。同學們可自己再列出一些,把它們熟記在心。
我們前面所舉的例子已對此有所運用,同學們可對照著看一下。
❻ 初中生需要怎麼樣提高計算能力呢
多做題。俗話說,熟能生巧,計算能力不是一下就能練就的,不過題目做的多了也就自然會提高計算能力。
❼ 速算方法與技巧
頭相同,尾互補的兩位數相乘。頭互補,尾相同的兩位數相乘,任何兩位實數相乘。
十位數相同,個位數相加等於10的兩位數相乘。表達式為ab*a(10-b),這里ab分別代表了十位數字和個位數字。結果為千位百位是數字a*(a+1),十位個位數字是b*(10-b),列如37*33=1221。
個位數為5的平方的演算法,表達式為a5*a5,a代表5之前的數字,結果為十位個位為25,前面數字為a*(a+1)的積,比如說55*55=3025。
(7)初中快速計算的方法與技巧擴展閱讀:
用戶速算注意事項:
要多做題目訓練,俗話說熟能生巧,題目做的多了,做題時遇到類似可以用速算計算的大腦就會快速搜索到對應的口訣。
記口訣也是有技巧的,要分類記憶,找共同點。不能像我們記乘法口訣那樣,只需死死地記住就行,不需要理解,但像各種圖形的面積、體積、周長公式就不是死記能解決的,要理解記憶,這樣記的才能牢固。
❽ 數學快數學快速計算方法
5大數學速算技巧,讓孩子做題又快又准確
如果說學語文,最重要的基礎是字詞,那麼學數學,最重要的基礎就是口算了。當代教育家,數學特級教師邱學華老師曾經說過:「計算要過關,必須抓口算。」
5大數學速算技巧,讓孩子做題又快又准確
那麼,怎樣才能算得既快又准確呢?只要熟練掌握計演算法則和運算順序,根據題目本身的特點,使用合理、靈活的計算方法,化繁為簡,化難為易,就能算得又快又准確。先為大家介紹5個速算技巧:
5大數學速算技巧,讓孩子做題又快又准確
1. 方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
例如:
23-11+7=23+7-11
4×14×5=4×5×14
10÷8×4=10×4÷8
2. 方法二:結合律法
加括弧法
(1)在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
例如:
23+19-9=23+(19-9)
33-6-4=33-(6+4)
(2)在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
例如:
2×6÷3=2×(6÷3)
10÷2÷5=10÷(2×5)
去括弧法
(1)在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。
例如:
17+(13-7)=17+13-7
23-(13-9)=23-13+9
23-(13+5)=23-13-5
(2)在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)
例如:
1×(6÷2)=1×6÷2
24÷(3×2)=24÷3÷2
24÷(6÷3)=24÷6×3
3. 方法三:乘法分配律法
分配法
括弧里是加或減運算,與另一個數相乘,注意分配。
例如:
8×(5+11)=8×5+8×11
提取公因式法
注意相同因數的提取。
例如:
9×8+9×2=9×(8+2)
4. 方法四:湊整法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦,有借有還,再借不難嘛。
例如:
99+9=(100-1)+(10-1)
5. 方法五:拆分法
拆分法就是為了方便計算,把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。
例如:
32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
要想讓孩子熟練運用速算方法,需要通過持之以恆的練習,提升計算能力,這樣,無論平時做作業還是考試都能游刃有餘。