導航:首頁 > 方法技巧 > 高中數學解題方法如何優選

高中數學解題方法如何優選

發布時間:2022-05-29 16:43:02

① 高中數學大題解題方法有哪些

一、三角函數題
注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。

二、數列題

1.證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;

2.最後一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;

3.證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。

三、立體幾何題

1.證明線面位置關系,一般不需要去建系,更簡單;

2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;

3.注意向量所成的角的餘弦值(范圍)與所求角的餘弦值(范圍)的關系(符號問題、鈍角、銳角問題)。

四、概率問題

1.搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;

2.搞清是什麼概率模型,套用哪個公式;

3.記准均值、方差、標准差公式;

4.求概率時,正難則反(根據p1+p2+...+pn=1);

5.注意計數時利用列舉、樹圖等基本方法;

6.注意放回抽樣,不放回抽樣;

7.注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;

8.注意條件概率公式;

9.注意平均分組、不完全平均分組問題。

五、圓錐曲線問題

1.注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數法、待定系數法;

2.注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變數的取值范圍等等;

3.戰術上整體思路要保7分,爭9分,想12分。

六、導數、極值、最值、不等式恆成立(或逆用求參)問題

1.先求函數的定義域,正確求出導數,特別是復合函數的導數,單調區間一般不能並,用“和”或“,”隔開(知函數求單調區間,不帶等號;知單調性,求參數范圍,帶等號);

2.注意最後一問有應用前面結論的意識;

3.注意分論討論的思想;

4.不等式問題有構造函數的意識;

5.恆成立問題(分離常數法、利用函數圖像與根的分布法、求函數最值法);

6.整體思路上保6分,爭10分,想14分。

② 高中數學要怎麼總結解題方法

高中數學解題思路與技巧總結
(1)函數
函數題目,先直接思考後建立三者的聯系。首先考慮定義域,其次使用「三合一定理」。
(2)方程或不等式
如果在方程或是不等式中出現超越式,優先選擇數形結合的思想方法;
(3)初等函數
面對含有參數的初等函數來說,在研究的時候應該抓住參數沒有影響到的不變的性質。如所過的定點,二次函數的對稱軸或是……;
(4)選擇與填空中的不等式
選擇與填空中出現不等式的題目,優選特殊值法;
(5)參數的取值范圍
求參數的取值范圍,應該建立關於參數的等式或是不等式,用函數的定義域或是值域或是解不等式完成,在對式子變形的過程中,優先選擇分離參數的方法;
(6)恆成立問題
恆成立問題或是它的反面,可以轉化為最值問題,注意二次函數的應用,靈活使用閉區間上的最值,分類討論的思想,分類討論應該不重復不遺漏;
(7)圓錐曲線問題
圓錐曲線的題目優先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式;
(8)曲線方程
求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數法,如果不知道曲線的形狀,則所用的步驟為建系、設點、列式、化簡(注意去掉不符合條件的特殊點);
(9)離心率
求橢圓或是雙曲線的離心率,建立關於a、b、c之間的關系等式即可;
(10)三角函數
三角函數求周期、單調區間或是最值,優先考慮化為一次同角弦函數,然後使用輔助角公式解答;解三角形的題目,重視內角和定理的使用;與向量聯系的題目,注意向量角的范圍;
(11)數列問題
數列的題目與和有關,優選和通公式,優選作差的方法;注意歸納、猜想之後證明;猜想的方向是兩種特殊數列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想;
(12)立體幾何問題
立體幾何第一問如果是為建系服務的,一定用傳統做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數值的轉化;錐體體積的計算注意系數1/3,而三角形面積的計算注意系數1/2 ;與球有關的題目也不得不防,注意連接「心心距」創造直角三角形解題;
(13)導數
導數的題目常規的一般不難,但要注意解題的層次與步驟,如果要用構造函數證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,注意點是否在曲線上;
(14)概率
概率的題目如果出解答題,應該先設事件,然後寫出使用公式的理由,當然要注意步驟的多少決定解答的詳略;如果有分布列,則概率和為1是檢驗正確與否的重要途徑;
(15)換元法
遇到復雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成;
(16)二項分布
注意概率分布中的二項分布,二項式定理中的通項公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點能否取到需單獨驗證,用點斜式或斜截式方程的時候考慮斜率是否存在等;
(17)絕對值問題
絕對值問題優先選擇去絕對值,去絕對值優先選擇使用定義;
(18)平移
與平移有關的,注意口訣「左加右減,上加下減」只用於函數,沿向量平移一定要使用平移公式完成;
(19)中心對稱
關於中心對稱問題,只需使用中點坐標公式就可以,關於軸對稱問題,注意兩個等式的運用:一是垂直,一是中點在對稱軸上。
六種解題思路:
1.函數與方程思想
函數與方程的思想是中學數學最基本的思想。所謂函數的思想是指用運動變化的觀點去分析和研究數學中的數量關系,建立函數關系或構造函數,再運用函數的圖像與性質去分析、解決相關的問題。而所謂方程的思想是分析數學中的等量關系,去構建方程或方程組,通過求解或利用方程的性質去分析解決問題。
2.數形結合思想
數與形在一定的條件下可以轉化。如某些代數問題、三角問題往往有幾何背景,可以藉助幾何特徵去解決相關的代數三角問題;而某些幾何問題也往往可以通過數量的結構特徵用代數的方法去解決。因此數形結合的思想對問題的解決有舉足輕重的作用。
解題類型
(1)「由形化數」:就是藉助所給的圖形,仔細觀察研究,提示出圖形中蘊含的數量關系,反映幾何圖形內在的屬性。
(2)「由數化形」 :就是根據題設條件正確繪制相應的圖形,使圖形能充分反映出它們相應的數量關系,提示出數與式的本質特徵。
(3)「數形轉換」 :就是根據「數」與「形」既對立,又統一的特徵,觀察圖形的形狀,分析數與式的結構,引起聯想,適時將它們相互轉換,化抽象為直觀並提示隱含的數量關系。
3.分類討論思想
分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養學生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。
解決分類討論問題的關鍵是化整為零,在局部討論降低難度。
常見的類型
類型1:由數學概念引起的的討論,如實數、有理數、絕對值、點(直線、圓)與圓的位置關系等概念的分類討論;
類型2:由數學運算引起的討論,如不等式兩邊同乘一個正數還是負數的問題;
類型3 :由性質、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應用引起的討論;
類型4:由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關問題引起的討論。
類型5:由某些字母系數對方程的影響造成的分類討論,如二次函數中字母系數對圖象的影響,二次項系數對圖象開口方向的影響,一次項系數對頂點坐標的影響,常數項對截距的影響等。
分類討論思想是對數學對象進行分類尋求解答的一種思想方法,其作用在於克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。
4.轉化與化歸思想
轉化與化歸是中學數學最基本的數學思想之一,是一切數學思想方法的核心。數形結合的思想體現了數與形的轉化;函數與方程的思想體現了函數、方程、不等式之間的相互轉化;分類討論思想體現了局部與整體的相互轉化,所以以上三種思想也是轉化與化歸思想的具體呈現。
轉化包括等價轉化和非等價轉化,等價轉化要求在轉化的過程中前因和後果是充分的也是必要的;不等價轉化就只有一種情況,因此結論要注意檢驗、調整和補充。轉化的原則是將不熟悉和難解的問題轉為熟知的、易解的和已經解決的問題,將抽象的問題轉為具體的和直觀的問題;將復雜的轉為簡單的問題;將一般的轉為特殊的問題;將實際的問題轉為數學的問題等等使問題易於解決。
常見的轉化方法
(1)直接轉化法:把原問題直接轉化為基本定理、基本公式或基本圖形問題;
(2)換元法:運用「換元」把式子轉化為有理式或使整式降冪等,把較復雜的函數、方程、不等式問題轉化為易於解決的基本問題;
(3)數形結合法:研究原問題中數量關系(解析式)與空間形式(圖形)關系,通過互相變換獲得轉化途徑;
(4)等價轉化法:把原問題轉化為一個易於解決的等價命題,達到化歸的目的;
(5)特殊化方法:把原問題的形式向特殊化形式轉化,並證明特殊化後的問題,使結論適合原問題;
(6)構造法:「構造」一個合適的數學模型,把問題變為易於解決的問題;
(7)坐標法:以坐標系為工具,用計算方法解決幾何問題也是轉化方法的一個重要途徑。
5.特殊與一般思想
用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,同學們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。
6.極限思想
極限思想解決問題的一般步驟為:
一、對於所求的未知量,先設法構思一個與它有關的變數
二、確認這變數通過無限過程的結果就是所求的未知量
三、構造函數(數列)並利用極限計演算法則得出結果或利用圖形的極限位置直接計算結果。
掌握數學解題思想是解答數學題時不可缺少的一步,建議同學們在做題型訓練之前先了解數學解題思想,掌握解題技巧,並將做過的題目加以歸納總結,以便在考試中游刃有餘。

③ 高中數學選擇題解題技巧如何得高分

1、直接法:數學選擇題就是從題設條件出發,通過正確的運算、推理或判斷,直接得出結論再與選擇支對照,從而作出選擇的一種方法。運用此種方法解題需要扎實的數學基礎。
2、驗證法:就是將選擇支中給出的答案或其特殊值,代入題干逐一去驗證是否滿足題設條件,然後選擇符合題設條件的選擇支的一種方法。在運用驗證法解題時,若能據題意確定代入順序,則能較大提高數學選擇題解題速度。
3、特例法:就是運用滿足題設條件的某些特殊數值、特殊位置、特殊關系、特殊圖形、特殊數列、特殊函數等對各選擇支進行檢驗或推理,利用問題在某一特殊情況下不真,則它在一般情況下也不真的原理,由此判明選項真偽的方法。用特例法解選擇題時,特例取得愈簡單、愈特殊愈好。
4、圖解法:就是利用函數圖像或數學結果的幾何意義,將數的問題(如解方程、解不等式、求最值,求取值范圍等)與某些圖形結合起來,利用直觀幾何性質分析,再輔以簡單計算,確定正確答案的方法。這種解法貫穿數形結合思想,每年高考均有很多選擇題(也有填空題、解答題)都可以用數形結合思想解決,既簡捷又迅速。
5、篩選法(也叫排除法、淘汰法):就是充分運用選擇題中單選題的特徵,即有且只有一個正確選擇支這一信息,從選擇支入手,根據題設條件與各選擇支的關系,通過分析、推理、計算、判斷,對選擇支進行篩選,將其中與題設相矛盾的干擾支逐一排除,從而獲得正確結論的方法。使用篩選法的前提是「答案唯一」,即四個選項中有且只有一個答案正確。

④ 怎樣解題高中數學解題方法與技巧

2019學魁`榜邱崇數學解題技巧(含終極秒殺選填)(16.6G超清視頻)

鏈接:

提取碼: 12i6

若資源有問題歡迎追問~

⑤ 高中數學解題技巧與方法

2019學魁`榜邱崇數學解題技巧(含終極秒殺選填)(16.6G超清視頻)

鏈接:

提取碼: 12i6

若資源有問題歡迎追問~

⑥ 高中數學選擇題有什麼好的解題方法與技巧

做社會嘗試,了解數學應用范圍(百分百濃度,圖形的切割的剖面。)僅就列方程,解方程來講。未知數多了好列出方程,解起來就繁瑣。具體怎樣好,依題而異。特殊題型,(求多少人之類的題結果一定是整數,讓某成品用料只能入不能舍,相反只能舍不能入)。

⑦ 高中數學解題方法及技巧

分享高中數學橢圓解題方法

此回答為文科版,刪去了原來比較難或用的不多的的一些知識點和相關例題,適用於文科生和基礎稍差的理科生。

一、設點或直線

做題一般都需要設點的坐標或直線方程。點可以設為,就可以。還要注意的是,很多點的坐標都是設而不求的。對於一條直線,如果過定點並且不與y軸平行,可以設點斜式,如果不與x軸平行,可以設(m是傾斜角的餘切,即斜率的倒數,下同)。如果直線不過定點,乾脆在設直線時直接設為y=kx+m或x=my+n(注意:y=kx+m不表示平行於y軸的直線,x=my+n不表示平行於x軸的直線)

二、轉化條件

有的時候題目給的條件是不能直接用或直接用起來不方便的,這時候就需要將這些條件轉化一下。對於一道題來說這是至關重要的一步,如果轉化得巧,可以極大地降低運算量。下面列出了一些轉化工具所能轉化的條件。

向量:平行、銳角或點在圓外(向量積大於0)、直角或點在圓上、鈍角或點在圓內(向量積小於0)、平行四邊形

斜率:平行(斜率差為0)、垂直(斜率積為-1)、對稱(兩直線關於坐標軸對稱則斜率和為0,關於y=±x對稱則斜率積為1

使用斜率轉化一定不要忘了單獨討論斜率不存在的情況!

幾何:相似三角形(依據相似列比例式)、等腰直角三角形(構造全等)

有的題目可能不需要轉化直接帶入條件解題即可,有的題目給的條件可能有多種轉化方式,這時候最好先別急著做題,多想幾種轉化方法,估計一下哪種方法更簡單,三思而後行。

三、代數運算

轉化完條件就剩算數了。很多題目都要將直線與橢圓聯立以便使用一元二次方程的韋達定理,但要注意並不是所有題目都是這樣。

解析幾何中有的題目可能需要算弦長,可以用弦長公式

解析幾何中有時要求面積,如果O是坐標原點,橢圓上兩點A、B坐標分別為和,AB與x軸交於D,則(d是點O到AB的距離;第三個公式教材上沒有,解要用的話需要把下面的推導過程抄一下)。

⑧ 高中數學解題技巧有什麼

高中數學解題技巧主要有以下幾種方法:

1、配方法:把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。

2、因式分解法:因式分解,就是把一個多項式化成幾個整式乘積的形式。

3、換元法:所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理:一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數。

知道孩子數學學不好的原因:

1、不要讓孩子被動學習,還有很多同學在上了高中之後還想初中,那樣每天吊兒郎當,這是跟隨著老師的思路。自己沒有一些衍生,之前沒有學習方法,在下課了也不會找。道練習題去練習,就等著上課,並且可前面不會用寫對老師上課的內容都不知道上課光想著記筆記,沒有思路的學習是沒有成效的。

2、老師上課的時候就是把這個知識表達的清楚一點,分析一下重點和難點。然而還有很多學生上課不專心聽課。對很多葯店也都不知道,只是筆記記了一大堆,自己也看不懂問題還有很多,在課後也不會進行總結。只是快點兒寫作業。寫作業的時候,他們也就是亂套提醒他們對概念,法則都不了解。做題也只能是碰巧的做。

⑨ 高中數學線性規劃解題技巧是什麼

高中數學解題技巧主要有以下幾種方法:

1、配方法:把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。

2、因式分解法:因式分解,就是把一個多項式化成幾個整式乘積的形式。

3、換元法:所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理:一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數。

知道孩子數學學不好的原因:

1、不要讓孩子被動學習,還有很多同學在上了高中之後還想初中,那樣每天吊兒郎當,這是跟隨著老師的思路。自己沒有一些衍生,之前沒有學習方法,在下課了也不會找。道練習題去練習,就等著上課,並且可前面不會用寫對老師上課的內容都不知道上課光想著記筆記,沒有思路的學習是沒有成效的。

2、老師上課的時候就是把這個知識表達的清楚一點,分析一下重點和難點。然而還有很多學生上課不專心聽課。對很多葯店也都不知道,只是筆記記了一大堆,自己也看不懂問題還有很多,在課後也不會進行總結。只是快點兒寫作業。寫作業的時候,他們也就是亂套提醒他們對概念,法則都不了解。做題也只能是碰巧的做。

閱讀全文

與高中數學解題方法如何優選相關的資料

熱點內容
epdm塑膠顆粒使用方法怎麼修邊 瀏覽:56
vivo攝像頭連接方法 瀏覽:807
多股皮帶張力測試的方法視頻 瀏覽:827
連乘求導數簡便方法 瀏覽:719
小孩子哭鬧要東西解決方法 瀏覽:426
臉上出油有哪些好方法 瀏覽:691
風干醬鴨食用方法 瀏覽:508
我們減少污染的方法有哪些 瀏覽:419
周圍人打呼嚕解決方法 瀏覽:288
南通育兒方法哪裡有 瀏覽:267
查找傳統節日的方法有哪裡 瀏覽:209
冬天減肚子最快方法視頻 瀏覽:418
枸杞酒最佳搭配方法 瀏覽:998
mac系統愛奇藝下載的視頻在哪裡設置方法 瀏覽:607
無水乙醇鑒別檢驗方法 瀏覽:691
如何避免吃素的方法 瀏覽:189
天車鋼帶編碼器的安裝方法 瀏覽:59
腹部肌肉變弱鍛煉方法 瀏覽:39
怎麼樣去黑坑的方法 瀏覽:49
老筆記本固態硬碟安裝方法 瀏覽:525