❶ 怎麼算期望值
投資生產A產品的期望為64萬元,投資生產B產品的期望為41萬元。
解答過程為:
1、先求A,B兩種產品成功的概率:
P(A)=40/50=0.8,P(B)=35/50=0.7。
2、投資生產A產品的期望為E(A)=0.8*100+0.2*(-80)=64;
投資生產B產品的期望為E(B)=0.7*80+0.3*(-50)=41。
E(A)>E(B)
所以投資A產品要好,因為A平均獲利水平高於B。
(1)電影期望值的計算方法及系統擴展閱讀:
數學期望的性質:
1、設X是隨機變數,C是常數,則E(CX)=CE(X)。
2、設X,Y是任意兩個隨機變數,則有E(X+Y)=E(X)+E(Y)。
3、設X,Y是相互獨立的隨機變數,則有E(XY)=E(X)E(Y)。
4、設C為常數,則E(C)=C。
期望的應用
1、在統計學中,想要估算變數的期望值時,用到的方法是重復測量此變數的值,然後用所得數據的平均值來作為此變數的期望值的估計。
2、在概率分布中,數學期望值和方差或標准差是一種分布的重要特徵。
❷ 數學期望的計算公式,具體怎麼計算
公式主要為:
性質3和性質4可以推到到任意有限個相互獨立的隨機變數之和或之積的情況。
參考資料:數學期望-網路
❸ 求舉例說明數學期望的計算方法
期望=預計收益*收益可能性。
如投資20元,有50%收益100元,50%收益0元,那麼期望收益=100*50%+0*50%-20=30元。
❹ 期望值怎麼算
E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn)
X1,X2,X3,……,Xn為這幾個數據,p(X1),p(X2),p(X3),……p(Xn)為這幾個數據的概率函數。
需要注意的是,期望值並不一定等同於常識中的「期望」——「期望值」也許與每一個結果都不相等。(換句話說,期望值是該變數輸出值的平均數。期望值並不一定包含於變數的輸出值集合里。)
如果X是連續的隨機變數,存在一個相應的概率密度函數(也就是說一個隨機變數的輸出不會影響另一個隨機變數的輸出。)
例如,美國的輪盤中常用的輪盤上有38個數字,每一個數字被選中的概率都是相等的。賭注一般押在其中某一個數字上,如果輪盤的輸出值和這個數字相等,那麼下賭者可以將相當於賭注35倍的獎金(原注不包含在內),若輸出值和下壓數字不同,則賭注就輸掉了。
考慮到38種所有的可能結果,然後這里我們的設定的期望目標是「贏錢」,則因此,討論贏或輸兩種預想狀態的話,以1美元賭注押一個數字上,則獲利的期望值為:贏的「概率38分之1,能獲得35元」,加上「輸1元的情況37種」,結果約等於-0.0526美元。
也就是說,平均起來每賭1美元就會輸掉5美分,即美式輪盤以1美元作賭注的期望值為 負0.0526美元。
❺ 計算損失的期望值(寫出計算過程)
解:期望值為:1000x0.7+10000x0.2+50000x0.1+200000x0=7700
❻ 期望值公式
離散型隨機變數X的取值為
(6)電影期望值的計算方法及系統擴展閱讀:
數學期望的來歷:
在17世紀,有一個賭徒向法國著名數學家帕斯卡挑戰,給他出了一道題目:甲乙兩個人賭博,他們兩人獲勝的機率相等,比賽規則是先勝三局者為贏家,一共進行五局,贏家可以獲得100法郎的獎勵。
當比賽進行到第四局的時候,甲勝了兩局,乙勝了一局,這時由於某些原因中止了比賽,那麼如何分配這100法郎才比較公平?用概率論的知識,不難得知,甲獲勝的可能性大,乙獲勝的可能性小。
因為甲輸掉後兩局的可能性只有(1/2)×(1/2)=1/4,也就是說甲贏得後兩局的概率為1-(1/4)=3/4,甲有75%的期望獲得100法郎;而乙期望贏得100法郎就得在後兩局均擊敗甲,乙連續贏得後兩局的概率為(1/2)*(1/2)=1/4,即乙有25%的期望獲得100法郎獎金。
可見,雖然不能再進行比賽,但依據上述可能性推斷,甲乙雙方最終勝利的客觀期望分別為75%和25%,因此甲應分得獎金的100*75%=75(法郎),乙應分得獎金的的100×25%=25(法郎)。這個故事裡出現了「期望」這個詞,數學期望由此而來。
❼ 計算期望值的公式是什麽
一件不確定的事件有確定的所有結果,把第一種的結果值記為s1,它發生的概率記為p1,第二種結果值記為s2,它發生的概率為p2,... 第n種結果值記為sn,它發生的概率記為pn ... 那麼期望值 Ex=s1*p1+s2*p2+...+sn*pn+...
❽ 期望值計算公式
每種情況x乘對應概率之和。如骰子有1,2,3,4,5,6
情況
期望就是1x1/2+2x1/2+3x1/2+...+6x1/2=21/2