『壹』 怎樣計算大海的潮汐時間
計算公式如下:
1.高潮時=(日差)0.8×(陰歷日子)7-16(上半月-下半月-1.16)十高潮間隙,
2.低潮時=高潮時-6時12分,
3.高潮時=0.8×(5-1)十10∶50′=3∶12′+10∶50′∶14∶02′
其方法是陰歷日子(上半月-3,下半月-18)×0.8,即為當日的高潮潮時。
『貳』 什麼是海洋測繪
測量海洋底 部的地球物 理場的性質及其變化特徵,繪製成不同比例尺的海圖和專題海圖。 測量方法主要包括海洋地震測量、海洋重力測量、海洋磁力測量、海底熱流測量、海洋電法測量和海洋放射性測量。因海洋水體存在,須用海洋調查船和專門的測量儀器進行快速的連續觀測,一船多用,綜合考察。基本測量方式包括:①路線測量。即剖面測量。了解海區的地質構造和地球物理場基本特徵。②面積測量。按任務定的成圖比例尺,布置一定距離的測線網。比例尺越大,測網密度愈密。在海洋調查中,廣泛採用無線電定位系統和衛星導航定位系統 海洋測量的基本理論、技術方法和測量儀器設備等,同陸地測量相比,有它自己的許多特點。主要是測量內容綜合性強,需多種儀器配合施測,同時完成多種觀測項目;測區條件比較復雜,海面受潮汐、氣象等影響起伏不定;大多為動態作業,測者不能用肉眼通視水域底部,精確測量難度較大。一般均採用無線電導航系統、電磁波測距儀器、水聲定位系統、衛星組合導航系統、慣性導航組合系統,以及天文方法等進行控制點的測定和測點的定位;採用水聲儀器、激光儀器,以及水下攝影測量方法等進行水深測量和海底地形測量;採用衛星技術、航空測量以及海洋重力測量和磁力測量等進行海洋地球物理測量。
『叄』 主要海洋測繪方法有哪些
測量方法主要包括海洋地震測量、海洋重力測量、海洋磁力測量、海底熱流測量、海洋電法測量和海洋放射性測量。因海洋水體存在,須用海洋調查船和專門的測量儀器進行快速的連續觀測,一船多用,綜合考察。基本測量方式 包括:路線測量。即剖面測量。了解海區的地質構造和地球物理場基本特徵。面積測量。按任務定的成圖比例 尺,布置一定距離的測線網。比例尺越大,測網密度愈密。在海洋調查中,廣泛採用無線電定位系統和衛星導航定位 系統。 海洋測量的對象是海洋,而海洋與陸地的最大差別是海底以上覆蓋著一層動盪不定的、深淺不同的、所含各類生物和無機物質有很大區別的水體。由於這一水體的存在,使海洋測量在內容、儀器、方法上有如下明顯不同於陸地測量的特點:由於這一水體,使目前海洋測量只能在海面航行或在海空飛行中進行工作,而難以在水下活動。因而在海洋水域沒有居民地,也沒有固 定的道路網,除淺海區外,也沒有植被。因此海洋測量的內容主要是探測海底地貌和礁石、沉船等地物,而沒有陸地那樣的水系、居民地、道路網、植被等要素,而且海底地貌也比陸地地貌要簡單得多,地貌單元巨大,很少有人類活動的痕跡。但這並不是說海洋測量比陸地測量要簡單得多,相反,海洋測量在許多方面比陸地測量要困難。
首先,水體具有吸收光線和在不同界面上產生光線折射及反射等效應,在陸地測量中常用的光學儀器,在海洋測 量中使用很困難,航空攝影測量、衛星遙感測量只局限在海水透明度很好的淺海域。海洋測深主要使用聲學儀器。但 是超聲波在海水中的傳播速度隨海水的物理性質,如海水鹽度和溫度等的變化而不同,這就增加了海洋測深的困難。其次,由於水體的阻隔,肉眼難以通視海底,加上傳統的回聲測深只能沿測線測深,測線間則是測量的空白區,海底地形的詳測需要進行加密,或採用全覆蓋的多波束測深系統,這就會大量地增加測量時間和經費。
『肆』 誰能給個最簡單的計算潮汐的方法
計算公式如下:
農歷初一到十五:漲潮時間=日期*0.8
農歷十六到三十:漲潮時間=(日期-15)*0.8
『伍』 海洋潮汐的演算法
人們通過長期的實踐、觀察,發現海水有規律的漲落,而漲落的時間和高度又有著周期性的變化,由此人們把這種海水漲落的現象 叫潮汐。而隨著海水的漲落、水位的升降,出現了海水的水平流動,這種海水流動的現象叫潮流。 海水有周期性漲落規律,如在每日里出現兩次大潮和兩次小潮。通過長期實踐、觀察、發現每日的高湖大多出現在月亮的上、下中 天(即過當地子午線時)前後。低潮時間則在月出月落前後,並且每日的高(低)潮時間逐日後移約48分鍾,即每天晚48分鍾( 0.8小時)。每月的兩次大潮是農歷初一、十五附近幾天,兩次小潮是在農歷的初七、八和量二、廿三附近幾天。人們還發現,潮 汐現象同月亮、太陽、地球的相對運動有密切的關系。地球在一定軌道上繞太陽運轉,月亮又在一定軌道上繞地球運轉,它們之間 有一定的吸引力和離心力,這種力就是產生潮汐現象的基本因素。但實際潮汐漲落的主要成因卻是月球對地球(表層)的吸引力, 其次是太陽對地球的吸引力,太陽的作用較小,約為月球的2/5,因月球離地球較近,故此月球的作用較大。 據科學推測是:月球繞地球轉,每一個月(29.5天多一點)轉一圈,當月、日、地三者成一直線時,潮漲落的最大,這時是新月和 望月(初一、十五)的時候,當日、月、地三者成直角三角形時潮漲落的最小,這是月上弦(初七、八)和下弦(廿二、廿三)的 時候。 但在實際上形成大潮和小潮的時間,並不正好是上述時間,因為地球形狀很復雜,所以各地發生最大潮和最小潮的時間要比理論上 拖後幾天。如:山東半島沿海每月的初三和十八潮的漲落最大,而初十和量五前後潮的漲落又最小。 由於地球本身的自轉,使地球上某點與月球的相對位置隨時發生變化,這種變化每天(太陽約24時48分)為一周期。每24時48分, 發生兩次高潮和兩次低潮。由高潮到低潮約 經過6時12分,由第一個高潮到第二個高潮約經過12時24分。潮汐的時間,在理論上應該與月球的上中天或下中天的時刻相符合, 但實際上常常推遲。發生高潮和月球上中天相差的時間叫高潮間隙。但各地的高潮間隙又大不相同。如:威海是10時50分,煙台是 10時25分,龍口是10時20分,足見地理位置的不同,而導致高潮間隙的差異。 高潮時和低潮時的大概計演算法: 高潮時=(日差)0.8×(陰歷日子)7-16(上半月-下半月-1.16)十高潮間隙, 低潮時=高潮時-6時12分, 如計算威海陰歷初五的潮時如下: 高潮時=0.8×(5-1)十10∶50′=3∶12′+10∶50′∶14∶02′(即為第二個高潮) 14∶02′-12∶24′=1∶38′(即為第一個高潮) 低潮時=14∶02′-6∶12′=7∶50′(即為第一個低潮) 以上這樣的演算法固然准確,但很繁瑣,很難開口就說出來,我們經過多年的海上實踐,驗證,摸索出一種很有規律的簡易計演算法。 其方法是陰歷日子(上半月-3,下半月-18)×0.8,即為當日的高潮潮時。 如計算威海陰歷初五的潮時如下: 高潮時=(5-33)×0.8=1∶36′(即第一個高潮)。 低潮時=1∶36′+6∶12′=7∶48′(則是第一個低潮)。 如計算威海陰歷廿五的潮時: 高潮時=(25-18)×0.8=5∶36′(則是第一個高潮)。 低潮時=5∶36′+6∶12′=11∶48′(則是第一個低潮)。 潮流也叫潮汐流,這是水位升降起伏的潮信現象,是由於海水受到引潮力的作用發生了水平流動後所導致的結果。因此潮流和潮汐 一樣具有周期性的變化規律,但海水流動受到地形條件的影響,故常呈現兩種狀態,一種是往復性,一種是回轉性。這里就不說回 轉流的成因,只介紹一下近海的往復流。 往復流(即東流和西流)就是漲潮流和落潮流;它是在兩個相反方向上作周期性變化的潮流叫往復流。經多年實踐證明,山東半島 沿海它的變化大約在起流之前兩個鍾頭左右是平流(無流),一般是在高潮前約兩個鍾頭西流起,即漲潮流,高潮時流速最大,高 潮後約兩個鍾頭西流完,底潮前約兩個鍾頭東流起,即落潮流,低潮時流速最大,低潮後約兩個鍾頭東流完。從流完到流起,這其 中大約有兩個鍾頭的平流(無流)即轉流時間。 以上所述,在開闊的大海上不一定能適用,特別是航海人員一定不能按此法擬定航行計劃,這種方法只適用於沿海,尤其是山東半 島更為准確,對近海釣魚愛好者很有實用價值。 回答者: yalli520
『陸』 海洋潮汐的習慣
潮汐是沿海地區的一種自然現象,古代稱白天的潮汐為「潮」,晚上的稱為「汐」,合稱為「潮汐」,它的發生和太陽,月球都有關系,也和我國傳統農歷對應。在農歷每月的初一即朔點時刻處太陽和月球在地球的一側,所以就有了最大的引潮力,所以會引起「大潮」,在農歷每月的十五或十六附近,太陽和月亮在地球的兩側,太陽和月球的引潮力你推我拉也會引起「大潮」;在月相為上弦和下弦時,即農歷的初八和二十三時,太陽引潮力和月球引潮力互相抵消了一部分所以就發生了 「小潮」,故農諺中有「初一十五漲大潮,初八二十三到處見海灘」之說。另外在第天也有漲潮發生,由於月球每天在天球上東移13度多,合計為50分鍾左右,即每天月亮上中天時刻(為1太陰日=24時50分)約推遲50分鍾左右,(下中天也會發生潮水每天一般都有兩次潮水)故每天漲潮的時刻也推遲50分鍾左右。
但由於,月球和太陽的運動的復雜性,大潮可能有時推遲一天或幾天,一太陰日間的高潮也往往落後於月球上中天或下中天時刻一小時或幾小時,有的地方一太陰日就發生一次潮汐。
太陽和月球引力對地球上的水(液體)起作用如此大,對地殼的固體大陸也起作用會發生「陸潮」,「陸潮」可能會促使引發地震,所以在作地震預報時應慮月相;
太陽和月球引力對地球上的大氣(氣體)也會發生很大的作用,發生「大氣潮」,引起大氣對流和大氣運動上的變化,會引起氣候上的變化。(這和認為氣候的變化與月亮無關的傳統觀點是抵觸的。)故氣象專家建議在作天氣預報時應考慮月相。
據現代科學發現太陽和月球引力還可能對人體或生物體中的液體等會發生作用,形成神秘的「生物潮」和「人體潮」,有日本科學家正對此問題在作研究。我國古代有一句諺語「逃過初一,也逃不過十五」也是對這種神秘的生物潮和人體潮可能會引發人或其它生物的病情加重,或精神上的變化的生動寫照。
我國勞動人民在千百年來總結經驗出來許多的算潮方法(推潮汐時刻)如八分算潮法就是其中的一例:簡明公式為:
高潮時=0.8h×[農歷日期-1(或16)]+高潮間隙
上式可算得一天中的一個高潮時,對於正規半日潮海區,將其數值加或減12時25分(或為了計算的方便可加或減12時24分)即可得出另一個高潮時。若將其數值加或減6時12分即可得低潮出現的時刻——低潮時。
『柒』 介紹潮汐能
潮汐能
一、定義、應用及意義
因月球引力的變化引起潮汐現象,抄襲導致海水平面周期性地升降,因海水漲落及潮水流動所產生的能量成為潮汐能(tidal energy)。潮汐能是以勢能形態出現的海洋能,是指海水潮漲和潮落形成的水的勢能。
海洋的潮汐中蘊藏著巨大的能量。在漲潮的過程中,洶涌而來的海水具有很大的動能,而隨著海水水位的升高,就把海水的巨大動能轉化為勢能;在落潮的過程中,海水奔騰而去,水位逐漸降低,勢能又轉化為動能。潮汐能的能量與潮量和潮差成正比。或者說,與潮差的平方和水庫的面積成正比。和水利發電相比,潮汐能的能量密度低,相當於微水頭發電的水平。世界上潮差的較大值約為13~15m,但一般說來,平均潮差在3m以上就有實際應用價值。潮汐能是因地而異的,不同的地區常常有不同的潮汐系統,他們都是從深海潮波獲取能量,但具有各自獨特的特徵。景觀抄襲很復雜,但對於任何地方的潮汐都可以進行准確預報。
潮汐能的利用方式主要是發電。潮汐發電是利用海灣、河口等有利地形,建築水堤,形成水庫,以便於大量蓄積海水,並在壩中或壩旁建造水利發電廠房,通過水輪發電機組進行發電。只有出現大潮,能量集中時,並且在地理條件適於建造潮汐電站的地方,從潮汐中提取能量才有可能。雖然這樣的場所並不是到處都有,但世界各國都已選定了相當數量的適宜開發潮汐電站的站址。
發展像潮汐能這樣的新能源,可以間接使大氣中的CO2含量的增加速度減慢。潮汐是一種世界性的海平面周期性變化的現象,由於受月亮和太陽這兩個萬有引力源的作用,海平面每晝夜有兩次漲落。潮汐作為一種自然現象,為人類的航海、捕撈和曬鹽提供了方便,更值得指出的是,它還可以轉變成電能,給人帶來光明和動力。
二、發電原理及發電形式
潮汐發電與普通水利發電原理類似,通過出水庫,在漲潮時將海水儲存在水庫內,以勢能的形式保存,然後,在落潮時放出海水,利用高、低潮位之間的落差,推動水輪機旋轉,帶動發電機發電。差別在於海水與河水不同,蓄積的海水落差不大,但流量較大,並且呈間歇性,從而潮汐發電的水輪機結構要適合低水頭、大流量的特點。潮水的流動與河水的流動不同,它是不斷變換方向的,潮汐發電有以下三種形式:
(1)單池單向發電
(2)單池雙向發電
(3)雙池雙向發電
三、應用現狀與應用前景
到目前為止,由於常規電站廉價電費的競爭,建成投產的商業用潮汐電站不多。然而,由於潮汐能蘊藏量的巨大和潮汐發電的許多優點,人們還是非常重視對潮汐發電的研究和試驗。
據海洋學家計算,世界上潮汐能發電的資源量在10億千瓦以上,也是一個天文數字。潮汐能普查計算的方法是,首先選定適於建潮汐電站的站址,再計算這些地點可開發的發電裝機容量,疊加起來即為估算的資源量。
20世紀初,歐、美一些國家開始研究潮汐發電。第一座具有商業實用價值的潮汐電站是1967年建成的法國郎斯電站。該電站位於法國聖馬洛灣郎斯河口。郎斯河口最大潮差13.4米,平均潮差8米。一道750米長的大壩橫跨郎斯河。壩上是通行車輛的公路橋,壩下設置船閘、泄水閘和發電機房。郎斯潮汐電站機房中安裝有24台雙向渦輪發電機,漲潮、落潮都能發電。總裝機容量24萬千瓦,年發電量5億多度,輸入國家電網。
1968年,前蘇聯在其北方摩爾曼斯克附近的基斯拉雅灣建成了一座800千瓦的試驗潮汐電站。1980年,加拿大在芬地灣興建了一座2萬干瓦的中間試驗潮汐電站。試驗電站、中試電站,那是為了興建更大的實用電站做論證和准備用的。
世界上適於建設潮汐電站的20幾處地方,都在研究、設計建設潮汐電站。其中包括:美國阿拉斯加州的庫克灣、加拿大芬地灣、英國塞文河口、阿根廷聖約瑟灣、澳大利亞達爾文范迪門灣、印度坎貝河口、俄羅斯遠東鄂霍茨克海品仁灣、韓國仁川灣等地。隨著技術進步,潮汐發電成本的不斷降低,進入2l世紀,將不斷會有大型現代潮汐電站建成使用。
我國潮汐能的理論蘊藏量達到1.1億千瓦,在我國沿海,特別是東南沿海有很多能量密度較高,平均潮差4~5m,最大潮差7~8m。其中浙江、福建兩省蘊藏量最大,約佔全國的80.9%。我國的江夏潮汐實驗電站,建於浙江省樂清灣北側的江夏港,裝機容量3200kW,於1980年正式投入運行。
潮汐發電的主要研究與開發國家包括法國、前蘇聯、加拿大、中國和英國等,它是海洋能中技術最成熟和利用規模最大的一種。全世界潮汐電站的總裝機容量為265MW。
『捌』 有哪些種類的海洋觀測儀器
逯玉佩觀察和測量海洋現象的基本工具。通常指采樣、測量、 觀察、 分析和數據處理等設備。海洋觀測儀器主要是為了滿足海洋學研究的需要而設計的,有些國家以海洋學儀器命名,中國習慣上稱為海洋儀器。
發展概況 早在15世紀中葉,便有人研製測量海水深度的儀器但是比較簡便而又可靠的測溫工具,是1874年研製出的。隨後又設計出埃克曼海流計。20世紀初研製出了。1938年研製出機械式,從而可以快速觀測水溫隨深度的變化。直到20世紀50年代以前,海洋觀測主要使用機械式儀器,回聲測深儀是唯一的電子式測量裝置。60年代以後,海洋觀測儀器在設計上大量採用新技術,逐步實現了電子化。海洋觀測儀器的電子化,是從單項測量儀器開始的,以後又發展多要素的綜合儀器,例如。今後,海洋觀測儀器將不斷改進結構,降低功耗,增加可靠性,除感測器多樣化外,信號形式和儀器終端將日趨通用化,並進一步向智能化發展。
海洋觀測儀器的種類 海洋觀測儀器可以按照結構原理分為聲學式儀器、光學式儀器、電子式儀器、機械式儀器,以及遙測遙感儀器等。還可以根據運載工具不同,劃分成船用儀器、潛水器儀器、浮標儀器、岸站儀器和飛機、衛星儀器。其中船用海洋觀測儀器品種最多,按其操作方式又可分為投棄式、自返式、懸掛式、拖曳式等。投棄式儀器使用時將其感測器部分投入海中,觀測的數據通過導線或無線電波傳遞到船上,感測器用後不再回收。自返式儀器觀測時沉入海中,完成測量或采樣任務後卸掉壓載物,借自身浮力返回海面。懸掛式儀器利用船上的絞車吊桿從船舷旁送入海中,在船隻錨碇或漂流的情況下進行觀測。拖曳式儀器工作時從船尾放入海中,拖曳在船後進行走航觀測。
海洋觀測儀器對使用者來說,通常按所測要素分類。例如測溫儀器、測鹽儀器、測波儀器、測流儀器、營養鹽儀器、重力和磁力儀器、底質探測儀器、浮游生物與底棲生物儀器等等。將它們歸納起來可以劃分成 4大類,即海洋物理性質觀測儀器、海洋化學性質觀測儀器、海洋生物觀測儀器、海洋地質及地球物理觀測儀器。
海洋物理性質觀測儀器 用於觀測海洋中的聲、光、溫度、密度、動力等現象。因為海水密度不便直接測定,通常用溫度、鹽度和壓力值計算得到,所以鹽度取代密度成為一個必測參數。觀測海水溫度、鹽度和壓力的儀器,20世紀60年代以前只能用顛倒溫度表、、滴定管和機械式深溫計(BT),現在則用電子式鹽溫深測量儀(STD或CTD)等船隻走航測溫常用投棄式深溫計(XBT)。空中遙感觀測海水溫度則用紅外輻射溫度計
。岸邊潮汐觀測使用浮子式,外海測潮採用壓力式自容儀,大洋潮波的觀測依靠衛星上的雷達測高儀。海浪觀測儀器的品種比較繁雜,有各種形式的測波桿、壓力式、光學原理的測波儀、超聲波式測波儀。近年用得較多的是加速度計式測波儀。海流觀測相當困難,或用儀器定點測量,或用漂流物跟蹤觀測。定點測流是海洋觀測中常用的辦法,所用儀器有轉子式海流計、電磁式海流計、聲學海流計等,其中最流行的是轉子式儀器(見)。海洋聲參數儀器主要有,用以觀測聲波在海水裡的傳播速度。海洋光參數儀器有透明度計和照度計,用以觀測海水對光線的吸收和海洋自然光場的強度。
海洋化學性質觀測儀器 海洋觀測中所用的化學儀器,主要用來測定海水中各種溶解物的含量。60年代以前,除少數幾項可在船上用滴定管和目力比色裝置完成外,大部分項目要保存樣品帶回陸上實驗室分析。60年代以後,調查船上逐漸採用船用、船用pH計、溶解氧測定儀,以及船用分光光度計和船用熒光計。近年來船用單項化學分析儀器與自動控制裝置相結合,形成船用多要素的自動測定儀器。這種綜合儀器還可配備電子計算機
,提高其自動化程度。船用化學分析儀器的工作原理大致分兩類:一類用感測器(主要為電極)直接測定化學參數;一類通過樣品顯色進行光電比色測定。目前,海水中的各種營養鹽靠比色儀器測定,pH值、溶解氧、氧化-還原電位等利用電極式儀器測定。
海洋生物觀測儀器 海洋生物種類繁多,從微生物、浮游生物、底棲生物到游泳生物,相應有不同的觀測儀器。海水中的微生物需采樣後進行研究,采樣工具有復背式采水器和無菌采水袋。浮游生物采樣器主要有浮游生物網和浮游生物連續採集器。底棲生物采樣使用海底拖網、采泥器和取樣管。游泳生物采樣依靠魚網,觀察魚群使用魚探儀(見)。海洋初級生產力的觀測,除利用化學儀器測營養鹽,利用光學儀器測定光場強度之外,還用熒光計測定海水中的葉綠素含量。為了觀察海洋生物在海中的自然狀態,需要利用水中攝象,有時還得使用。可使人們在海底停留較長時間,是觀察海洋生物活動情況的良好設備。
海洋地質及地球物理觀測儀器 底質取樣設備是最早發展的海洋地質儀器,分表層取樣設備與柱狀取樣設備兩類。表層取樣設備又稱采泥器,有重力式采泥器、彈簧式采泥器和箱式采泥器,其中箱式采泥器能保持沉積物原樣。底質柱狀采樣工具有重力取樣管、振動活塞取樣管、重力活塞取樣管和水下淺鑽,有一種靠玻璃浮子裝置使柱狀樣品上浮的重力取樣管稱為自返式取樣管。結合底質取樣,還可進行海底照相。回聲測深儀是觀測水深、地貌和地層結構最常用的儀器。又稱地貌儀,安裝在船殼上或拖曳體上,可以觀測海底地貌。利用聲波在海底沉積物中的傳播和反射測出地層結構。海洋地球物理儀器有重力儀(見)、磁力儀(見)和地熱計等。
『玖』 水文觀測的方法
水文觀測直接觀測的有降水、水位、流量、土壤濕度、含沙量。你所提問的其他參數都是通過這些實測數據推算出來的。降水是測量雨量器乘水容器在相應時段內承接的液體降水的厚度。水位是觀測水面和固定點的高差再加上固定點的高程。流量常規測量是測量斷面上合理分布點的流速與各部分斷面面積的乘積,累加後就是當時水位下的流量。土壤濕度是烘乾法和含沙量是用烘乾的原理測量的。
林冠截留、林內降雨,樹干截然留,枯枝落葉截留,下滲,土壤含水量,坡面徑流,河川徑流,(侵蝕量),輸沙量都是通過上述實測數據用水文模型或經驗方法分析而來的。