⑴ 中学数学最值题的常用解法
中学数学最值题的常用解法
在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种:
一. 二次函数的最值公式
二次函数 (a、b、c为常数且 )其性质中有①若 当 时,y有最小值。 ;②若 当 时,y有最大值。 。利用二次函数的这个性质,将具有二次函数关系的两个变量建立二次函数,再利用二次函数性质进行计算,从而达到解决实际问题之目的。
例1. 某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为 , 。
(1)当日产量为多少时,每日获得的利润为1750元;
(2)当日产量为多少时,可获得最大利润?最大利润是多少?
解:(1)根据题意得
整理得
解得 , (不合题意,舍去)
(2)由题意知,利润为
所以当 时,最大利润为1950元。
二. 一次函数的增减性
一次函数 的自变量x的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当 时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
例2. 某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少?
解:设招聘甲种工种的工人为x人,则乙种工种的工人为 人,由题意得:
所以
设所招聘的工人共需付月工资y元,则有:
( )
因为y随x的增大而减小
所以当 时, (元)
三. 判别式法
例3. 求 的最大值与最小值。
分析:此题要求出最大值与最小值,直接求则较困难,若根据题意构造一个关于未知数x的一元二次方程;再根据x是实数,推得 ,进而求出y的取值范围,并由此得出y的最值。
解:设 ,整理得
即
因为x是实数,所以
即
解得
所以 的最大值是3,最小值是 。
四. 构造函数法
“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
例4. 求代数式 的最大值和最小值。
解:设 , ,再令 , ,则有
所以得y的最大值为 ,最小值为
五. 利用非负数的性质
在实数范围内,显然有 ,当且仅当 时,等号成立,即 的最小值为k。
例5. 设a、b为实数,那么 的最小值为_______。
解:
当 , ,即 时,上式等号成立。故所求的最小值为-1。
六. 零点区间讨论法
例6. 求函数 的最大值。
分析:本题先用“零点区间讨论法”消去函数y中绝对值符号,然后求出y在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
解:易知该函数有两个零点 、
当 时
当 时
当 得
当 时,
综上所述,当 时,y有最大值为
七. 利用不等式与判别式求解
在不等式 中, 是最大值,在不等式 中, 是最小值。
例7. 已知x、y为实数,且满足 , ,求实数m最大值与最小值。
解:由题意得
所以x、y是关于t的方程 的两实数根,所以
即
解得
m的最大值是 ,m的最小值是-1。
八. “夹逼法”求最值
在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
例8. 不等边三角形 的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为________。
解:设a、b、c三边上高分别为4、12、h
因为 ,所以
又因为 ,代入
得 ,所以
又因为 ,代入
得 ,所以
所以3<h<6,故整数h的最大值为5。
⑵ 求函数的最值有哪些方法
函数值域最值常用的方法
1) 利用基本函数求值域法:有的函数结构并不复杂,可以通过基本函数的值域及不等式的性质直接观察出函数的值域 例1:y=1/(2+)
2) 反函数法:用函数和它的反函数的定义域和值域的关系,可以通过求反函数的定义域而得到原函数的值域. 对形如y=(cx+d)/(ax+b) (a=!0)的函数可用此法 例2:y=(2x-1)/(2x+1) ; y=(5x-1)/(4x+2) , x属于[-3,-1].
3) 配方法:配方法是求“二次函数类”值域的基本方法,形如F(x)=a[f2(x)+bf(x)+c]的值域问题,均使用配方法。
4) 换元法运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而给出原函数的值域,形如y=ax+b(cx+d)(1/2) (a,b,c,d均为常数,且a=!0)的函数常用此方法求解(注意1新元的取值范围,即换元后的等价性2换元后的可操作性) 例4已知函数f(x)=2x(1/2)+(4-x)(1/2),则函数f(x)的值域_________
5) 判别式法将函数转化为x 的二次方程F(x,y)=0,通过方程有实根,判别式>=0,从而求得函数的值域,形如 (a1,a2不同时为0)的函数的值域常用此法求解。(分子,分母没有公因式;此时函数的定义域是全体实数)例5:;
6) 不等式法:利用基本不等式: 应用此法注意条件“一正二定三相等”例6:若函数f(x)的值域为[1/2,3],则函数F(x)=f(x)+的值域为_____
7) 数形结合法:若函数的解析式的几何意义较明显,诸如距离,斜率等,可用数形结合的方法。 例7:对a,bR.设max{a,b}=求函数f(x)=max{},的最小值
8) 导数法:
9) 已知函数的值域,求函数中待定字母的取值范围 9例9:已知函数f(x)=的定义域,值域是[0,2],求m,n的值域。
函数的图像
1:函数图像的基本做法:1)描点法
2) 图像变换法
3) 做图像的一般步骤:a求出函数的定义域;b讨论函数的性质(奇偶性,周期性)以及函数上的特殊点(如渐近线,对称轴)c利用基本函数的图像画出所给函数的图像
2:函数变换的四种形式:
1)平移变换左加右减
2)对称变换 a:y=f(x)和y=f(-x); y=-f(x)和y=f(x); y=-f(-x)和y=f(x); y=和y=f(x)分别关于y轴,x轴,原点,直线y=x对称。
b:若对定义域内的一切x均有f(x+m)=f(m-x),则y=f(x)的图像关于x=m对称;
c:y=f(x)与y=2b-f(2a-x)关于点(a,b)成中心对称
3)伸缩变换:y=af(x) y=f(ax)
4)翻折变换 y= y=f()
3函数图像的对称性
1) f(-x)=-f(x) 图像关于原点对称
2) f(-x)=f(x) 图像关于y轴对称
3) y=和y=f(x) 图像关于y=x对称
4) f(a+x)=f(a-x) 图像关于x=a对称
5) f(a+x)=-f(a-x) 图像关于(a,0)对称
函数单调性
判断函数单调性的常用方法:
1) 定义法
2) 两增(减)函数的和还增(减);增(减)函数与减(增)函数的差还是增(减)函数;
3) 减函数在对称的两个区间上具有相同的单调性;偶函数在对称的两个区间上具有相反的单调性、
4) y=f(x)在D上单调则y=f(x)在D的子区间上也单调,并且具有相同的单调性。
5) y=f(u),u=g(x)单调性相同,则y=f(g(x))是增函数;单调性相反,则y=f(g(x))是减函数(同增异减);
6) 互为反函数的两个函数具有相同的单调性
7) 利用导数判断函数的单调性
8) 抽象函数的单调性:做差;做商(注意分母不为零且同号)。
9) 关于函数f(x)=x+a/x(a>0)单调性及应用
例1:函数在定义域上是减函数
例2: 已知函数f(x)=+a/x在[2,+)单调增,求a的取值范围
例3:函数f(x)=,g(x)=x(2-x)的单调区间
例4:函数f(x)对任意的 都有f(a+b)=f(a)+f(b)-1,并且当 x>0是,f(x)>1,求证f(x)是R上的增函数。
例5:某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1800元,面粉的保管及其他费用为平均每吨每天三元,购买面粉每次需要支付运费900元。
(1) 求该厂每隔多少天购买一次面粉,才能使平均每天所支付的总费用最少?
(2)若提供面粉的公司规定:当一次购买的面粉不少于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?说明原因。
例6:已知f(x)为R上的减函数,求满足< f(1)的实数x的取值范围。
例7:是否存在实数a是函数f(x)= 在[2,4]上市增函数?如果存在,说明a可取哪些值;如果不存在,请说明理由。
函数的奇偶性
1:定义:y=f(x), 定义域关于原点对称
偶函数:f(-x)=f(x)
奇函数:f(-x)=-f(x) (原点有定义有f(0)=0)
2奇函数,偶函数的图像的性质:
奇函数图像关于原点对称;
偶函数图像关于y轴对称。
3判断奇偶性方法
1) 定义
2) 定义变形:f(-x)+f(x)=0()为奇函数; f(-x)-f(x)=0()为偶函数。
3) 函数奇偶性满足下列性质:奇+奇=奇;偶+偶+偶;
奇*奇=偶;偶*偶=偶;奇*偶=奇。
4)奇函数在对称的单调区间内有相同的单调性; 偶函数在对称的单调区间内有相反的单调性。
周期公式:
1:若函数关于直线x=a和直线x=b对称。则函数f(x)为周期函数,2是它的一个周期;
2:若函数关于点(a,0)和(b,0)对称。则函数f(x)为周期函数,2是它的一个周期;
3若函数关于点(a,0)和直线x=b对称。则函数f(x)为周期函数,4是它的一个周期;
例1:f(x)=lg()
例2:
例3:
例4:
例5:在R上定义的函数f(x)是偶函数,且f(x)=f(2-x),若f(x)在区间[1,2]是减函数,讨论f(x)[-2,-1]和[3,4]上的单调性。
例6:已知f(x)是偶函数,且在[)是增函数,如果f(ax+1)f(x-2)在x[1/2,1]恒成立,求实数a的取值范围
例7:已知 其中a,b,c,d为常数,若f(-7)=-7.求f(7).
周期公式:
1:若函数关于直线x=a和直线x=b对称。则函数f(x)为周期函数,2是它的一个周期;
2:若函数关于点(a,0)和(b,0)对称。则函数f(x)为周期函数,2是它的一个周期;
3若函数关于点(a,0)和直线x=b对称。则函数f(x)为周期函数,4是它的一个周期;
求函数解析式常用方法:
(1)定义法:有已知条件f[g(x)]=F(x),可将F(x),改写成g(x)的表达式,然后以x代替g(x), 使得f(x)的表达式常需“凑配”。
例1:f((1-x)/(1+x))=(1-x2)/(1+x2).求f(x)的解析表达式。
(2)变量代换法:有已知条件f[g(x)]=F(x),令t=g(x),然后反解出x=g-1(t).带入F(x),即可得f(x)的表达式。
例2:f(e x-1)=2x2-1.求f(x)的解析表达式
(3)待定系数法:又是给定函数特征求函数的解析式,可用待定系数法。例3:函数是二次函数可设为f(x)=ax2+bx+c(a不等于零)。期中a,b,c是待定系数,根据题设条件列出方程组,解出a.b.c
.例3;设二次方程f(x)满足f(x-2)=f(-x-2)。且图像在y轴上的截距为1,被x轴截得的线段长为2*2(1/2),求f(x)的解析式。
(4)函数方程法:将f(x)作为一个未知量来考虑,建立方程组。消去另外的未知量便得f(x)的表达式。 例4::已知f(x)-f(1/x)lnx=1,求解f(x)的表达式
(5) 参数法:引入某个参数,然后写出用这个参数表示变量的式子(即参数方程),再消去参数就得f(x)表达式。 例5:已知 f(3sinx)=cot(2)x求f(x)的表达式
(6)赋值法:对于抽象函数f(x),如果满足条件中对一切实属成立。那么对于特殊值仍然成立。我们就可以赋予特殊值。 例6:已知f(x)满足:f(0)=1,且对任意的x,y属于R都有f(xy+1)=f(x)f(y)-f(y)+x-2求f(x).
(7) 根据某实际问题建立一种函数关系式,这种情况须引入合适的变量,根据数学的有关知识找出函数关系式。
一次二次函数
1 一次函数
a形如y=kx+b 叫做一次函数值域R;b=0,y=kx叫做正比例函数
b一次函数的k叫做直线y=kx+b的斜率,b叫做y=kx+b的截距。
c函数图像(性质):
1已知函数y=(2m-1)x+1-3m,求m为何值时:
这个函数为正比例函数;
(2)这个函数为奇函数
(3)函数值y随x的增大而减小
2一次函数y=(3a-7)x+a-2的图像与y轴的交点在x轴上方,且y随x的增大而减小,则a的取值范围______.
3已知函数f(x)=2mx+4,若在[-2,1]上存在,使得f()=0,求实数m的取值范围。
4关于x的方程ax+1=|x|有两个不同的实根,求实数a的取值范围
2 二次函数
a形如 叫做二次函数
值域 a>0 ; a<0
b二次函数有三种形式 A: 一般式
B :顶点式
C 两根式
c二次函数的基本概念: 1对称轴
2顶点坐标 3零点(根)
4韦达定理 5
d 一元二次方程的判别式
e函数图像:(性质)
1已知二次函数f(x)满足f(2)=-1,f(-1)=-1,f(x)的最大值是8,试确定二次函数
2二次函数的顶点坐标(2,3)且经过点(3,1)求这个二次函数的解析式
3已知抛物线与x轴交与点A(-1,0),B(1,0),并经过点(0,1),求抛物线的解析式
4已知二次函数f(x),当x=2时有最大值16,他的图像截x轴所得的线段长为8,求解析式
5二次函数的图像如图所示,则点P(a, )第几象限_____
6以为自变量的二次函数,m为不小于0的整数,它的图像与x轴交与点A和点B,A在原点的左边,B在原点的右边。求这个函数的解析式画出这个二次函数的草图
7如图,抛物线与x轴交与A,B两点且线段OA:OB=3:1则m=_______
8已知函数
(1) 求对一切x,f(x)的值恒为非负实数时a的取值范围;
(2) 在(1)的条件下,求方程的根的取值范围
9正方形CDEF的边长为4,截取一个角得五边形ABCDE,已知AF=2,BF=1,在AB上求一点P.使矩形PNDM有最大面积
函数的应用
1将进货单价为8元的商品按10元一个销售时,每天可卖100个,若这种商品价格每上涨一元,日销售量就减少10个,为了获得最大利润,此商品的销售单价应定为多少元?
2一次时装表演会预算中票价每张100元,容纳观众人数不超过2000元,毛利润y(百元)关于观众人数x(百人)之间的函数图像如右图所示,当观众人数超过1000人时,表演会组织者需向保险公司缴纳定额平安保险费5000元(不列入成本费用):
(1)当观众人数不超过1000人时,毛利润y关于观众人数的函数解析式和成本费用 S(百元)关于观众人数x的函数解析式
(2)若要使这次表演会获得36000元的毛利润。那么需要售出多少张门票?需付成本费多少元?
3某蔬菜基地种植西红柿,有有历年市场行情得知,从2月1日起的300天内,西红柿的市场售价与上市时间的关系用下图(1)的一条折线表示。西红柿的种植成本与上市时间的关系用图(2)的抛物线表示。
(1)写出图(1)表示的市场售价与时间的函数关系P=f(t);写出图(2)表示的种植成本与时间的函数关系Q= g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?
2函数的零点
函数的零点就是方程f(x)=0的实数根,也是函数的图像与x轴的交点的横坐标。零点概念体现了函数和方程之间的密切联系
勘根定理:如果函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在,使得f(c)=0,这个c就是方程的f(x)=0 根
1函数f(x)=的零点是______
2函数的零点所在的大致区间是______
3已知函数的图像如右图所示,求b的取值范围______
4方程的两根分别在区间(2,3)(3,4)之间,求的取值范围
5方程有一非零根,方程有一非零根,求证方程必有一根介于之间
6求证方程在(0,1)内必有一个实数根
7函数的零点大致区间在_________
8已知函数恒有零点,求a的取值范围
9关于x的方程的一根比1大,一根比1小,求a的取值范围
10根据函数的性质,指出函数的零点所在的大致区间
二分法:不讲
A函数的性质应用
1已知定义域为R的函数是奇函数
(1)求a,b的值
1函数奇偶,单调性解决问题2脱掉f利用函数单调性3注意函数定义域的限制
(2)若对任意的不等式恒成立,求k的取值范围
2函数f(x)( )是奇函数,且当
时是增函数,若f(1)=0,求不等
式<0的解集
B待定系数法的应用
3已知二次函数f(x)二次项系数为a且不等式f(x)>-2x的解集为(1,3)
(1) 若方程f(x)+6a=0有两个相等的根,求f(x)的解析式
(2) 若f(x)的最大值为正数,求a的取值范围
4已知f(x)是二次函数,且不等式f(x)<0的解集是(0,5)且f(x)在区间[-1,4]上的最大值是12,求f(x) 的解析式
C有关恒成立问题
5设,且为方程f(x)=0的两个实根,若,不等式对任意实数恒成立,求m的值
6已知函数,
(1) 当a=,求f(x)的最小值、
(2) 若对任意恒成立,试求实数a的取值范围
7我国是一个水资源比较缺乏的国家之一,各地采用价格控制手段来达到节约用水的目的,某市用水收费的方法是:水费=基本费+超额费+损耗费
若每月用水量不超过最低限量a(),只付基本费8元和每月定额损耗费c元:若用水量超过a()时,除了付以上的基本费和损耗费外,超过部分每立方米付b元的超额费,已知每户每月的定额损耗费不超过5元;
⑶ 初二求最小值
做对称求最小值问题常见的三种提问方式:①直接求一条线段AB的最小值②求两条线段AB+AC和的最小值③求三条线段构成的三角形ABC的周长的最小值
接下来我们用几道例题来分析一下这几种类型。
方法总结(以例1为例):①将C,F,E三点分为动点和定点(其中c为定点,E,F为动点)
②找到动点运动的轨迹(F在AD上运动,E在AC上运动)
③将定点沿着动点的运动轨迹对对称(将点C沿着AD做对称至B点)
④从对称点出发做一条与另一运动轨迹相垂直的直线(从点B做BE⊥AC)
⑤算出所作出的直线的长度即为最小值(算出BE的长度)
一、求两条线段AB+AC和的最小值
例1、如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线且AD=12,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为___________.
二、直接求一条线段AB的最小值
例2、如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM.
(1)请你判断△OMN的形状,并说明理由.
(2)若BC=2√2,则MN的最小值为__________.
三、三条线段构成的三角形ABC的周长的最小值.
常考的题型解法:将 △ABC的周长拆成AB+AC+BC,其中一定会有一条边的长度是已知的,若AB的长为3,那么△ABC的周长的最小值就是在求3+AC+BC的最小值,接下来的步骤与例题1相同。
⑷ 初中最大值最小值求法
初中数学竞赛中最值问题求法应用举例
最值问题是数学竞赛中考试的重要内容之一,任何一级、任何一年的竞考都是必考内容。现根据我在辅导学生过程中的体会归纳整理如下:
(一)根据非负数的性质求最值。
1、若M =(X±a)2 +b ,则当X±a = 0时M有最小值b 。
2、若M = -(X±a)2 + b ,则当X±a = 0 时M有最大值b 。
3、用(a±b)2≥0 ,∣a∣≥0,a≥0的方法解题。
【说明:这里用到的很重要的思想方法是配方法和整体代换思想。】
2 22例题(1)、若实数a ,b ,c 满足a+ b + c = 9,则代数式 (a - b)2 +
(b —c)2 +(c - a)2的最大值是 ( )
A.27 B、 18 C、15 D、 12
解:(a-b)2+(b-c)2+(c-a)2= 2(a2+b2+c2)-2ab-2bc-2ca = 3(a2+b2+c2)-a2-b2-c2-2ab-2bc-2ca = 3(a2+b2+c2)-(a2+b2+c2+2ab+2bc+2ca)
=3(a2+b2+c2)-(a+b+c)2 = 27-(a+b+c)2 ≤ 27 . ∵a2+b2+c2 = 9 , ∴ a,b,c 不全为0 。当且仅当a + b + c = 0 时原式的最大值为 27 。
222【说明,本例的关键是划线部份的变换,采用加减(a+b+c)后用完全平
方式。】
例题(2)、如果对于不小于8的自然数N ,当3N+1是一个完全平方数时,N +
1都能表示成K个完全平方数的和,那么K的最小值是 ( )
A、 1 B、 2 C、 3 D、 4
解:设 ∵ 3N+1是完全平方数,∴ 设 3N+1 = X2 (N≥ 8),则3不能整
2除X,所以X可以表示成3P±1的形式。3N+1=(3P±1)= 9P2±6P+1=3X2
±2X+1=X2+X2+(X±1)2。即3N+1能够表示成三个完全平方数的和。所以K的最小值为 3 。选 C 。
【说明,本例的关键是如何把3X2拆成X2+X2+X2,然后配方求解。】 例题(3)、设a、b为实数,那么a2+ab+b2-a-2b的最小值是——————————。
b?12解:a2+ab+b2-a-2b = a2+(b-1)a+b2-2b = a2+(b-1)a+()2
331b?123+b2-b- =(a+)+(b-1)2-1 ≥ -1 。只有当a+42424
b?1= 0且b-1= 0 时,即a=0,b=1时取等号。所以原式的最小值是-1。 2
【注意:做这一类题的关键是先按一个字母降幂排列,然后配方。】 例题(4)、已知实数a、b满足a2+ab+b2=1 ,则a2-ab+b2的最小值和最大
值的和是———————— 。
1222222 解:设a-ab+b = K,与a+ab+b =1联立方程组,解得:a+b = (12
1+K),ab = (1-K)。 2
11∵(a+b)2≥0, ∴a2+b2+2ab=(1+K)+2×(1-K)≥0, ∴K≤3 . 22
1
⑸ 初中数学求最值问题的方法
二次函数法
分离参变量
数形结合
单调性
基本不等式法
初中也可以按照高中的来,高中还有一饿三角求最值和初中没关系,就不讲了
⑹ 初二求最小值的方法
初二求最小值的方法,一般找对称把不在一条线上的点通过对称点而共线,再根据两点之间线段最短来求最值,另外通过不等式的关系式来求最小值。
⑺ 初中函数求最值模型
三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面就介绍几种常见的求三角函数最值的方法:
一 配方法
若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理。
例1函数的最小值为( ).
A. 2 B . 0 C . D . 6
[分析]本题可通过公式将函数表达式化为,因含有cosx的二次式,可换元,令cosx=t,则配方,得, 当t=1时,即cosx=1时,,选B.
例2 求函数y=5sinx+cos2x的最值
[分 析]:观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。
二 引入辅助角法
例3已知函数当函数y取得最大值时,求自变量x的集合。
[分析] 此类问题为的三角函数求最值问题,它可通过降次化简整理为型求解。
解:
三 利用三角函数的有界性
在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。
例4求函数的值域
[分析] 此为型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解。或者也可先用反解法,再用三角函数的有界性去解。
解法一:原函数变形为,可直接得到:或
解法一:原函数变形为或
例5(2003年高考题)已知函数,求函数f(x)的最小正周期和最大值。
[分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式。
解:
f(x)的最小正周期为,最大值为。
四 引入参数法(换元法)
对于表达式中同时含有sinx+cosx,与sinxcosx的函数,运用关系式 一般都可采用换元法转化为t的二次函数去求最值,但必须要注意换元后新变量的取值范围。
例6 求函数y=sinx+cosx+sinxcosx的最大值。
[分析]解:令sinx+cosx=t,则,其中
当
五利用基本不等式法
利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区。
例7 求函数的最值。
解:=
当且仅当即时,等号成立,故。
六利用函数在区间内的单调性
例8已知,求函数的最小值。
[分析] 此题为型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解。
设,在(0,1)上为减函数,当t=1时,。
七数形结合
由于,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得。
例9 求函数的最小值。
[分析] 法一:将表达式改写成y可看成连接两点A(2,0)与点(cosx,sinx)的直线的斜率。由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y的最小值就是在这个半圆上求一点,使得相应的直线斜率最小。
设过点A的切线与半圆相切与点B,则
可求得
所以y的最小值为(此时).
法二:该题也可利用关系式asinx+bcosx=(即引入辅助角法)和有界性来求解。
八判别式法
例10求函数的最值。
[分析] 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法。
解:
时此时一元二次方程总有实数解
由y=3,tanx=-1,
由
九 分类讨论法
含参数的三角函数的值域问题,需要对参数进行讨论。
例 11设,用a表示f(x)的最大值M(a).
解:令sinx=t,则
(1) 当,即在[0,1]上递增,
(2) 当即时,在[0,1]上先增后减,
(3) 当即在[0,1]上递减,
以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见。解决这类问题最关键的在于对三角函数的灵活应用及抓住题目关键和本质所在。
⑻ 函数求最值的方法有那些
常见的求最值方法有:
1.配方法:
形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值.
2.判别式法:
形如的分式函数,
将其化成系数含有y的关于x的二次方程.由于,
0,
求出y的最值,
此种方法易产生增根,
因而要对取得最值时对应的x值是否有解检验.
3.利用函数的单调性 首先明确函数的定义域和单调性,
再求最值.
4.利用均值不等式,
形如的函数,
及,
注意正,定,等的应用条件,
即:
a,
b均为正数,
是定值,
a=b的等号是否成立.
5.换元法:
形如的函数,
令,反解出x,
代入上式,
得出关于t的函数,
注意t的定义域范围,
再求关于t的函数的最值.
还有三角换元法,
参数换元法.
6.数形结合法
形如将式子左边看成一个函数,
右边看成一个函数,
在同一坐标系作出它们的图象,
观察其位置关系,
利用解析几何知识求最值.
求利用直线的斜率公式求形如的最值.
7.利用导数求函数最值.
⑼ 初中阶段涉及求最值的方法有哪些
最值与极值的区别就是,极大值可能是最大值,可能不是最大值,与谁比较?-------端点函数值
极小值可能是最小值,也可能不是最小值,与谁比较?------端点函数值
所以,知识点要掌握两个问题:1、所在区间?区间端点处的函数值;
2、如何求极值?
方法有二:图形法、函数法,图形法比较简单易懂,建议你多熟悉各种函数的图形绘制方法
1、 对于抛物线 f(x)=ax²+bx+c 端点函数值为f(t1)=at1²+bt1+c f(t2)=at2²+bt2+c
绘制出抛物线的图形,根据其开口方向,即可判断函数有最大值还是最小值
a>0时,图形开口向下,图形有最大值,最大值点为顶点,最小值点在区间端点处取得
a
⑽ 求函数的最大值和最小值的方法。
常见的求最值方法有:
1、配方法: 形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值.
2、判别式法: 形如的分式函数, 将其化成系数含有y的关于x的二次方程.由于, ∴≥0, 求出y的最值, 此种方法易产生增根, 因而要对取得最值时对应的x值是否有解检验.
3、利用函数的单调性 首先明确函数的定义域和单调性, 再求最值.
4、利用均值不等式, 形如的函数, 及≥≤, 注意正,定,等的应用条件, 即: a, b均为正数, 是定值, a=b的等号是否成立.
5、换元法: 形如的函数, 令,反解出x, 代入上式, 得出关于t的函数, 注意t的定义域范围, 再求关于t的函数的最值.还有三角换元法, 参数换元法.
6、数形结合法 形如将式子左边看成一个函数, 右边看成一个函数, 在同一坐标系作出它们的图象, 观察其位置关系, 利用解析几何知识求最值.求利用直线的斜率公式求形如的最值.
7、利用导数求函数最值2.首先要求定义域关于原点对称然后判断f(x)和f(-x)的关系:若f(x)=f(-x),偶函数;若f(x)=-f(-x),奇函数。
如:函数f(x)=x^3,定义域为R,关于原点对称;而f(-x)=(-x)^3=-x^3=-f(x),所以f(x)=x^3是奇函数.又如:函数f(x)=x^2,定义域为R,关于原点对称;而f(-x)=(-x)^2=x^2=f(x),所以f(x)=x^3是偶函数.
(10)求最值常用方法八年级扩展阅读:
一般的,函数最值分为函数最小值与函数最大值。简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值。
函数最大(小)值的几何意义——函数图像的最高(低)点的纵坐标即为该函数的最大(小)值。
最小值
设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意实数x∈I,都有f(x)≥M,②存在x0∈I。使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的最小值。
最大值
设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意实数x∈I,都有f(x)≤M,②存在x0∈I。使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的最大值。
一次函数
一次函数(linear function),也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
所以,无论是正比例函数,即:y=ax(a≠0) 。还是普通的一次函数,即:y=kx+b (k为任意不为0的常数,b为任意实数),只要x有范围,即z<或≤x<≤m(要有意义),那么该一次函数就有最大或者最小或者最大最小都有的值。而且与a的取值范围有关系
当a<0时
当a<0时,则y随x的增大而减小,即y与x成反比。则当x取值为最大时,y最小,当x最小时,y最大。例:
2≤x≤3 则当x=3时,y最小,x=2时,y最大
当a>0时
当a>0时,则y随x的增大而增大,即y与x成正比。则当x取值为最大时,y最大,当x最小时,y最小。例:
2≤x≤3 则当x=3时,y最大,x=2时,y最小[3]
二次函数
一般地,我们把形如y=ax^2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。
注意:“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。
“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),
但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别.如同函数不等于函数关系。
而二次函数的最值,也和一次函数一样,与a扯上了关系。
当a<0时,则图像开口于y=2x² y=½x²一样,则此时y 有最大值,且y只有最大值(联系图像和二次函数即可得出结论)
此时y值等于顶点坐标的y值
当a>0时,则图像开口于y=-2x² y=-½x²一样,则此时y 有最小值,且y只有最小值(联系图像和二次函数即可得出结论)
此时y值等于顶点坐标的y值
参考资料:网络-函数最值