1. 怎么检查食品中是否含维生素c
碘能淀粉溶液变蓝,在检测食品中是否含维生素C时,我们向样品中滴加加碘的淀粉溶液,如果蓝色褪去,说明食品中含有维生素C,如果没有褪色,说明食品中不含维生素C.
故答案为:蓝.
2. 食品中维生素d 测定
简要描述: 高效液相色谱法 1. 原理 样品中脂溶性维生素在皂化过程中与脂肪分离,以石油醚萃取后,用正相色谱柱提取富集,用反相色谱柱,紫外检测器定量测定。 2. 适用范围 ...高效液相色谱法
1. 原理
样品中脂溶性维生素在皂化过程中与脂肪分离,以石油醚萃取后,用正相色谱柱提取富集,用反相色谱柱,紫外检测器定量测定。
2. 适用范围
本方法来源于GB/T 5413.9-1997。适用于婴幼儿配方食品和乳粉维生素A、维生素D、维生素E的测定;也适用于食品或强经食品及饲料中的维生素D含量的测定。
3. 主要仪器
1) 高压液相色谱仪,具有可变波长的紫外检测器,数据处理系统或记录仪。
2) 旋转蒸发器。
3) 平底烧瓶:250mL。
4) 分液漏斗:500mL。
4. 试剂
所有试剂,如未注明规格,均指分析纯,所实验用水均指蒸馏水。
1) 异丙醇:色谱纯。
2) 2%焦性没食子酸乙醇溶液:取2g焦性没食子酸溶液于100mL无水乙醇中。
3) 75%氢氧化钾溶液:取75g氢氧化钾溶于100mL水中。
4) 石油醚:沸程30~60℃。
5) 甲醇:色谱纯。
6) 正己烷:色谱纯。
7) 环己烷:色谱醇。
8) 维生素D标准溶液
A. 维生素D2标准贮备液:含维生素D2100mg/ml的甲醇溶液。称取10mg的维生素D2,用甲醇定容于100mL容量瓶中。
B. 维生素D3的标准贮备液:含维生素D3100mg/ml的甲醇溶液。称取10mg的维生素D3,用甲醇定容于100mL容量瓶中。
5. 操作步骤
5.1样品处理:准确称取10g样品,于250mL平底烧瓶中,加30mL蒸馏水。
5.2测定液的制备:
1) 于上述样品溶液中加入100mL的20%没食子酸乙醇溶液,充分混匀后加50mL75%氢氧化钾溶液,在蒸汽浴上边续回流30min后,立刻冷却到室温。
2) 将皂化液转入一500mL分液漏斗中,用100mL水分几次冲平底烧瓶。洗涤液并入分液漏斗中。
3) 于上述分液漏斗中,加入100mL石油醚,盖好瓶塞,倒置分液漏斗并剧烈振摇1 min.在振摇过程中,注意释放瓶内压力。静置分层,将水相放入另一500mL分液漏斗中,重复上棕萃取过程2次,合并醚液到第一个分液漏斗中。用蒸馏水洗该醚液至中性,通过无水硫酸钠过滤干燥,在40℃和氮气流下,于旋转蒸发器上蒸至近于(绝不允许蒸干)后,用石油醚转移至10mL容量瓶中,定容。
4) 从上述容量瓶中取7mL放入一试管中,用氮气将石油醚吹干,于试管中加1mL正己烷。
5.3测定:
1) 测定液的制备:
A) 仪器条件:
色谱柱:30cm×40cm,硅胶柱。
流动相:正己烷与环己烷按体积比1:1混合,并按体积分数0.8%加入异丙醇。
流速:1mL/min。
波长:265nm。
柱温:20℃。
灵敏度:0.005AU/MV。
注射体积:200mL。
B) 注射50mL维生素D标样和200mL样品溶液,根据维生素D标样保留时间收集维生素D于试管中,将试管用氮气吹干,准确加入0.2mL甲醇溶解。
2) 测定步骤:
A) 仪器条件:
色谱柱:4.6mm×25cm,C18或具同等性能的色谱柱。
流动相:甲醇。
流速:1mL/min。
波长:265nm。
柱温:20℃。
灵敏度:0.005AU/MV。
注射体积:50mL。
B) 注射50mL维生素D标准溶液,注射50mL样品溶液,得到标样和样品溶液中维生素D峰面积或峰高。
6. 计算
ρs×10∕7×40×100
X =
m
As
ρs= ---×ρsd
Asd
式中: X--样品维生素D的量,mg/100g;
m--称样量,含量,IU∕100g;
ρs --进样液中维生素D有浓度,mg/mL;
A s --进样液中维生素D有峰高(或峰面积);
A s d --标样液中维生素D有峰高(或峰面积);
ρsd --标样中维生素D的浓度;
计算结果精确至小数点后一位。
7. 注意事项
1) 允许误差及最小检出量:同一样品的2次测定值之差不得超过2次测定平均值的10%;最小检出量为0.1国标单位。
2) 试剂焦性没食子酸容易变性,应购习近期生产的试剂。
3) 如果皂化不完全,可适当增加氢氧化钾的加入量。
3. 食品中维生素d检测方法
食品中的维生素D的检测方法很简单的,只要用一些测量仪和试试剂就可以检测出胃酸分泌的。
4. 维生素与蛋白质食物怎么用实验检验
实验3 食品中维生素C含量的测定(2,6-二氯酚靛酚滴定法)
一、实验原理
维生素C又称抗坏血酸,还原型抗坏血酸能还原染料2,6-二氯酚靛酚钠盐,本身则
氧化成脱氢抗坏血酸。
2,6-二氯酚靛酚的钠盐水溶液呈蓝色,在酸性溶液中呈玫瑰红色,当其被还原时就
变为无色,因此,可用2,6-二氯酚靛酚滴定样品中的还原型抗坏血酸。当抗坏血酸完全被氧化后,稍多加一点染料,使滴定液呈淡红色,即为终点。如无其他杂质干扰,样品提取液所还原的标准染料量与样品中所含的还原型抗坏血酸量成正比。 二、试剂和器材
偏磷酸醋酸溶液:取15g(用时研细)溶于40mL醋酸及20mL水的混合液中,然后
用水稀释至500mL,过滤后储入试剂瓶中。
标准2,6-二氯酚靛酚溶液:取0.25g2,6-二氯酚靛酚溶于700mL蒸馏水中(用力搅
动),加入300mL磷酸缓冲液(预先配制9.078g/L KH2PO4-11.867g/L Na2HPO4·2H2O水溶液,用时以KH2PO4:Na2HPO4·2H2O=4:6的比率将其混合,pH值为6.9-7.0),翌日过滤,滤液储于棕色瓶中,临用时,以抗坏血酸溶液标定。
标准维生素C溶液:以少量偏磷酸醋酸溶液溶解0.1g维生素C于100mL容量瓶中,
再以该液稀释至刻度。
2,6-二氯酚靛酚液的标定:在3个100mL锥形瓶中,各置5mL偏磷酸醋酸液,再
各加2mL标准维生素C溶液,摇匀。用上面所制的标准2,6-二氯酚靛酚液滴定,呈玫瑰红色保持30s不褪色为止。记下所用2,6-二氯酚靛酚溶液体积平均值,再以同样方法做一空白实验,取7mL偏磷酸醋酸液加水若干毫升(相当于以上所用的2,6-二氯酚靛酚溶液的低定量),仍用2,6-二氯酚靛酚溶液滴定。将第一次滴定的量减去空白实验的量,即为标准维生素的反应量,求出1mL 2,6-二氯酚靛酚对应于维生素C的质量(mg)。 研钵、容量瓶、剪刀、锥形瓶、微量滴定管 三、实验步骤
1、用自来水冲洗果蔬样品,再以蒸馏水清洗,用纱布或吸水纸吸干表面水分,然后
var script = document.createElement('script'); script.src = 'http://static.pay..com/resource/chuan/ns.js'; document.body.appendChild(script);
称取25g,剪碎,在研钵中研呈浆状。加入20mL 3%偏磷酸醋酸液,搅动,抽提。过滤液经漏斗流入100mL容量瓶中,残渣再以30mL偏磷酸醋酸液提取3次,滤液及洗涤液皆流入该容量瓶中,以蒸馏水稀释至刻度,加塞摇匀。如滤液颜色较深,可用白陶土脱色。
2、吸取10mL提取液于锥形瓶中,加5mL偏磷酸醋酸液,混合均匀,以2,6-二氯
酚靛酚溶液滴定,并不断摇动,至溶液呈玫瑰红色保持30s不褪色为止。 3、吸取15mL偏磷酸醋酸液,加水若干毫升(相当于以上样品实验滴定所用2,6-二氯酚靛酚溶液的量)做一空白实验,用同样方法,以2,6-二氯酚靛酚溶液滴定。 4、结果计算
维生素C的含量(mg/100g)按下式计算:
mcvv*100
10
100
**C21)(的含量维生素
式中 v1——样品用2,6-二氯酚靛酚溶液的滴定体积,mL V2——空白用2,6-二氯酚靛酚溶液的滴定体积,mL C——1 mL 2,6-二氯酚靛酚相当于维生素C的含量,mg/mL m——样品质量。 四、注意事项
1、样品中某些杂质也能还原2,6-二氯酚靛酚,但速率均较抗坏血酸慢,故终点以
淡色存在30s为准。
2、维生素C还可以用2%草酸溶液来提取,2%草酸和偏磷酸同样具有抑制抗坏血酸
氧化酶的功效。
3、若样品中含有大量Fe2+,可以还原2,6-二氯酚靛酚,用草酸为提取液,则Fe2+不
会很快与染料起作用。
5. 测定vc有哪几种方法,每种方法的使用范围
维生素C不同的测定方法
目前研究维生素C测定方法的报道较多,有关维生素C的测定方法如荧光法、2,6-二氯靛酚滴定法、2,4-二硝基苯肼法、光度分析法、化学发光法、电化学分析法及色谱法等,各种方法对实际样品的测定均有满意的效果.
为了解国内VC含量测定方法及其应用方面的现状及发展态势.方法以"维生素C或抗坏血酸和测定"为检索词对1994~2002年中国期刊网全文数据库(CNKI)中的理工A、B和医药卫生专辑进行篇名检索,对所得有关维生素C含量测定的文献数据分别以年代、作者区域、载刊等级、样品类型、测定方法等进行计量分析.结果核心期刊载刊文献占文献总量的45.06%,其中光度法占65.69%,电化法占18.63%,色谱法占12.75%;复杂被测样品文献占文献总量的45.06%,其中光度法占60.92%,色谱法占19.54%,电化法占10.34%.结论目前国内维生素C含量测定仍以光度法为主流,但近年来色谱法,特别是HPLC法上升趋势尤为明显.
一.荧光法
1.原理
样品中还原型抗坏血酸经活性炭氧化成脱氢型抗坏血酸后,与邻苯二胺(OPDA)反应生成具有荧光的喹喔啉(quinoxaline),其荧光强度与脱氢抗坏血酸的浓度在一定条件下成正比,以此测定食物中抗坏血酸和脱氢抗坏血酸的总量。
脱氢抗坏血酸与硼酸可形成复合物而不与OPDA反应,以此排除样品中荧光杂质所产生的干扰。本方法的最小检出限为0.022 g/ml。
2.适用范围
本方法适用于蔬菜、水果及其制品中总抗坏血酸的测定
3. 注意事项
3.1 大多数植物组织内含有一种能破坏抗坏血酸的氧化酶,因此,抗坏血酸的测定应采用新鲜样品并尽快用偏磷酸-醋酸提取液将样品制成匀浆以保存维生C。
3.2 某些果胶含量高的样品不易过滤,可采用抽滤的方法,也可先离心,再取上清液过滤。
3.3活性炭可将抗坏血酸氧化为脱氢抗坏血酸,但它也有吸附抗坏血酸的作用,故活性炭用量应适当与准确,所以,应用天平称量。我们的实验结果证明,用2g活性炭能使测定样品中还原型抗坏血酸完全氧化为脱氢型,其吸附影响不明显。
二、2,6-二氯靛酚滴定法(还原型VC)
1、原理:
还原型抗坏血酸还原染料2,6-二氯靛酚,该染料在酸性中呈红色,被还原后红色消失。还原型抗坏血酸还原2,6-二氯靛酚后,本身被氧化成脱氢抗坏血酸。在没有杂质干扰时,一定量的样品提取液还原标准2,6-二氯靛酚的量与样品中所含维生素C的量成正比。本法用于测定还原型抗坏血酸,总抗坏血酸的量常用2,4-二硝基苯肼法和荧光分光光度法测定。
2、注意事项
⑴ 所有试剂的配制最好都用重蒸馏水;
⑵ 滴定时,可同时吸二个样品。一个滴定,另一个作为观察颜色变化的参考;
⑶ 样品进入实验室后,应浸泡在已知量的2%草酸液中,以防氧化,损失维生素C;
⑷ 贮存过久的罐头食品,可能含有大量的低铁离子(Fe2+),要用8%的醋酸代替2%草酸。这时如用草酸,低铁离子可以还原2,6-二氯靛酚,使测定数字增高,使用醋酸可以避免这种情况的发生;
⑸ 整个操作过程中要迅速,避免还原型抗坏血酸被氧化;
⑹ 在处理各种样品时,如遇有泡沫产生,可加入数滴辛醇消除;
⑺ 测定样液时,需做空白对照,样液滴定体积扣除空白体积。
3优点:它具有简便、快速、比较准确等优点,适用于许多不同类型样品的分析。缺点是不能直接测定样品中的脱氢抗坏血酸及结合抗坏血酸的含量,易受其他还原物质的干扰。如果样品中含有色素类物质,将给滴定终点的观察造成困难。在酸性环境中,抗坏血酸(还原型)能将染料2,6—DCIP还原成无色的还原型2,6—DCIP,而抗坏血酸则被氧化成脱氢抗坏血酸。氧化型2,6—DCIP在中性或碱性溶液中呈蓝色,但在酸性溶液中则呈粉红色。因此,当用2,6—DICP滴定含有抗坏血酸的酸性溶液时,在抗坏血酸未被全部氧化前,滴下的2,6—DCIP 立即被还原成无色,一旦溶液中的抗坏血酸全部被氧化时,则滴下微量过剩的2,6—DCIP 便立即使溶液显示淡粉红色或微红色,此时即为滴定终点,表示溶液中的抗坏血酸刚刚全部被氧化。依据滴定时2,6—DCIP 标准溶液的消耗量 (ml),可以计算出被测样品中抗坏血酸的含量。氧化型2,6—DCIP与还原型抗坏血酸常在稀草酸或偏磷酸溶液中进行反应。即先将样品溶于一定浓度的酸性溶液中或经抽提后,再用2,6—DCIP标准溶液滴定至终点。
食物和生物材料中常含有其他还原物质,其中有些还原物质可使2,6—DCIP还原脱色。为了消除这些还原物质对定量测定的干扰,可用抗坏血酸氧化酶处理,破坏样品中还原型抗坏血酸后,再用2,6—DCIP 滴定样品中其他还原物质。然后从滴定未经酶处理样品时2,6—DCIP标准溶液的总消耗量中,减去滴定非抗坏血酸还原物质2,6—DCIP 标准溶液的消耗量,即为滴定抗坏血酸实际所消耗的2,6—DCIP标准溶液的体积,由此可以计算出样品中抗坏血酸的含量。另外,还可利用抗坏血酸和其他还原物质与2,6—DCIP反应速度的差别,并通过控制样品溶液在pH1 — 3 范围内,进行快速滴定,可以消除或减少其他还原物质的作用,一般在这样的条件下,干扰物质与2,6—DCIP的反应是很慢的或受到抑制。生物体液(如血液、尿等)中的抗坏血酸的测定比较困难,因为这些样品中抗坏血酸的含量很低,并且存在许多还原物质的干扰,同时还必须预先进行脱蛋白处理。在生物体液中含有巯其、亚硫酸盐及硫代硫酸盐等物质,它们都能与DCIP反应,但反应速度比抗坏血酸慢得多。样品中巯基物质对定量测定的干扰,通常可以藉加入对—氯汞苯甲酸(简称PCMB)而得到消除。
三、2,4-二硝基苯肼法
1.原理
总抗坏血酸包括还原型、脱氢型和二酮古乐糖酸。样品中还原型抗坏血酸经活性炭氧化为脱氢抗坏血酸,再与2,4-二硝基苯肼作用生成红色脎,脎的含量与总抗坏血酸含量成正比,进行比色测定。
2.适用范围
本方法适用于蔬菜、水果及其制品中总抗坏血酸的测定。
这是脎比色法,单独评价是因为目前它作为Vc测定的国标法之一,是一种全量测定法,它跟以前的苯肼法原理相近。首先将样品中的还原型V氧化为脱氢型V,然后与2,4—二硝基苯肼作用,生成红色的脎,将脎溶于硫酸后进行比色。最近国标中该法强调空白,每个样品及标准系列均需作对应空白,这样消除色泽、背景不一的误差。在实际杨梅汁Vc测定中,操作时间长,操作要求较严格,试剂较多,就一般实验室而言是目前可以采用的方法。
四 碘量法
1、维生素C的原理
维生素C包括氧化型、还原型和二酮古乐糖酸三种。当用碘滴定维生素C时,所滴定的碘被维生素C还原为碘离子。随着滴定过程中维生素C全被氧化,所滴入的碘将以碘分子形式出现。碘分子可以使含指示剂(淀粉)的溶液产生蓝色,即为滴定终点。
2、注意事项
(1)看到红棕色出现时要放慢滴定的速度。
(2)以显蓝色在30s内不褪色为滴定终点。
五L-抗坏血酸(维生素C)测定试剂盒(酶学方法)
1.应用于食品,饮料及生物制品检测
2.比色方法
此方法用于检测水果和蔬菜(如马铃薯),水果和蔬菜产品(如西红柿酱、泡菜、果酱、果汁),婴儿食品,啤酒,饮料,流食,粉状和烘烤剂,肉产品,奶制品,葡萄酒,还有动物饲料,医药品(如维生素配制、阵痛药、退烧药)和生物样品中的L-抗坏血酸(维生素C),
3.分析物
L-抗坏血酸不定量的分布于动物和植物中。人类不能自身生产L-抗坏血酸,因此必须由外源(vitamin C)提供。一般情况下来源于水果和蔬菜中,出于技术原因,L-抗坏血酸曾被用于食品工业中的抗氧化剂。它是一种相对敏感的物质,L-抗坏血酸的检测非常适用于从原始水果和蔬菜中加工食品的质量评定。
L-抗坏血酸用于医药品生产中的组成部分,如维生素产品和阵痛药,另外,它还用于动物饲料添加剂中。
4.原理
L-抗坏血酸 (x-H2) + MTT+ PMS—> dehydroascorbate (x) + MTT-formazan + H+X
L-抗坏血酸 + ½ O2 AAO——> dehydroascorbate + H2OX
5.特异性
在给定的条件下,此方法特别针对于L-抗坏血酸。合成的D-阿拉伯抗坏血酸/阿拉伯糖型抗坏血酸能作为抗氧化剂,也能反应,但反应速度较慢。
6.灵敏度
测定灵敏度为0.005个吸光度单位,样品体积为1.600ml,此相当于0.1mg/l样品溶液中的L-抗坏血酸浓度。0.015个吸光度单位的差异能造成0.3 mg/l检测限,样品最大体积为1.600 ml.。
7.线性
测定的线性范围为0.5 ugL-抗坏血酸(0.3mgL-抗坏血酸/l样品溶液体积为1.600ml)到20 ugL-抗坏血酸(0.2gL-抗坏血酸/l样品溶液体积为0.100ml)
8.精密度
在用一个样品做重复实验时,可能会产生0.005-0.010个吸光度单位的差异。标准的相对偏差(变异系数)大约为1-3%。当分析检测数据时,要考虑到L-抗坏血酸的水溶液稳定性较差,尤其是重金属离子或氧存在时。
9.干扰及错误来源
粮食的成分不经常干扰实验。高浓度的酒精和D-山梨酸醇能降低反应速度,大量的亚硫酸盐必须通过添加甲醛来去除。醋酸抑制酶AAO。金属和 亚硫酸盐离子可以导致L-抗坏血酸的自发分解。
10.试剂盒包括内容
1.磷酸盐/柠檬酸缓冲液 ———— pH值大约3.5;MTT
2.AAO(坑坏血酸-氧化酶)—— 每板约17 U AAO
3. PMS 溶液
六.磷钼蓝分光光度法测定维生素C
基于在一定的反应条件下,维生素C可以定量地将磷钼酸锭还原成磷钼蓝,提出了一种新的测定维生素C的分光光度法。该方法很方便、快速地测定生物、药物等试样中的维生素C,准确度和重复性均达到令人满意的程度。
1 适用范围
本标准适用于果品、蔬菜及其加工制品中还原型抗坏血酸的测定(不含二价铁、二价锡、一价铜、二氧化硫、亚硫酸盐或硫代硫酸盐),不适用于深色样品。
2 测定原理
染料2,6-二氯靛酚的颜色反应表现两种特性,一是取决于其氧化还原状态,氧化态为深蓝色,还原态变为无色;二是受其介质的酸度影响,在碱性溶液中呈深蓝色,在酸性介质中呈浅红色。
用蓝色的碱性染料标准溶液,对含维生素 C的酸性浸出液进行氧化还原滴定,染料被还原为无色,当到达滴定终点时,多余的染料在酸性介质中则表现为浅红色,由染料用量计算样品中还原型抗坏血酸的含量。
七.二甲苯-二氯靛酚比色法
1 适用范围
测定深色样品中还原型抗坏血酸。
2 测定原理
用定量的 2,6-二氯靛酚染料与试样中的维生素 C进行氧化还原反应,多余的染料在酸性环境中呈红色,用二甲苯萃取后比色,在一定范围内,吸光度与染料浓度呈线性相关,收剩余染料浓度用差减法计算维生素 C含量。
八.近红外漫反射光谱分析法(NIRDRSA)
自1965年首次应用于复杂农业样品分析后,因其具 有样品处理简单、分析速度快等优点,逐渐受到分析界的重视。此法已广泛应用于石油、纺 织、农业、食品、药物分析等领域[1,2]。在药物分析中,NIRDRSA可以进行定性 鉴别、定量分析等工作。
维生素C是一种不稳定的二烯醇化合物,其药典[3]含量测定方法为碘量法。我 们采用近红外漫反射光谱技术直接测定维生素C含量,样品无需预处理,方法简便,结果可 靠。
这是因为,近红外谱区光的频率与有机分子中C-H,O-H,N-H等振动的合频与各级倍频的 频率一致,因此通过有机物的近红外光谱可以取得分子中C-H,O-H,N-H的特征振动信息 。由于近红外光谱的谱带较宽,谱图重叠严重,不能用特征峰等简单方法分析,需要运用计 算机技术与化学计量学方法。本实验应用的是偏最小二乘法(PLS)[4],首先利用 定标集建立预测模型,然后将预测集作为未知样本,根据预测模型进行预测。
对所选择的谱区范围,采用对反射吸光度的MSC(散射校正)预处理,对25个样品进行交叉 验证,即选择一个样品,从校正集中除去该样品对应的光谱和浓度数据,并设光谱主成分数 为1,循环迭代样品数和主成分数,计算预测残差平方和,确定所需主成分数。若主成分选择 过小,会丢失样品信息,过大会造成过度拟合。当主因子为2时,预测残差平方和值最小, 为2.029,故选择主因子数为2,建立最佳PLS校正数学模型。
九 电位滴定法
1.原理:根据滴定过程中电池电动势的变化来确定反应终点.
Pt为指示电极,甘汞作参比电极
E池=E+-E-+E液接电位=EI2/I-+k(常数)
2.原理(具体来说:)
随着滴定剂的加入,由于发生化学反应,待测离子浓度将不断变化;从而指示电极电位发生相应变化;导致电池电动势发生相应变化;计量点附近离子浓度发生突变;引起电位的突变,因此由测量工作电池电动势的变化就能确定终点。
3.计算式:(与碘量法相同) Wvc=C(I2)V(I2)M(vc)/m(vc ) *100%
4.优点:
解决了滴定分析中遇到有色或浑浊溶液时无法指示终点的问题
用线性电位滴定法分析抗坏血酸,抗坏血酸回收率为99.80%~101.5%,相对标准偏差为0.61%;分析维生素C片中的抗坏血酸,相当标示量为98.90%~100.5%,相对标准偏差不大于0.48%,说明线性电位滴定法分析维生素C片中的抗坏血酸含量是可行的.
十 .分光光度法
1. 原理:
维生素C在空气中尤其在碱性介质中极易被氧化成脱氢抗坏血酸,pH>5,脱氢抗坏血酸内环开裂,形成二酮古洛糖酸。脱氢抗坏血酸,二酮古洛糖酸均能和2,4-二硝基苯肼生成可溶于硫酸的脎
脎在500nm波长有最大吸收
根据样品溶液吸光度,由工作曲线查出VC的浓度,即可求出VC的含量
十一 库仑滴定法
1.原理:库仑滴定法属于恒电流库仑分析。
是在特定的电解液中,以电极反应产物为滴定剂(电生滴定剂,相当于化学滴定中的标准浓液)与待测物质定量作用,借助指示剂或电位法确定滴定终点。
2.基本依据--法拉第电解定律:电解时,电极上发身化学反应的物质质量与通过电解池的电量Q成正比
即: m=MQ/zF = MI t /zF
3..化学反应:阴极反应: 2H+2e-=H2 阳极反应: 2I-=I2+2e-
4.终点指示:多种方法
(1)化学指示剂--I2
(2)电位法
(3)双铂极电流指示法
5.计算式:Wvc=MvcQ/zFm样式中: F--- 法拉第常数(96487C)
Z---电极反应中转移的电子数注意:使电解效率100%
6.优点:
1)无需标准化的试剂溶液,免去了大量的标准物质的准备工作(配制,标定)
2)只需要一个高质量的供电器,计时器,小铂丝电极,且易于实现自动化控制
3)若电流维持一个定值,可大大缩短了电解时间
4)电量容易控制及准确测量;方法灵敏度,准确度较高
5)滴定剂来自电解时的电极产物,可实现容量分析中不易实现的滴定过程,如Cu+,Br2,Cl2产生后立即与待测物反应。
7.缺点(难点):
要求电解过程没有副反应和漏电现象,即使电解电极上只进行生成滴定剂的反应,且电流的效率是100%
8.注:电流效率=i样÷i总= i样÷( i样+ i容+i杂)
因为:实际电解过程中存在影响电流效率的因素,如,杂质,溶剂,电极自身在电极上的反应等
十二 紫外快速测定法
原理
维生素C的2,6—二氯酚靛酚容量法,操作步骤较繁琐,而且受其它还原性物质、样品色素颜色和测定时间的影响。紫外快速测定法,是根据维生素C具有对紫外产生吸收和对碱不稳定的特性,于243nm处测定样品液与碱处理样品液两者消光值之差,通过查标准曲线,即可计算样品中维生素C的含量。
十三 光电比浊法的原理
原理
在酸性介质中,抗坏铁酸与亚硒酸(H2SeO3)能定量地进行氧化还原反应.1mol的抗铁酸能将2mol的亚硒酸还原成硒.在一定条件下,生成的元素硒在溶液中形成稳定的悬浊液.当抗铁酸的浓度在0-4mg/25-50ml的范围内,该溶液生成的浊度与抗坏铁酸的含量成正比.将试液置分光光度计上测其浊度可以定量地测定抗坏铁酸.
十四荧光分析法的原理
原理
用酸洗活性炭将抗坏铁酸氧化为顺式脱氢抗坏铁酸,然后与邻苯二胺缩合成一种荧光性化合物.样品中其它荧光杂质的干扰可以通过向氧化后的样品中加入硼酸,使脱氢抗坏铁酸形成 硼酸脱氢抗坏铁酸的络合物,它不与邻二苯胺生成荧光化合物.这样可以测定其它荧光杂质的空白荧光强度而加以校正
十五 原子吸收间接测定法
原理
这是最近报导的一种Vc测定法,其原理是在酸性介质中还原型Vc可将Cu2+定量地还原为Cu+并与SCN—反应生成CuSCN沉淀,在高速离心机下有效地分离出沉淀,小心洗涤后再经浓硝酸溶解,用原子吸收法测定铜含量,即可推知样品中维生素C的含量。该法实验仪器较昂贵,主要问题是操作过程中反应完全与否,沉淀物洗涤、离心反复多次,极容易带来误差。该法优点是能不受果蔬自身颜色的干扰,有一定的发展前景。根据试验,发现此法结果偏低,还有待于进一步优化改善。
十六.金纳米微粒分光光度法测定维生素C的方法
本发明公开了一种用金纳米微粒分光光度法测定维生素C的方法。于5mL比色管中,依次加入0.1-2.0mL浓度为95.64μg/mL的HAuCl↓[4]溶液,0.02-0.50mL浓度为1%的柠檬酸三钠溶液,再加入0.001-2.0mL浓度为0.38mg/mL的维生素C溶液,混匀,加二次蒸馏水定容至刻度,再充分混匀,在分光光度计上,于520nm处测定吸收值,同时作空白试验。本发明测定方法简单、快捷,所用仪器价廉,试剂易得
十七 L-半胱氨酸修饰电极测定维生素C的方法
研究了L-半胱氨酸修饰电极的制备方法和其电化学行为,并用于维生素C的测定,发现该电极对VC有明显的电催化作用,在pH=10.0的NH4Cl-NH3·H2O缓冲溶液中,VC在L-半胱氨酸修饰电极上产生一灵敏的氧化峰,峰电流与VC的浓度在1.0×10-3~1.0×10-6mol/L的范围内呈良好的线形关系,相关系数为0.9962,其最低检测限可达1.0×10-6mol/L,与紫外光谱法测定的结果一致。
测定维生素C有多种方法,包括采用I2或二氯靛酚(DPI)进行氧化还原滴定。一般来说,滴定法是一种快速、简便、准确的技术,它通过滴定剂和被滴定物质的等当量反应,精确测定被测物质的含量。DPI对于维生素C具有良好的选择性,是一种理想的氧化剂。
十八 梅特勒-托利多仪器法
传统的滴定法是手工滴定,根据指示剂颜色的变化确定终点,通过测量滴定剂的消耗量,计算被测物质的含量。手工滴定有很多不足:手工控制误差较大,计算复杂,针对不同的反应需要特殊指示剂。梅特勒-托利多的自动电位滴定仪解决了这一问题,通过测量滴定反应中电位的变化确定终点,全自动操作、计算,测量快速,结果准确。梅特勒-托利多的滴定仪配有记忆卡软件包,存储有成熟滴定方法,可方便快速解决实际应用问题,并且稍作改动就能作为新的测定的实验方法。
除此之外,还有双光束剩余染料差减比色法,2_6_二氯靛酚钠动力学分光光度法、聚中性红修饰电极方法、示波溴量法、流动注射化学发光抑制法、磷钼钨杂多酸作显色剂快速检测方法、溶氧测定装置测定水果蔬菜中抗坏血酸含量的方法等。在此不做介绍。
6. 测定食品中维生素C含量时往往会受哪些因素影响有什么解决措施
几种常见的检测方法进行简要的叙述。
维生素C的测定方法 1. 滴定分析法
采用滴定法测定维生素C的原理主要是利用维生素C的氧化还原性质,通过化学反应,选择合适的指示剂,根据样品溶液颜色的变化判定终点。常见的方法有 2,6-二氯吲哚酚滴定法(又称染料法)和碘量法等。其中 2,6-二氯吲哚酚滴定法的基本原理是:在酸性环境中,红色的2,6-二氯吲哚酚与维生素C反应被还原为无色的酚亚胺,以2,6-二氯吲哚酚染料为滴定剂,用滴定剂自身的颜色变化指示终点,当溶液中的维生素 C刚好被全部氧化时,溶液呈浅红色, 30s内不褪色,即为滴定终点,其反应式如图2所示。滴定分析法快速、准确、方便,可用于测定水果中少
量的维生素C。但当样品中含有 Fe(II)、Sn(II)、Cu(I)、SO2、S2O32−
等离子和富含丹宁酸、甜菜苷时,由于这些物质本身也有还原性,也会与氧化剂发生氧化还原反应,而使测定结果不准确。因此滴定分析法往往只适用于测定不含 L-脱氢抗坏血酸( DHA)、花青素含量较低及不含还原性离子的样品。
2. 光度计法
光度法测定样品中维生素C含量的原理大多利用显色剂与维生素C发生的氧化还原反应,通过测定溶液的吸光度建立标准曲线来测定样品维生素C的含量。然而,由于总抗坏血酸的局限性,例如GB/T12392-1990只能测定脱氢抗坏血酸。而对于还原型抗坏血酸测定,GB5009.159-2003则采用抗坏血酸与固蓝盐B( Fast blue salt B)反应生成黄色的草酰肼-2-羟基丁酰内酯衍生物,在最大吸收波长420nm测定吸光度来检测。采用亚甲蓝褪色光度法也能够方便的测定维生素C,具有良好的选择性。利用抗坏血酸对于Cu(II)具有专一的还原作用,在Cu(II)的存在下,抗坏血酸将 Cu(II)迅速还原成 Cu(I),Cu(I)与新亚铜灵(2,9-二甲苯-1,10菲绕啉)络合生成黄色水溶性物质,并在分光光度计下测定。此类方法结果可靠,重现性好,能准确测定维生素 C的含量,但如果待测液本身有颜色时,吸光度会受到影响,进而影响测定结果的准确性,且耗时较长。
3. 电化学法
电化学分析法是利用维生素C在电极上发生氧化反应而进行测定的。维生素 C在电极上失去 2个电子和 2个氢离子被氧化形成脱氢抗坏血酸,经过不可逆的水合作用形成脱氢古落糖酸。常用的工作电极有金属电极、石墨电极等,但维生素 C在此类电极氧化需要较高的氧化电位,在检测过程中易受到其它物质的干扰。近年来,采用修饰电极来降低氧化电位受到研究者的广泛重视,如纳米粒子金修饰的氧化钛膜电极(Au/Ti O2/Ti),聚吡咯修饰的分子印迹(MIP)石墨电极等,大大提高了检测方法的灵敏度和选择性。电化学分析法具有分析速度快,操作简便、成本低、试剂用量少等优点,还可以与液相色谱、毛细管电泳生物传感器等联用来提高测定方法的灵敏度。其缺点是对样品前处理要求较高,操作较为繁琐。4. 化学发光法(CL) 化学发光法(CL)是利用维生素C与高锰酸钾、K2Cr2O7、Fe或铁氰化合物等发生氧化反应,并与鲁原子吸收光谱法(AAS)间接测定维生素 C的含量米诺(Luminol)或光泽精(Lucigenin)化学发光体系进行反应偶合来测定体系的发光强度进行维生素C的测定。Kato等利用在维生素 C中加入 Fe-叶绿酸发光体系发生淬灭来测定微量的维生素C, 化学发光法具有易操作、线性范围宽和灵敏度高的优点,是一种有效的痕量分析方法。5.流动注射分析法(FIA) 流动注射分析法(FIA)是将有色(或无色但有紫外吸收)溶液作为载流,当被测样品注入载流时,发生化学反应,使载流溶液颜色变淡(或紫外吸收降低)。若载流吸光度的变化与被测物质量具有一定的函数关系,即可以此对被测样品进行定量。流动注射法具有试剂用量少,重现性好,样品自动注射,占用空间少等优点, 特别适用于在大量样品中测定某一种目标分析物。近年来,FIA技术用于维生素 C测定受到很多研究者的关注,实现了快速、自动分析测定维生素C。流动注射系统可以与光谱法、电化学分析、色谱法、荧光法结合,与传统方法相比,大大提高了灵敏度和准确度。6. 液相色谱法(HPLC) 液相色谱法(HPLC)由于其具有灵敏度高、重现性好、操作简便和能实现多种维生素的同时测定等优点已成为近年来应用最广的分离和测定维生素C的方法。基于样品前处理方法、测定色谱条件和检测器的不同采用HPLC测定维生素C含量的方法也不尽相同。常用于测定维生素 C的色谱柱以反相柱为主,检测器包括的紫外(UV)或二极管阵列(PDA)检测器和电化学(EC)检测器等。例如:Maia等采用0.2%的偏磷酸–甲醇–乙腈 (90:8:2)为流动相,C18柱为色谱柱,在254nm波长下对药品中的维生素C含量进行测定。Quiros等,以0.1%(V/V) 的甲酸溶液为流动相,Mediterranea sea 18为色谱柱,在254 nm波长下测定果汁和饮料中维生素 C含量。由于流动相常常要使用含有一定的离子强度的缓冲溶液,故基本无法使用液相色谱–质谱联用技术来测定维生素C的含量。7. 原子吸收光谱法(AAS) 已有一些报道大致分为两类:沉淀法和阳离子树脂交换法。沉淀法的原理是:在酸性介质中维生素C与 Cu及 SCN反应生成一价铜盐 CuCNS (沉淀),分离后用原子吸收法测铜含量而间接测定维生素C含量]。阳离子树脂交换法是通过维生素C换柱表面将高氧化态金属离子或氧化物 (Fe3+, MnO2)还原为低氧化金属离子(Fe2+, Mn ),通过流动注射在阳离子交
7. 如何进行维生素C片剂质量检验取样
飞秒检测常常使用以下简单的办法进行滴定测定:
维生素C测定—氧化还原滴定法
应用范围
该方法采用滴定法测定维生素C的含量。
该方法适用于维生素C。
方法原理
供试品加新沸过的冷水与稀醋酸使溶解,加淀粉指示液,以直接碘法滴定,计算维生素C的含量。
试剂
1、水(新沸放置至室温)
2.碘滴定液(0.05
mol/L)
3.淀粉指示液
4.冰醋酸溶液
仪器设备:
1、碘滴定液(0.05
mol/L)
配制:取碘13.0g,加碘化钾36g与水50mL溶解后,加盐酸3滴与水适量使成1000mL,摇匀,用垂熔玻璃滤器滤过。
标定:取在105℃干燥恒重的基准三氧化二砷约0.15g,精密称定,加氢氧化钠滴定液(1
mol/L)10mL,微热使溶解,加水20mL与甲基橙指示液1滴,加硫酸滴定液50mL与淀粉指示液2mL,用本液滴定至溶液显浅蓝紫色。每1mL碘(0.1mol/L)相当于4.946g的五氧化二砷。根据本液的消耗量与三氧化二砷的取用量,算出本液的浓度,即得。
贮藏:置玻璃塞的棕色玻璃瓶中,密闭,在凉处保存。
2.淀粉指示液
取可溶性淀粉0.5g,加水5mL搅匀后,缓缓倾入100mL沸水中,随加随搅拌,继续煮沸2分钟,放冷,倾出上清液,即得。本液应临用新制。
操作步骤
取该品0.2g,精密称定,加新沸过的冷水100mL与稀醋酸溶液10mL使溶解,加淀粉指示液1mL,立即用碘滴定液(0.05mol/L)滴定,至溶液显蓝色并在30秒内不褪,并将滴定结果用空白试验校正。记录消耗碘滴定液的体积数(mL),每1mL碘滴定液(0.05mol/L)相当于8.806mg的C6H8O6。
8. 水果中维生素c含量的测定方法有几种
水果中维生素c含量的测定方法有三种,分别为原子吸收分光光度法、紫外可见分光光度法、高效液相色谱法。
1、原子吸收分光光度法
利用原子吸收分光光度法问接测定维生素C的含量,是利用维生素C可以与一些金属离子发生氧化还原反应,通过测定反应掉的金属离子的量,进而间接计算出维生素c的含量。
2、紫外-可见分光光度法
利用紫外-可见分光光度法测定维生素C的含量是基于维生素c在紫外光区有特征吸收,但是因为维生素C结构中具有不饱和键,具有还原性,不易稳定存在,直接测定误差较大。所以在利用紫外分光光度法测定时,维生素标准溶液和待测样的配制条件非常重要。
3、高效液相色谱法
高效液相色谱法是以液体为流动相,采用高压输液系统,将维生素C的溶剂装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而测量出维生素c的含量。
(8)北京市河源市食品维生素检测方法扩展阅读
维生素c含量的测定方法对比:
由于维生素C自身的不稳定,导致了很多方法测定结果误差较大,所以对维生素C稳定存在条件的探索非常重要。高效液相色谱法因为测定较准确、灵敏度高、选择性好,有较好的发展前景,是目前发展较快的一种方法。
9. 用什么检测方法检测食品中维生素b12
维生素B12又叫钴胺素,是唯一含金属元素的维生素。自然界中的维生素B12都是微生物合成的,高等动植物不能制造维生素B12。维生素B12是惟一的一种需要一种肠道分泌物(内源因子)帮助才能被吸收的维生素。
体内维生素B12的通常含量为2-5mg,大部分贮存于肝脏,约为体内总贮存量的80%,其余存在于肌肉、皮肤和骨组织,少量存在于肺、肾、脾。维生素B12最重要的功能在于它是骨髓造血所需的重要物质。
ELISA用血清来检测维生素B12,首先血液要经过至少半个小时的凝集,然后取血清。将酶复合物用稀释液稀释后,加血清及阴性、阳性对照,还有就是质控品(这是严格的要求,它的范围必须在质控范围内)。经过一个小时的孵育,然后洗板,加底物,半个小时避光反应后加终止液即完成反应部分,然后就是读数。由数值来判断结果的阴性或阳性。
10. 维生素检测用什么分析仪器比较好
课程详情介绍
维生素是消费者关注的营养成分之一,也是食品检测行业的热门项目。本课程结合维生素的类别、作用、检测手段的发展历史等,对目前国际国内各种维生素的测试方法及常用分析仪器进行讲解。
本课程除了理论内容,我们还将安排学员进行实际操作练习,了解维生素测试的前处理过程及相关仪器分析技术。此外,我们还将给学员讲解维生素测试的影响因素,并对如何消除这些因素、确保数据的准确性进行深入探讨。
维生素检测通常使用液相色谱仪。本课程根据维生素检测所使用的液相色谱仪,详细介绍其工作原理、结构特点和仪器维护要点,使学员掌握仪器的故障排查及日常维护方法。同时,讲解液相色谱数据采集和处理方法的编辑过程,并安排练习,确保学员可以独立操作液相色谱完成维生素日常检测工作。
品质项目包括:
水分、含盐量、含糖量、蛋白含量、脂肪含量、纤维含量、维生素含量、酸度等。对于这些项目的检测,如果经费有限,都可以采用化学法分析,只需配制最简单的烘箱、水浴、电炉、搅拌器、粉碎机、pH计等设备即可。
如果经费充足或检验批次较多,对应的检测项目都有对应的专用仪器可供选购。此外,也有一些通用的仪器可供选购,如:紫外/可见分光光度计、近红外分析仪、自动滴定仪等。检测维生素A、E等有时还需配制荧光光度计。检测营养元素,如,钙、锌、铁等,可购置原子吸收仪-火焰检测器。
(2)卫生项目包括:
微生物、添加剂、有害元素、农药残留、兽药残留、毒素等。对于一般食品企业,微生物检测实验室应该建。
(a)微生物:
建微生物实验室要按照生物实验室规范标准要求进行布局。必要的设备有洁净台、培养箱、高压灭菌锅、电炉等,其它设备则根据具体检测项目配置。经费少可以买国产的,经费多可以考虑买进口的,两者的价钱相差很多。
(b)添加剂和有害元素:
有一部分项目可以用化学法,如,亚硝酸盐、二氧化硫、重金属含量、总砷等,但要想满足现在国标的食品卫生要求,应该购置气相色谱-氢火焰检测器、液相色谱-紫外/可见光检测器,这样一般的防腐剂(苯甲酸、山梨酸等)、甜味剂(甜蜜素、糖精钠等)、色素(柠檬黄、胭脂红等)都可以检测了。购置原子吸收仪-石墨炉检测器,可以分别检测铅、铬、镉、铜、镍等有害元素,还需要一台原子荧光仪,用来检测砷和汞等。
(c)残留农药:
检测残留农药气相色谱必不可少,检测有机氯农药,需配电子俘获ECD检测器;检测有机磷农药,需配火焰光度FPD检测器或氮磷NPD检测器。现在,农残检测的项目越来越多,为提高通用性,建议配置毛细管柱分流/不分流进样口,安装毛细管色谱柱。与传统填充色谱柱相比,毛细管柱分析项目多,分离度好,可以减少频繁的更换色谱柱,提高分析效率。出口食品加工企业生产的产品在出口时需检测的农残项目越来越多,为了把好生产原料和产品质量关,可以配置气相色谱-质谱仪。一般只需配制电子轰击EI源,如果有必要可再配一个负化学NCI源,是选择四级质谱还是离子阱质谱,个人认为都可以,两种仪器各有优缺点。还是要看具体工作。
(d)残留兽药:
若进行残留兽药的检测,项目不多且批次多,可以考虑配制酶联免疫仪,该仪器一次投入不大,操作简便,检测灵敏度高。采用ELISA也有一些缺点,一是试剂盒为长期的消耗品,若检测的批次少,成本会较高,二是特异性不好,可能会有假阳性,三是如果在相对长的一段时间内检测项目较多,成本甚至比仪器分析还高。对于有一定规模的出口食品企业,为适应当前欧盟、美国、日本等发达国家检测限量要求,最好配制一台液相色谱-串联质谱仪。第一台仪器建议配置三重四级质谱仪,灵敏度高、重现性好。仪器不一定要追求高配置,够用就行,但灵敏度、稳定性、抗污染等性能要好。最好买用户较多的型号,有一个与自己检测项目相近的用户群,首先说明该型号仪器检测拟检的项目没有问题,其次,也便于今后技术交流。