① 小学数学口算心算速算技巧
特定条件才能使用,参考:网络文库
一、加法交换律与加法结合律
加法交换律:
两个数相加,交换加数的位置,它们的和不变。即a+b=b+a
一般地,多个数相加,任意改变相加的次序,其和不变。
a+b+c+d=d+b+a+c
加法结合律:
几个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。即:a+b+c=(a+b)+c=a+(b+c),
二、速算与巧算中常用的三大基本思想
1、凑整(目标:整十整百整千...)
2、分拆(分拆后能够凑成整十整百整千...)
3、组合(合理分组再组合)
三、常见方法
凑整法
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的"补数",利用"补数"巧算加法,通常称为"凑整法"
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,
在上面算式中,1叫9的"补数";89叫11的"补数",11也叫89的"补数"。也就是说两个数互为"补数"。
对于一个较大的数,如何能很快地算出它的"补数"来呢?一般来说,可以这样"凑"数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638。
利用"补数"巧算加法,通常称为"凑整法"。
巧算下面各题:
①36+87+64
②99+136+101
③1361+972+639+28
解:
①式=(36+64)+87=100+87=187
②式=(99+101)+136=200+136=336
③式=(1361+639)+(972+28)=2000+1000=3000
魏德武速算
魏氏速算它可以不借助任何计算工具在很短时间内就能使学习者,用一种思维,一种方法快速准确地掌握任意数加、减、乘、除的速算方法。从而达到快速提高学习者口算和心算的速算能力。
1、加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀——“本位相加(针对进位数)减加补,前位相加多加一”就可以彻底解决任意位数从高位数到低位数的加法速算方法,比如:
(1),67+48=(6+5)×10+(7-2)=115;
(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
2、减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀——“本位相减(针对借位数)加减补,前位相减多减一”就可以彻底解决任意位数从高位数到低位数的减法速算方法,比如:
(1),67-48=(6-5)×10+(7+2)=19;
(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
以上内容参考网络-数学速算法
③ 数学口算简单的方法
一
用“凑十法”口算
根据式题的特征,应用定律和性质使运算数据“凑整”:
1、加数“凑整”。
如14+5+6=?启发学生:几个数相加,如果有几个数相加能凑成整十的数,可以调换加数的位置,把几个数相加。
2、运用减法性质“凑整”。
如50-13-7,启发学生说出思考过程,说出几种口算方法并通过比较,让学生总结出:从一个数里连续减去几个数,如果减数的和能凑成整十的数,可以把减数先加后再减。这种口算比较简便。
3.连乘中因数“凑整”。
如25×14×4,25与4的积是100,可直接口算出结果是140。
二
运用“分解法”口算
就是把题目中的某数“拆开”分别与另一个数运算,如25×32,原式变成25×4×8=10×8=80。
三
运用一些速算技巧进行口算
1.首同尾合10的两个两位数相乘的乘法速算。
即用其中一个十位上的数加1再乘以另一个数的十位数,所得积作两个数相乘积的百位、千位,再用两个数个位上数的积作两个数相乘的积的个位、十位。如:14×16=224(4×6=24作个位、十位、(1+1)×1=2作百位)。
2.头差1尾合10的两个两位数相乘的乘法速算。即用较大的因数的十位数的平方,减去它的个位数的平方。如:48×52=2500-4=2496。
3.采用“基准数”速算。
如623+595+602+600+588可选择600为基数,先把每个数与基准数的差累计起来,再加上基数与项数的积。
4.掌握一些运算规律。
例如,两个分母互质数且分子都为1的分数相减,可以把分母相乘的积作分母,把分母的差作分子;两个分母互质数且分子相同,可以把分母相乘的积作为分母,分母相减的差再乘以分子作分子,等等。
④ 口算心算的速算方法是什么
1、加大减差法:前面加数加上后面加数的整数,减去后面加数与整数的差等于和。
2、减大加差法:被减数减去减数的整数,再加上减数与整数的差,等于差。
3、互补两个数的差:两位互补的数相减,被减数减50乘以2;三位互补的数相减,被减数减500乘以2;四位互补的数相减,被减数减5000乘以2,以此类推。
4、数字位置颠倒两个两位数的和:一个数的十位数加上它的个位数乘以11等于和。
(4)三年级数学口算速算简单方法扩展阅读:
破十法即:当个位不够减时,就用10减去减数,剩下的数和个位上的数相加,即破十法。
破十法口诀
十几减九,几加一;十几减七,几加三;十几减五,几加五;十几减三,几加七;十几减八,几加二;十几减六,几加四;十几减四,几加六;十几减二,几加八。
⑤ 口算的技巧有哪些
口算是我们生活当中经常要运用到的一种数学方法,对于学生来说,主要是在小学阶段用得比较多。掌握一定的口算速算技巧,可以让数学学习更加有效,让孩子爱上学习数学。口算的速算技巧有很多,适合于不同的年龄阶段,比如凑整法就是根据式题的特征,应用定律和性质使运算数据“凑整”。
1、加法凑整
例:32+15+8
原式=32+8+15=40+15=55
几个数相加,如果有几个数相加能凑成整十的数,可以调换加数的位置,再把几个数相加。
2、减法凑整
例:50-13-7
原式=50-(13+7)=50-20=30
从一个数里连续减去几个数,如果减数的和能凑成整十的数,可以把减数先加后再减。
3、乘法凑整
例1:25×14×4
原式=25×4×14=100×14=1400
先熟记25×4=100,125×8=1000;碰到25、125这样大的乘数先看看是否可以凑出4、8。
例2:25×32
原式=25×4×8=10×8=80
在熟记上面式子的基础上,把题目中的某数“拆开”分别与另一个数运算。
2.巧用乘法分配律
巧用乘法分配律格式为:m(a+b)=ma+mb
例1: 33×99
原式=33×(100-1)=3300-33=3267
例2: 666×666
原式=333×2×222×3=999×444=(1000-1)×444=444000-444=443556
3.找基准数法
找基准数法就是先把每个数与基准数的差累计起来,再加上基数与项数的积。
例:623+595+602+600+588
可选择600为基数,原式=600×5+23-5+2-12=3008
4.熟记常用数据
熟记1到20各自然数的平方数,可以有效提高做计算题的速度。
⑥ 三年级简算方法技巧 三年级数学4大速算技巧
1、方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例如:
23-11+7=23+7-11
4×14×5=4×5×14
10÷8×4=10×4÷8
2、方法二:结合律法
加括号法
(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
例如:
23+19-9=23+(19-9)
33-6-4=33-(6+4)
(2)在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
例如:
2×6÷3=2×(6÷3)
10÷2÷5=10÷(2×5)
去括号法
(1)在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
例如:
17+(13-7)=17+13-7
23-(13-9)=23-13+9
23-(13+5)=23-13-5
(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)
例如:
1×(6÷2)=1×6÷2
24÷(3×2)=24÷3÷2
24÷(6÷3)=24÷6×3
3、方法三:乘法分配律法
分配法
括号里是加或减运算,与另一个数相乘,注意分配。
例如:
8×(5+11)=8×5+8×11
提取公因式法
注意相同因数的提取。
例如:
9×8+9×2=9×(8+2)
4、方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难。
例如:
99+9=(100-1)+(10-1)
⑦ 口算速算技巧是什么
1、加大减差法:前面加数加上后面加数的整数,减去后面加数与整数的差等于和。
2、减大加差法:被减数减去减数的整数,再加上减数与整数的差,等于差。
3、互补两个数的差:两位互补的数相减,被减数减50乘以2;三位互补的数相减,被减数减500乘以2;四位互补的数相减,被减数减5000乘以2,以此类推。
4、数字位置颠倒两个两位数的和:一个数的十位数加上它的个位数乘以11等于和。
(7)三年级数学口算速算简单方法扩展阅读:
口算只凭思维及语言活动不借任何工具的计算方法。它能培养学生快速的计算,发展学生的注意、记忆和思维能力。口算熟练后有助于笔算,且便于在日常生活中应用。
有助于提高孩子思维和行为的条理性、逻辑性以及灵敏性,锻炼孩子眼、手、脑的同步快速反应,计算方法和中小学数学具有一致性,所以很受幼儿及家长的欢迎。
⑧ 口算速算的方法
1.速算之凑整先算。
【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。
例:298+304+196+502
【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。
【解答】:原式=(298+502)+(304+196)=800+500=1300
2.速算之带符号搬家。
【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。
例:464-545+836-455
【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。
思考:4.75÷0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?
3.速算之拆数凑整。
【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。
例:998+1413+9989
【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和。
【解答】:
原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400
例:73.15×9.9
【分析】:把9.9看作10减0.1的差,然后用乘法分配率可简化运算。
【解答】:
原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185
4.速算之等值变化。
【点拨】:等值变化是小学数学中重要的思想方法。做加法时候,常常利用这样的恒等变形:一个加数增加,另一个加数就要减少同一个数,它们的和才不变。而减法中,是被减数和减数同时增加或减少相同的数,差才不变。
例:1234-798
【分析】:把798看作800,减去800后,再在所得差里加上多减去的2.
【解答】:原式==1234-800+2=436。
5.速算之去括号法。
【点拨】:在加减混合运算中,括号前面是“加号或乘号”,则去括号时,括号里的运算符号不变;如果括号前面是“减号或除号”,则去括号时,括号里的运算符号都要改变。
例题:(4.8×7.5×8.1)÷(2.4×2.5×2.7)
【分析】:首先根据“去括号原则”把括号去掉,然后根据“在同级运算中每个数可带着它前边的符号‘搬家’”进行简算。
【解答】:原式=4.8×7.5×8.1÷2.4÷2.5÷2.7
=(4.8÷2.4)×(7.5÷2.5)×(8.1÷2.7)
=2×3×3
=18
6.速算之同尾先减。
【点拨】:在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。
【分析】:算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减256
7.速算之提取公因数
【点拨】:乘法分配率的反应用,出错率比较高,一般包括三种类型。
⑨ 三年级巧算速算方法有哪些
在三年级巧算速算方法里面比较常规的一些方法就是乘法交换律、乘法结合律以及其他的一些相关的速算方法,这是最常规的一种计算,里面有技巧的一些方法。
然后是一些比较新颖的方法,就可以是了解一种像分组法这种方法,这种分组法的话,就是把相同类的一些数字分到一组,然后可以进行相对的运算,然后在分组法里面还分为了简单分组,分组有剩余,复杂分组以及其他的一些类型。
除了这类比较新颖的分组法之外,还有就是有金字塔数列求和这样子的一个方式,如果是这种的话,就可能比较难接受一点,因为需要去画相关的图形,才能够了解到这种计算方法是怎么实行的。所以以上就是三年级巧算速算的一些方法。