导航:首页 > 解决方法 > 稀土行业的检测新方法

稀土行业的检测新方法

发布时间:2022-10-10 01:09:33

㈠ 稀土元素的分离的技术

稀土元素分离的新方法 译自:《SCIENCE》 前言:稀土元素及其化合物在现代技术中占有重要的地位,但其单一元素的分离却是一项复杂的过程。2000年国际最具权威的学术期刊Science杂志发表了日本科学家Uda等人的一篇论文(289卷,2326-2329页),提供了一种全新方法,大大简化了稀土分离的步骤,为降低稀土的高昂价格提供了一个令人振奋的机会。他们通过控制稀土不同氧化态以及利用二卤、三卤化物挥发性的差异来达到稀土元素分离的目的。这不仅仅是有趣的科学现象,同时也将对稀土生产以及以其为原料的材料和器件的制造业产生重大影响。英国剑桥大学的Fray教授对此论文进行了权威评述,发表在同期的2326-2329页,现摘译如下。 “稀土元素”这一称谓源自早期的观点,当时认为这些元素只能从非常稀有的材料中分离得到。然而地质勘察结果表明这些元素在地壳中储量相当丰富,例如铈的储量高于钴,钇的储量高于铅,镥和铥储量与锑、汞、银相当。但是由于它们的物理、化学性质比较接近,稀土元素通常在地壳中聚集出现,这使得它们的分离非常困难。正因为如此,仅仅是分离和鉴定出所有的稀土元素就用了从1839到1907年的将近70年时间。稀土元素在现代科技中占有重要地位,但与其它金属相比,稀土元素非常昂贵。稀土氧化物的价格根据其稀少程度和萃取方法的不同,从$20/kg到$7000/kg不等,而稀土金属又比其氧化物大约贵$80/kg。这种状况完全是由于稀土元素难于分离造成的。传统的稀土分离是基于溶剂萃取和离子交换的过程,这些方法很繁琐,近年来也只有一些很小的改进,没有实质性的改变。在传统工艺中,富含稀土元素的矿石首先要经过浓酸或浓碱溶解,这是最简单的一步,而随后稀土元素进一步的分离则是无机化学中一个巨大的难点。目前有两种方法已经用于商业生产中,一种是以固-液系统为基础,利用分步结晶或沉淀法分离,另一种则以液-液系统为基础,利用离子交换或溶剂萃取的方法达到分离。20世纪60年代以来,液-液萃取成为较流行的工艺路线。在这种方法中,稀土元素首先被分离进入酸性有机相。现代工艺中通常要求有机相含有可互溶的两相,因为高粘性的活性组分(萃取剂)必须得以溶解以保证两相混合均匀。然而,液-液萃取分离的效率通常较低,且需要多次循环。例如Molycorp提取氧化铕了的流程(如图)就显示了这种方法的复杂性,每一级的分离系数只有2~10。与之相比,Uda等人所报道的新方法中分离系数高达500~600,因而极大地减少了分离步骤。他们是通过将不同卤化物的合成热力学与挥发度二者差异的完美结合而实现这一目标的。 稀土元素在冶金、燃料电池、玻璃和制陶染色以及磁体生产等领域都有广泛的应用。在冶金工业中,将“混合稀土金属”(从混合氧化物中直接还原得到的一种稀土金属混合物)加入熔融铁水或有色金属中,可以改进金属的机械性质。例如用镁等有色金属替代铁,可以制造更为轻便道交通工具。低温燃料电池需要储氢,使用镧-镍合金可以达到这个目的。高温燃料电池使用稀土氧化物稳定的氧化锆作为电解质,一些电极材料也含有稀土元素。同样的电解质若用于氧传感器,可以用来控制内燃机,以及测量熔化的铁水和铜水中的氧含量。而且,利用钆合金的磁热效应可以在不同系统中实现磁致冷或磁致热。目前,稀土氧化物最大的用途仍然是有色玻璃和陶瓷。加入钕可使玻璃从蓝色变成酒红色,加镨可变成绿色,加铒可变成粉红色,加钬可变成蓝色。将稀土与其它元素结合,可以生成其它颜色,比如,钛和铈结合生成黄色。稀土元素应用增长最快的领域是对其磁性的应用。钐-钴合金和钕-铁-硼合金是非常稳定的磁体,它们有很高的剩磁和矫顽力。这些磁体是构成硬盘驱动器、电动发动机和耳塞的必需部分。稀土元素的应用很有可能会继续增加,但是许多应用被这些元素高昂的价格所限制。Uda等人报道的新方法将会使稀土元素的分离方法向更为简单、便捷的方向发展,进一步降低稀土价格,为这些独特的元素开辟更加广阔的应用前景。(参考文献略)
中间有图,可以发E-Mail给你

㈡ 中国稀土行业的发展历程

被称作“工业维生素”的稀土产业在我国的发展可追溯到1949年,当年国家有关部委组织北京地质研究所白云鄂博调查队对白云鄂博进行了大规模地质勘查与研究。随后于20世纪60年代我国才正式建成稀土生产线。我国稀土正式由实验室走向产业化。



截止目前,我国稀土产业的发展大致可分为四个阶段,目前正处在调整优化阶段。


㈢ 任务稀土配分量的测定

——ICP-AES法

任务描述

稀土配分是稀土分析的一项重要项目,目前主要方法有XRF和ICP-AES。ICP-AES法具有快速、准确的特点,在稀土配分的测定中获得了广泛的应用。本任务主要是测定氯化稀土、碳酸轻稀土中的稀土配分,其他样品中稀土配分的测定方法与该法类似,只要根据样品性质改变标准溶液的配分组成,使其与待测样品组成相近即可。通过本任务的练习,熟练掌握ICP-AES仪器的操作,并用其进行稀土配分的测定。

任务实施

一、仪器和试剂准备

(1)氧化镧[w(ReO)>99.5%,La2O3/ReO>99.99%]。

(2)氧化铈[w(ReO)>99.5%,Ce2O3/ReO>99.99%]。

(3)氧化镨[w(ReO)>99.5%,Pr2O3/ReO>99.99%]。

(4)氧化钕[w(ReO)>99.5%,Nd2O3/ReO>99.99%]。

(5)氧化钐[w(ReO)>99.5%,Sm2O3/ReO>99.99%]。

(6)过氧化氢(30%)。

(7)盐酸(ρ=1.19g/mL)。

(8)盐酸(1+1)。

(9)盐酸(1+19)。

(10)硝酸(1+1)。

(11)氧化铕标准贮存溶液:称取0.1000g 经950℃灼烧1h 的氧化铕[w(ReO)>99.5%,Eu2O3/ReO>99.99%],置于100mL 烧杯中,加入10mL 盐酸,低温加热溶解后,取下冷却至室温。移入100mL 容量瓶中,用水稀释至刻度,混匀。此溶液1mL 含1mg氧化铕。

(12)氧化钆标准贮存溶液:称取0.1000g 经950℃灼烧1h 的氧化钆[w(ReO)>99.5%,Gd2O3/ReO>99.99%],置于100mL 烧杯中,加入10mL 盐酸,低温加热溶解后,取下冷却至室温。移入100mL 容量瓶中,用水稀释至刻度,混匀。此溶液1mL 含1mg氧化钆。

(13)氧化铽标准贮存溶液:称取0.1000g 经950℃灼烧1h 的氧化铽[w(ReO)>99.5%,Tb2O3/ReO>99.99%],置于100mL 烧杯中,加入10mL 盐酸,低温加热溶解后,取下冷却至室温。移入100mL 容量瓶中,用水稀释至刻度,混匀。此溶液1mL 含1mg氧化铽。

(14)氧化镝标准贮存溶液:称取0.1000g 经950℃灼烧1h 的氧化镝[w(ReO)>99.5%,Dy2O3/ReO>99.99%],置于100mL 烧杯中,加入10mL 盐酸,低温加热溶解后,取下冷却至室温。移入100mL 容量瓶中,用水稀释至刻度,混匀。此溶液1mL 含1mg氧化镝。

(15)氧化钬标准贮存溶液:称取0.1000g 经950℃灼烧1h 的氧化钬[w(ReO)>99.5%,Ho2O3/ReO>99.99%],置于100mL 烧杯中,加入10mL 盐酸,低温加热溶解后,取下冷却至室温。移入100mL 容量瓶中,用水稀释至刻度,混匀。此溶液1mL 含1mg氧化钬。

(16)氧化铒标准贮存溶液:称取0.1000g 经950℃灼烧1h 的氧化铒[w(ReO)>99.5%,Er2O3/ReO>99.99%],置于100mL 烧杯中,加入10mL 盐酸,低温加热溶解后,取下冷却至室温。移入100mL 容量瓶中,用水稀释至刻度,混匀。此溶液1mL 含1mg氧化铒。

(17)氧化铥标准贮存溶液:称取0.1000g 经950℃灼烧1h 的氧化铥[w(ReO)>99.5%,Tm2O3/ReO>99.99%],置于100mL 烧杯中,加入10mL 盐酸,低温加热溶解后,取下冷却至室温。移入100mL 容量瓶中,用水稀释至刻度,混匀。此溶液1mL 含1mg氧化铥。

(18)氧化镱标准贮存溶液:称取0.1000g 经950℃灼烧1h 的氧化镱[w(ReO)>99.5%,Yb2O3/ReO>99.99%],置于100mL 烧杯中,加入10mL 盐酸,低温加热溶解后,取下冷却至室温。移入100mL 容量瓶中,用水稀释至刻度,混匀。此溶液1mL 含1mg氧化镱。

(19)氧化镥标准贮存溶液:称取0.1000g 经950℃灼烧1h 的氧化镥[w(ReO)>99.5%,Lu2O3/ReO>99.99%],置于100mL 烧杯中,加入10mL 盐酸,低温加热溶解后,取下冷却至室温。移入100mL 容量瓶中,用水稀释至刻度,混匀。此溶液1mL 含1mg氧化镥。

(20)氧化钇标准贮存溶液:称取0.1000g 经950℃灼烧1h 的氧化钇[w(ReO)>99.5%,Y2O3/ReO>99.99%],置于100mL烧杯中,加入10mL盐酸,低温加热溶解后,取下冷却至室温。移入100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1mg氧化钇。

(21)混合稀土标准溶液:分别移取 5.00mL 各稀土氧化物标准贮存溶液,置于100mL容量瓶中,加入10mL盐酸,用水稀释至刻度,混匀。此溶液1mL含各单一稀土氧化物分别为50.0μg。

(22)标准系列溶液的制备:按表6 -9 准确称取氧化镧、氧化铈、氧化镨、氧化钕和氧化钐(经 950℃灼烧 1 h ),分别置于 4 个 200mL 烧杯中,并按照顺序分别移取4.00mL、8.00mL、12.00mL、16.00mL混合稀土标准溶液(21)于各烧杯中,加入20mL硝酸,低温加热,滴加过氧化氢助溶,试料完全溶解后,加热蒸发至近干。冷却,移入1L容量瓶中,以盐酸稀释至刻度,混匀,待测。各标准溶液中氧化稀土总量为0.2g/L。标准系列溶液浓度见表6-10。

表6-9 氧化镧、氧化铈、氧化镨、氧化钕和氧化钐称取量

表6-10 标准系列溶液浓度

(23)电感耦合等离子体原子发射光谱仪(单道扫描型)。

二、试样制备

(1)氯化稀土试样的制备:将试样破碎,迅速置于称量瓶中,立即称量。

(2)碳酸轻稀土试样的制备:试样开封后立即称量。

三、分析步骤

称取2.00 g试样,精确至0.0001 g。将试料置于200mL烧杯中,加10mL盐酸,加热至完全溶解(必要时滴加过氧化氢助溶),蒸发至近干,冷却后移入500mL容量瓶中,用水稀释至刻度,混匀。按照试料中所含氧化稀土总量,分取一定体积溶液于50mL容量瓶中,以盐酸稀释至刻度,混匀,使得试液中氧化稀土总量约为0.2g/L。待测。

将分析试液与标准系列溶液同时进行氩等离子体光谱测定。各元素分析线见表6-11。

表6-11 各元素分析线

续表

四、质量表格填写

任务完成后,填写附录一质量表格3、4、9。

任务分析

一、ICP-AES与XRF法测定稀土配分量的比较

长期以来,XRF是人们所公认的测定混合稀土试样中稀土配分的理想分析方法,它具有快速、准确、多元素同时测定和不用进行化学前处理等优点。基于ICP-AES分析混合稀土中稀土配分,具有简便、快速、精密度好、线性范围宽等优点,它在混合稀土试样分析中的应用日益广泛,成为一种可以与XRF相媲美的另一重要分析技术。

(一)XRF法

样品制备:XRF法是一种高精密度的分析方法,影响分析精密度的因素主要是样品制备、仪器稳定性和计数的统计涨落。后者通过电子技术和测量方法的改进可得到有效的控制,所以样品制备则成为影响分析精度的主要因素。表6-12列出几种混合稀土氧化物分析的样品制备方法的比较。

表6-12 制样方法比较

(二)ICP-AES法

ICP-AES法测定稀土配分的主要问题是光谱干扰和基体效应。为了降低光谱干扰和基体效应,往往采取稀释试样的方法。一般选取0.1~1.0mg/mL的进样浓度,可以满足灵敏度的要求。采取稀释试样的好处是:

(1)可以将稀土间的谱线干扰降低到最低程度;

(2)可以消除因基体不同引起的非光谱干扰效应;

(3)不必采取基体匹配的方法来配制标准溶液系列,用同一工作曲线即可分析化学组成广泛变化的不同类型的试样。

另外,正确选择分析线是ICP-AES测定混合稀土配分的关键。对于来源不同的混合稀土试样,分析线的选择应有所不同;在分析灵敏度满足要求的前提下,根据仪器条件,可以选用灵敏线或次灵敏线。一般情况不使用内标。表6-13列出了不同混合稀土分析时采用的分析线,供参考使用。

表6-13 混合稀土试样分析时选择的分析线

二、电感耦合等离子体原子发射光谱分析简介

电感耦合等离子体(ICP,Inctive Coupled Plasma),又称感耦等离子体或高频等离子体,是20世纪60年代中期发展起来的一种新型原子发射光谱分析法,它是以电感耦合等离子体光源代替经典的激发光源(电弧、火花),是目前用于原子发射光谱的主要光源。ICP具有环形结构、温度高、电子密度高、惰性气氛等特点,用它作激发光源具有检出限低、线性范围宽、电离和化学干扰少、准确度和精密度高等分析性能。

(一)ICP光源及特点

ICP光源一般由高频发生器和感应圈、等离子矩管和供气系统、试样引入系统三部分组成。高频发生器的作用是产生高频磁场以供给等离子体能量。应用最广泛的是利用石英晶体压电效应产生高频振荡的他激式高频发生器,其频率和功率输出稳定性高。频率多为27~50MHz,最大输出功率通常为2~4kW。感应线圈一般以圆铜管或方铜管绕成2~5匝水冷线圈。

等离子体矩管由三层同心石英管组成。外管通以氩气,以切线方向引入,称为冷却气。中管通以氩气,起维持并抬高等离子体焰矩的作用,称为辅助气。内管为1~2 mm的细管,通以氩气为载气,以将试样引入等离子体中。

ICP光源具有以下的特性:

(1)温度高,惰性气氛,原子化条件好,有利于难熔化合物的分解和元素激发,有很高的灵敏度和稳定性。

(2)具“趋肤效应”,感应电流在外表面处密度大,使表面温度高,轴心温度低,中心通道进样对等离子的稳定性影响小。有效消除自吸收现象,线性范围宽(4~5个数量级)。

(3)ICP中电子密度大,碱金属电离造成的影响小。

(4)基体效应小,试样组分变化对 ICP 影响小,进样量也小,ICP 放电不随基体变化。

(5)自吸效应小,在中央通道原子化、激发,外围没有低温吸收层。

(6)样品能全部进入ICP,无电极放电、电极污染。

(7)对非金属测定灵敏度低,仪器昂贵,操作费用高。

(二)ICP光谱分析过程

ICP发射光谱分析过程主要分为3步:即激发、分光和检测。

(1)利用等离子体激发光源使试样蒸发汽化,离解或分解为原子状态,原子可能进一步电离成离子状态,原子及离子在光源中激发发光。试样经雾化器形成气溶胶,通过载气氩气流带入到中心石英管内,然后引入等离子体。

(2)利用光谱仪器分光系统将光源发射的光分解为按波长排列的光谱。利用单色器将复合光分解成单色光或有一定宽度的谱带。单色器通常有棱镜和光栅两类。

(3)利用光电转换器检测光谱,按测定得到的光谱波长对试样进行定性分析,按发射光强度进行定量分析。

(三)ICP定量分析方法

ICP定量分析方法主要有标准曲线法、标准加入法、内标法。

三、ICP发射光谱在稀土分析中的应用及光谱干扰的消除

(一)ICP-AES在稀土分析中的应用

ICP-AES在许多领域都获得了广泛的应用。在稀土分析中,ICP-AES已经成为一种必备的分析仪器。众所周知,稀土元素的化学性质十分相似,重量法、滴定法、吸光光度法等在单一稀土分析方面是比较困难的,而ICP-AES在分析单一稀土含量方面具有独特的优势,因此ICP-AES在稀土矿物分析、混合稀土氧化物配分的测定、单一稀土产品纯度的测定、稀土新型功能材料中稀土含量的测定等各个方面都获得了十分广泛的应用。

(二)ICP-AES测定稀土元素的光谱干扰及其消除

稀土元素具有十分丰富的发射光谱,根据其光谱的复杂程度,可将稀土元素分为三个组。

第一组:La、Eu、Yb、Y、Lu、Sc,该组元素谱线相对简单;

第二组:Pr、Gd、Tm,该组元素谱线复杂程度居中;

第三组:Ce、Nd、Sm、Tb、Dy、Ho、Er,该组元素谱线最复杂。

需要注意的是,以上关于谱线复杂程度的描述中,所谓的“简单”、“复杂程度居中”是指稀土元素之间的一个相互比较,总的来说,稀土元素的发射光谱线都是非常丰富的。

表6-14列出了镧系元素在电弧光源中发射的谱线数目,可以对稀土元素的谱线复杂性有个直观的了解。

一般而言,谱线少的稀土元素分析灵敏度高;而谱线复杂的稀土元素分析灵敏度低。

表6-14 镧系元素在电弧光源中发射的谱线数目

光谱干扰在ICP发射光谱光源中比化学火焰光源要严重,加上稀土元素谱线比较复杂,因此,当测定稀土基体中痕量稀土杂质时,光谱干扰则成为一个突出的问题。稀土间的谱线干扰,可以分为三种情况:①基体线与分析线完全重叠;②分析线的一侧有一强基体线存在,产生线翼的干扰(即部分重叠);③分析线介于两条弱基体线之间,或者在其很近的一侧有一弱基体线。对于①②两种情况,该分析线不能采用,必须另选分析线。对于第③种情况,则取决于基体浓度和待测物的浓度。若基体浓度较小,而待测物浓度较大,则由基体线产生的干扰信号占待测物产生的信号比例很小,则这种干扰可以忽略。若基体浓度很大,而待测物浓度很低,则会给测定带来很大的困难,甚至不能进行分析。对于稀土分析,可以采用以下一些办法来解决光谱干扰问题。

(1)稀释法。在分析灵敏度满足要求的前提下,可以采用高倍稀释法将基体稀释到一定的浓度,使其干扰处于可以忽略的水平。当然,这种方法要求待测物浓度不能太低,因此其应用范围有限。

(2)另选分析线。这是发射光谱分析中经常采用的方法。当待测物的最灵敏线受基体线干扰时,可以选用其他不受基体干扰的谱线作为分析线。在灵敏度满足要求的情况下,这是一种非常有效的方法,这也充分体现了发射光谱分析方法的灵活性。

(3)采用具有高分辨率和高色散率的光谱仪器。在稀土分析中,单道扫描型光谱仪是应用最广泛的仪器。其最大的优点是分辨率高,适应性强,允许任意选择谱线以满足不同试样的分析要求。

(4)化学分离法。用化学分离法将稀土基体元素分离除去,这是解决基体谱线干扰的一个有效的办法。分离基体的同时,可以对待测元素进行富集。但是,分离过程中,待测元素的损失是一个不容忽视的问题。

(5)干扰系数法。干扰系数可以表征干扰元素对分析元素干扰的程度,也称干扰因子或K系数。干扰系数法是实际应用最广泛的校正干扰的数学方法,多数ICP光谱仪软件中均采用这种方法。其他许多校正干扰的数学方法,比如导数光谱法、自模式曲线分辨法、偏最小二乘法等,虽然比较精密,但至今多数未能在商品 ICP 光谱仪软件中实际采用。

干扰系数是指干扰元素所造成分析元素浓度升高与干扰元素浓度的比值。

要想用干扰系数法校正干扰,必须要知道干扰元素浓度,即在测定样品时同时要测出干扰元素浓度。

实验指南与安全提示

由于稀土元素谱线复杂,对仪器分辨率要求较高,因此,目前单道扫描型等离子体发射光谱仪是在稀土分析领域唯一获得广泛应用的一类仪器。

单道扫描型仪器在分析前需要对每条谱线进行寻峰,因此必须配制一定浓度的寻峰液,通常将所测得的元素配制成混合寻峰液,每种元素的浓度一般为5~10μg/L。

寻峰时,若某元素的谱峰偏离较大时,必须对该元素重新进行寻峰。若用混合寻峰液仍不能寻找到所需要的谱峰,则可以用单一元素的寻峰液进行寻峰操作,一般都能获得满意结果。

ICP-AES测定稀土配分时,标准溶液和实际样品的配分必须接近,因此分析过程中遇到配分变化比较大的样品,必须采用与该样品配分接近的标准进行重新校准测定。

在ICP仪器上测量的样品应确保无沉淀或悬浮物,必要时应过滤,一些颗粒很细的胶体溶液应离心,以免发生雾化器堵塞。过高盐分的样品应适当稀释后才能测定。

批量样品的测定样品间应用稀的酸或去离子水清洗,并注意清洗足够的时间,以免污染下一个样品。仪器测量一定时间应插入测定一些已知浓度的质量控制样品进行中间检查,检查测量结果是否在给定的结果范围,如测量结果误差较大,应根据情况重新做工作曲线或停机检查。

在使用仪器的过程中,最重要的是注意安全,避免发生人身、设备事故。同时,严格按照仪器操作规程操作。使用ICP时,要特别注意点火时应确保冷却水水温、氩气压力正常,蠕动泵泵管安装正确,矩管和线圈干燥才能点火。

进行分析时应注意检查仪器的性能。一般仪器需预热稳定,测定样品前首先应注意检查仪器的灵敏度和精密度。可查看某标准溶液的信号强度和多次测定相对标准偏差是否满足要求。

在测定过程中,若等离子体颜色与气氛异常,要立即关闭等离子体炬,查找污染的原因并处理后再点火测定。如果是新换气瓶后焰炬出现异常,一般是氩气的纯度不够好,应重新换成高纯的氩气,然后再点火测定。

案例分析

赣州有色冶金研究所分析室某分析员工在用ICP-AES测定混合稀土氧化物的稀土配分时发现校准曲线失败,该员工怀疑标准溶液失效,重新配制后仍然出现同样的问题。请你帮他分析一下可能的原因。

拓展提高

稀土产品分析简介

一、混合稀土产品分析简介

混合稀土产品是指一般稀土冶炼厂所生产的混合稀土金属和混合稀土化合物。混合稀土金属常随其稀土配分而分成富铈混合稀土金属、富镧混合稀土金属等。混合稀土化合物按阴离子成分分为混合稀土氯化物、混合稀土氟化物、混合稀土硝酸盐等。混合稀土氧化物经常是分离单一稀土的原料,按其稀土配分分成轻稀土氧化物、重稀土氧化物。有时,为了强调某些价值较高的稀土元素的含量又分为富钇混合稀土、中钇混合稀土、低铕中钇混合稀土等。

混合稀土产品的主要分析项目及方法列于表6-15。

表6-15 混合稀土产品的主要分析项目及方法

二、单一稀土产品分析简介

单一稀土产品主要指单一稀土金属、单一稀土氧化物等,它们是电子、发光和激光技术中的重要材料。由于对单一稀土产品的纯度要求比较高,除了需要测定其中的稀土杂质以外,还要测定常见的非稀土杂质。测定稀土杂质的常用手段是ICP-AES、ICP-MS、NAA等。少数纯度不太高的试样也可以采用XRF。

ICP-AES在高纯稀土分析中已获得广泛的应用,成为稀土产品质量控制的主要分析方法。分析灵敏度完全可以满足99.9%~99.99% 高纯稀土分析的要求。该方法操作简便、重现性好、分析效率高,不用复杂的化学前处理。其存在的主要问题是:

(1)分析灵敏度不够高,不能满足99.99% 以上高纯稀土分析的要求;

(2)光谱干扰严重,特别是对稀土基体具有复杂光谱的情况;

(3)存在基体效应,一般要求在分析试样和标样之间进行基体匹配;

(4)固体稀土试样直接分析的问题没有真正解决。

20世纪80年代出现的ICP-MS技术是一种最有效的痕量元素的检测手段。目前,这一技术应用日益广泛。ICP-MS具有诸多优点,如高灵敏度、高选择性、多元素检测能力,可测元素覆盖面广及线性范围宽等。在众多优点中,ICP-MS最突出的优点是具有极为出色的检测能力,与ICP-AES相比,对许多元素的检出限降低了2~3个数量级,达pg/mL级。目前,ICP-MS可用于99.99%~99.9999% 高纯稀土材料的直接分析,无须任何化学分离预富集。表6-16列出了ICP-MS直接测定高纯稀土氧化物中痕量稀土杂质的应用情况。

表6-16 ICP-MS直接分析高纯稀土的应用情况

ICP-MS分析高纯稀土的主要问题是:质谱干扰,基体效应及不适于高盐溶液试样的分析。此外,仪器价格昂贵和运行费用高也成为阻碍其推广应用的重要因素。

从表6-16可以看出,对Pr6O11、Nd2O3、Gd2O3、Tb4O7、Dy2O3、Yb2O3等高纯稀土,ICP-MS无法直接测定其中的所有稀土杂质,原因在于这些基体形成的氧化物、氢氧化物及氢化物离子干扰限制了一些重稀土杂质的测定。例如:141Pr6OH2+158GdH143NdO142NdOH对单同位素159Tb的干扰,这导致了某些高纯稀土中的稀土杂质不能完全测定。

对于ICP-MS测定过程中出现的质谱干扰问题,现阶段的解决方法主要有化学分离法和干扰校正法,前者通过化学手段对基体进行分离,可以得到很好的效果,但是前处理较为复杂,很少实现在线分离检测,急需解决的问题是ICP-MS与分离技术联用的接口问题。对于基体效应,解决的方法主要有内标补偿法、逐级稀释法和化学分离法。一般来说,内标补偿法可以有效地降低基体效应,得到很好的分析结果,应用也较为广泛;逐级稀释法可以测定在最佳分析浓度时,寻找不影响测定结果的基体浓度;而化学分离法能有效解决质谱干扰和基体效应,但寻找合适分离洗脱材料和解决接口的联用问题仍是ICP-MS测定高纯稀土材料中痕量杂质的关键。

㈣ 稀土是什么东西它有什么用途

概述】
稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。
编辑本段【稀土的分类】
1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。
2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。
铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。
稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。
编辑本段【名称由来】
17种稀土元素名称的由来及用途
镧(La) � �"镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。 镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。
铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。
铈的广泛应用:
(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅
能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻
璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.
(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中
美国在这方面的消费量占稀土总消费量的三分之一强。
(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色
,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。
(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用
于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领
域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电
陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢
及有色金属等。
镨(Pr) �� 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。
镨的广泛应用:
(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作
釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。
(2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能
和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马
达上。
(3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催
化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,
用量不断增大。
(4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。
钕(Nd) � �伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。 �
钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。
钷(Pm) ��1947年,马林斯基(J.A.Marinsky)、格伦丹宁(L.E.Glendenin)和科里尔(C.E.Coryell)从原子能反应堆用过的铀燃料中成功地分离出61号元素,用希腊神话中的神名普罗米修斯(Prometheus)命名为钷(Promethium)。钷为核反应堆生产的人造放射性元素。
钷的主要用途有:
(1)可作热源。为真空探测和人造卫星提供辅助能量。
(2)Pm147放出能量低的β射线,用于制造钷电池。作为导弹制导仪器及钟表的电
源。此种电池体积小,能连续使用数年之久。此外,钷还用于便携式X-射线仪、
制备荧光粉、度量厚度以及航标灯中。
钐(Sm) ��1879年,波依斯包德莱从铌钇矿得到的"镨钕"中发现了新的稀土元素,并根据这种矿石的名称命名为钐。 ��钐呈浅黄色,是做钐钴系永磁体的原料,钐钴磁体是最早得到工业应用的稀土磁体。这种永磁体有SmCo5系和Sm2Co17系两类。70年代前期发明了SmCo5系,后期发明了Sm2Co17系。现在是以后者的需求为主。钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。此外,氧化钐还用于陶瓷电容器和催化剂方面。另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏敝材料和控制材料,使核裂变产生巨大的能量得以安全利用。
铕(Eu) ��1901年,德马凯(Eugene-Antole Demarcay)从"钐"中发现了新元素,取名为铕(Europium)。这大概是根据欧洲(Europe)一词命名的。氧化铕大部分用于荧光粉。Eu3+用于红色荧光粉的激活剂,Eu2+用于蓝色荧光粉。现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等最好的荧光粉。再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。
钆(Gd) � �1880年,瑞士的马里格纳克(G.de Marignac)将"钐"分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者 研究稀土的先驱荷兰化学家加多林(Gado Linium),将这个新元素命名为钆。 ��钆在现代技革新中将起重要作用。
它的主要用途有:
(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。
(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。
(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。
(4)在无Camot循环限制时,可用作固态磁致冷介质。
(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。
(6)用作钐钴磁体的添加剂,以保证性能不随温度而变化。
另外,氧化钆与镧一起使用,有助于玻璃化区域的变化和提高玻璃的热稳定性。氧化钆还可用于制造电容器、x射线增感屏。 在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。
铽(Tb) ��1843年瑞典的莫桑德(Karl G.Mosander)通过对钇土的研究,发现铽元素(Terbium)。铽的应用大多涉及高技术领域,是技术密集、知识密集型的尖端项目,又是具有显着经济效益的项目,有着诱人的发展前景。
主要应用领域有:
(1)荧光粉用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活
的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。
(2)磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态
薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。
(3)磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离
器和环形器的关键材料。特别是铽镝铁磁致伸缩合金(TerFenol)的开发研制,
更是开辟了铽的新用途,Terfenol是70年代才发现的新型材料,该合金中有一半
成份为铽和镝,有时加入钬,其余为铁,该合金由美国依阿华州阿姆斯实验室首
先研制,当Terfenol置于一个磁场中时,其尺寸的变化比一般磁性材料变化大这
种变化可以使一些精密机械运动得以实现。铽镝铁开始主要用于声纳,目前已广
泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、机
构和飞机太空望远镜的调节 机翼调节器等领域。
镝(Dy) �� 1886年,法国人波依斯包德莱成功地将钬分离成两个元素,一个仍称为钬,而另一个根据从钬中"难以得到"的意思取名为镝(dysprosium)。镝目前在许多高技术领域起着越来越重要的作用.
镝的最主要用途是:
(1)作为钕铁硼系永磁体的添加剂使用,在这种磁体中添加2~3%左右的镝,可提
高其矫顽力,过去镝的需求量不大,但随着钕铁硼磁体需求的增加,它成为
必要的添加元素,品位必须在95~99.9%左右,需求也在迅速增加。
(2)镝用作荧光粉激活剂,三价镝是一种有前途的单发光中心三基色发光材料的
激活离子,它主要由两个发射带组成,一为黄光发射,另一为蓝光发射,掺
镝的发光材料可作为三基色荧光粉。
(3)镝是制备大磁致伸缩合金铽镝铁(Terfenol)合金的必要的金属原料,能使
一些机械运动的精密活动得以实现。
(4)镝金属可用做磁光存贮材料,具有较高的记录速度和读数敏感度。
(5)用于镝灯的制备,在镝灯中采用的工作物质是碘化镝,这种灯具有亮度大、
颜色好、色温高、体积小、电弧稳定等优点,已用于电影、印刷等照明光源。
(6)由于镝元素具有中子俘获截面积大的特性,在原子能工业中用来测定中子能
谱或做中子吸收剂。
(7)Dy3Al5O12还可用作磁致冷用磁性工作物质。随着科学技术的发展,镝的应
用领域将会不断的拓展和延伸。
钬(Ho) � �十九世纪后半叶,由于光谱分析法的发现和元素周期表的发表,再加上稀土元素电化学分离工艺的进展,更加促进了新的稀土元素的发现。1879年,瑞典人克利夫发现了钬元素并以瑞典首都斯德哥尔摩地名命名为钬(holmium)。 �
�钬的应用领域目前还有待于进一步开发,用量不是很大,最近,包钢稀土研究院采用高温高真空蒸馏提纯技术,研制出非稀土杂质含量很低的高纯金属钬Ho/∑RE>99.9%。
目前钬的主要用途有:
(1)用作金属卤素灯添加剂,金属卤素灯是一种气体放电灯,它是在高压汞灯基础上
发展起来的,其特点是在灯泡里充有各种不同的稀土卤化物。目前主要使用的
是稀土碘化物,在气体放电时发出不同的谱线光色。在钬灯中采用的工作物质
是碘化钬,在电弧区可以获得较高的金属原子浓度,从而大大提高了辐射效能。
(2)钬可以用作钇铁或钇铝石榴石的添加剂;
(3)掺钬的钇铝石榴石(Ho:YAG)可发射2μm激光,人体组织对2μm激光吸收率高,
几乎比Hd:YAG高3个数量级。所以用Ho:YAG激光器进行医疗手术时,不但可以
提高手术效率和精度,而且可使热损伤区域减至更小。钬晶体产生的自由光
束可消除脂肪而不会产生过大的热量,从而减少对健康组织产生的热损伤,据
报道美国用钬激光治疗青光眼,可以减少患者手术的痛苦。我国2μm激光晶体
的水平已达到国际水平,应大力开发生产这种激光晶体。
(4)在磁致伸缩合金Terfenol-D中,也可以加入少量的钬,从而降低合金饱和磁化
所需的外场。
(5)另外用掺钬的光纤可以制作光纤激光器、光纤放大器、光纤传感器等等光通讯器
件在光纤通信迅猛的今天将发挥更重要的作用。
铒(Er) ��1843年,瑞典的莫桑德发现了铒元素(Erbium)。铒的光学性质非常突出,一直是人们关注的问题:
(1)Er3+在1550nm处的光发射具有特殊意义,因为该波长正好位于光纤通讯的光学
纤维的最低损失,铒离子(Er3+)受到波长980nm、1480nm的光激发后,从基态
4I15/2跃迁至高能态4I13/2,当处于高能态的Er3+再跃迁回至基态时发射出
1550nm波长的光,石英光纤可传送各种不同波长的光,但不同的光光衰率不同,
1550nm频带的光在石英光纤中传输时光衰减率最低(0.15分贝/公里),几乎为
下限极限衰减率。因此,光纤通信在1550nm处作信号光时,光损失最小。这样,
如果把适当浓度的铒掺入合适的基质中,可依据激光原理作用,放大器能够补
偿通讯系统中的损耗,因此在需要放大波长1550nm光信号的电讯网络中,掺铒
光纤放大器是必不可少的光学器件,目前掺铒的二氧化硅纤维放大器已实现商业
化。据报道,为避免无用的吸收,光纤中铒的掺杂量几十至几百ppm。光纤通信的
迅猛发展,将开辟铒的应用新领域。
(2)另外掺铒的激光晶体及其输出的1730nm激光和1550nm激光对人的眼睛安全,大
气传输性能较好,对战场的硝烟穿透能力较强,保密性好,不易被敌人探测,照
射军事目标的对比度较大,已制成军事上用的对人眼安全的便携式激光测距仪。
(3)Er3+加入到玻璃中可制成稀土玻璃激光材料,是目前输出脉冲能量最大,输出
功率最高的固体激光材料。
(4)Er3+还可做稀土上转换激光材料的激活离子。
(5)另外铒也可应用于眼镜片玻璃、结晶玻璃的脱色和着色等。
铥(Tm) ��铥元素是1879年瑞典的克利夫发现的,并以斯堪迪那维亚(Scandinavia)的旧名Thule命名为铥(Thulium)。 �
�铥的主要用途有以下几个方面:
(1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。
(2)铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。
(3)铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。
(4)铥还可在新型照明光源 金属卤素灯做添加剂。
(5)Tm3+加入到玻璃中可制成稀土玻璃激光材料,这是目前输出脉冲量最大,输出功率最高的固体激光材料。Tm3+也可做稀土上转换激光材料的激活离子。
镱(Yb) ��1878年,查尔斯(Jean Charles)和马利格纳克(G.de Marignac)在"铒"中发现了新的稀土元素,这个元素由伊特必(Ytterby)命名为镱(Ytterbium)。 �
�镱的主要用途有(1)作热屏蔽涂层材料。镱能明显地改善电沉积锌层的耐蚀性,而且含镱镀层比不含镱镀层晶粒细小,均匀致密。(2)作磁致伸缩材料。这种材料具有超磁致伸缩性即在磁场中膨胀的特性。该合金主要由镱/铁氧体合金及镝/铁氧体合金构成,并加入一定比例的锰,以便产生超磁致伸缩性。(3)用于测定压力的镱元件,试验证明,镱元件在标定的压力范围内灵敏度高,同时为镱在压力测定应用方面开辟了一个新途径。(4)磨牙空洞的树脂基填料,以替换过去普遍使用银汞合金。(5)日本学者成功地完成了掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。
镥(Lu) ��1907年,韦尔斯巴赫和尤贝恩(G.Urn)各自进行研究,用不同的分离方法从"镱"中又发现了一个新元素,韦尔斯巴赫把这个元素取名为Cp(Cassiopeium),尤贝恩根据巴黎的旧名lutece将其命名为Lu(Lutetium)。后来发现Cp和Lu是同一元素,便统一称为镥。 �
�镥的主要用途有(1)制造某些特殊合金。例如镥铝合金可用于中子活化分析。(2)稳定的镥核素在石油裂化、烷基化、氢化和聚合反应中起催化作用。(3)钇铁或钇铝石榴石的添加元素,改善某些性能。(4)磁泡贮存器的原料。(5)一种复合功能晶体掺镥四硼酸铝钇钕,属于盐溶液冷却生长晶体的技术领域,实验证明,掺镥NYAB晶体在光学均匀性和激光性能方面均优于NYAB晶体。(6)经国外有关部门研究发现,镥在电致变色显示和低维分子半导体中具有潜在的用途。此外,镥还用于能源电池技术以及荧光粉的激活剂等。
钇(Y) �� 1788年,一位以研究化学和矿物学、收集矿石的业余爱好者瑞典军官卡尔·阿雷尼乌斯(Karl Arrhenius)在斯德哥尔摩湾外的伊特必村(Ytterby),发现了外观象沥青和煤一样的黑色矿物,按当地的地名命名为伊特必矿(Ytterbite)。1794年芬兰化学家约翰·加多林分析了这种伊特必矿样品。发现其中除铍、硅、铁的氧化物外,还含有38%的未知元素的氧化物枣"新土"。1797年,瑞典化学家埃克贝格(Anders Gustaf Ekeberg)确认了这种"新土",命名为钇土(Yttria,钇的氧化物之意)。 ��
钇是一种用途广泛的金属,主要用途有:(1)钢铁及有色合金的添加剂。FeCr合金通常含0.5-4%钇,钇能够增强这些不锈钢的抗氧化性和延展性;MB26合金中添加适量的富钇混合稀土后,合金的综合性能得到明显的改善,可以替代部分中强铝合金用于飞机的受力构件上;在Al-Zr合金中加入少量富钇稀土,可提高合金导电率;该合金已为国内大多数电线厂采用;在铜合金中加入钇,提高了导电性和机械强度。
(2)含钇6%和铝2%的氮化硅陶瓷材料,可用来研制发动机部件。(3)用功率400瓦的钕钇铝石榴石激光束来对大型构件进行钻孔、切削和焊接等机械加工。(4)由Y-Al石榴石单晶片构成的电子显微镜荧光屏,荧光亮度高,对散射光的吸收低,抗高温和抗机械磨损性能好。(5)含钇达90%的高钇结构合金,可以应用于航空和其它要求低密度和高熔点的场合。
(6)目前倍受人们关注的掺钇SrZrO3高温质子传导材料,对燃料电池、电解池和要求氢溶解度高的气敏元件的生产具有重要的意义。此外,钇还用于耐高温喷涂材料、原子能反应堆燃料的稀释剂、永磁材料添加剂以及电子工业中作吸气剂等。
钪(Sc) � �1879年,瑞典的化学教授尼尔森(L.F.Nilson, 1840~1899)和克莱夫(P.T.Cleve, 1840~1905)差不多同时在稀有的矿物硅铍钇矿和黑稀金矿中找到了一种新元素。他们给这一元素定名为"Scandium"(钪),钪就是门捷列夫当初所预言的"类硼"元素。他们的发现再次证明了元素周期律的正确性和门捷列夫的远见卓识。 ��钪比起钇和镧系元素来,由于离子半径特别小,氢氧化物的碱性也特别弱,因此,钪和稀土元素混在一起时,用氨(或极稀的碱)处理,钪将首先析出,故应用"分级沉淀"法可比较容易地把它从稀土元素中分离出来。另一种方法是利用硝酸盐的分极分解进行分离,由于硝酸钪最容易分解,从而达到分离的目的。 �
�用电解的方法可制得金属钪,在炼钪时将ScCl3、KCl、LiCl共熔,以熔融的锌为阴极电解之,使钪在锌极上析出,然后将锌蒸去可得金属钪。另外,在加工矿石生产铀、钍和镧系元素时易回收钪。钨、锡矿中综合回收伴生的钪也是钪的重要来源之一。 钪在化合物中主要呈3价态,在空气中容易氧化成Sc2O3而失去金属光泽变成暗灰色。 ��
钪能与热水作用放出氢,也易溶于酸,是一种强还原剂。 � �钪的氧化物及氢氧化物只显碱性,但其盐灰几乎不能水解。钪的氯化物为白色结晶,易溶于水并能在空气中潮解。 ��在冶金工业中,钪常用于制造合金(合金的添加剂),以改善合金的强度、硬度和耐热和性能。如,在铁水中加入少量的钪,可显着改善铸铁的性能,少量的钪加入铝中,可改善其强度和耐热性。 ��在电子工业中,钪可用作各种半导体器件,如钪的亚硫酸盐在半导体中的应用已引起了国内外的注意,含钪的铁氧体在计算机磁芯中也颇有前途。 ��在化学工业上,用钪化合物作酒精脱氢及脱水剂,生产乙烯和用废盐酸生产氯时的高效催化剂。 � �在玻璃工业中,可以制造含钪的特种玻璃。 ��在电光源工业中,含钪和钠制成的钪钠灯,具有效率高和光色正的优点。 ��
自然界中钪均以45Sc形式存在,另外,钪还有9种放射性同位素,即40~44Sc和46~49Sc。其中,46Sc作为示踪剂,已在化工、冶金及海洋学等方面使用。在医学上,国外还有人研究用46Sc来医治癌症 稀土资源。
稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。
这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。
编辑本段【稀土元素的性质与应用】
大多数稀土金属呈现顺磁性。钆在0℃时比铁具更强的铁磁性。铽、镝、钬、铒等在低温下也呈现铁磁性,镧、铈的低熔点和钐、铕、镱的高蒸气压表现出稀土金属的物理性质有极大差异。钐、铕、钇的热中子吸收截面比广泛用于核反应堆控制材料的镉、硼还大。稀土金属具有可塑性,以钐和镱为最好。除镱外,钇组稀土较铈组稀土具有更高的硬度。
稀土表面积研究是非常重要的,稀土的表面积检测数据只有采用BET方法检测出来的结果才是真实可靠的,国内目前有很多仪器只能做直接对比法的检测,现在国内也被淘汰了。目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。真正完全自动化智能化比表面积测试仪产品,才符合测试仪器行业的国际标准,同类国际产品全部是完全自动化的,人工操作的仪器国外早已经淘汰。真正完全自动化智能化比表面积分析仪产品,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,培训简单,提高了工作效率。真正完全自动化智能化比表面积测定仪产品,大大降低了人为操作导致的误差,提高测试精度。
稀土金属已广泛应用于电子、石油化工、冶金、机械、能源、轻工、环境保护、农业等领域。应用稀土可生产荧光材料、稀土金属氢化物电池材料、电光源材料、永磁材料、储氢材料、催化材料、精密陶瓷材料、激光材料、超导材料、磁致伸缩材料、磁致冷材料、磁光存储材料、光导纤维材料等。
我国拥有丰富的稀土矿产资源,成矿条件优越,堪称得天独厚,探明的储量居世界之首,为发展我国稀土工业提供了坚实的基础。

㈤ 稀土矿的加工方法

稀土矿加工方法有两种,即湿法冶金和火法冶金。

湿法冶金属化工冶金方式,全流程大多处于溶液、溶剂之中,如稀土精矿的分解、稀土氧化物、稀土化合物、单一稀土金属的分离和提取过程就是采用沉淀、结晶、氧化还原、溶剂萃取、离子交换等化学分离工艺过程。

现应用较普遍的是有机溶剂萃取法,它是工业分离高纯单一稀土元素的通用工艺。湿法冶金流程复杂,产品纯度高,该法生产成品应用面广阔。

火法冶金工艺过程简单,生产率较高。稀土火法冶炼主要包括硅热还原法制取稀土合金,熔盐电解法制取稀土金属或合金,金属热还原法制取稀土合金等。火法冶金的共同特点是在高温条件下生产。

稀土矿在地壳中主要以矿物形式存在,其主要有三种:作为矿物的基本组成元素,稀土以离子化合物形式赋存于矿物晶格中,构成矿物的必不可少的成分‘这类矿物通常称为稀土矿物。

稀土矿作为矿物的杂质元素,以类质同象置换的形式,分散于造岩矿物和稀有金属矿物中,这类矿物可称为含有稀土元素的矿物,如磷灰石、萤石等,呈离子状态被吸附于某些矿物的表面或颗粒间。


(5)稀土行业的检测新方法扩展阅读

稀土是化学元素周期表中镧系(镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥)15个元素和21号元素钪、39号元素钇(共17个元素)的总称。

据其物理化学性质的差异性和相似性,可分成三个组:轻稀土组(镧~钷)、中稀土组钐~镝)、重稀土组(钬~镥加上钪和钇)。

已发现的稀土矿物有250种以上,其中具有工业价值的约50~60种,最重要的稀土矿物有氟碳铈(镧)矿、独居石、磷钇矿、离子吸附型稀土矿、褐钇铌矿等。

㈥ 北方稀土基本分析法,600111基本分析法

近日稀土价格上涨了不少,稀土公司吸引了不少目光。今天,我们来好好聊一聊稀土行业的龙头公司--北方稀土。


在全面测评北方稀土前,学姐为大家整理了稀土行业龙头股名单,现在分享给大家,点击就可以领取:宝藏资料:稀土行业龙头股一览表


一、从公司角度来看


公司介绍:北方稀土是稀土行业龙头,在中国乃至全球都遥遥领先,也是最大的稀土产品供应商,能够生产稀土原料(如精矿、氧化物与盐类等)、稀土功能材料(如磁性、发光、催化材料等)、稀土应用产品(镍氢动力电池、磁共振仪)等门类齐全的稀土产品。


上完主要针对于北方稀土公司的大致情况做了个基本的阐述,我们一起来研究一下北方稀土公司的长处吧,究竟值不值得大家的追捧?


亮点一:资源得天独厚,供货价格成本低


这里提及了北方稀土的资源来源,我们来探讨一下他背后的大股东即包钢集团,它拥有全球最大的稀土矿——白云鄂博矿的独家开采权,生产能力十分优越,每年产出三十万吨稀土精矿。并且,北方稀土公司从包钢股份购买稀土精矿,鉴于白云鄂博矿稀土和铁是共生的,精矿是由尾矿资源做成的,在挑选铁矿的过程中就会把成本分摊,公司精矿获取成本要比市场价低很多,成本优势确实比较突出。


亮点二:技术不断创新,延展公司产业链


北方稀土公司一直将创新驱动作为公司的发展战略,有着让对手羡慕的研发实力,不断将公司五大稀土功能材料做到远近闻名,多点布局是终端产品的特点,高附加值产品是可以由科研成果转化来的,平衡稀土元素利用,让产业链得到延伸与发展,让公司能够挣更多的钱。


由于篇幅有限,有许许多多有关北方稀土的深度报告和风险提示的内容,所以就写到这篇研报里了,戳这个链接就能看了:【深度研报】北方稀土点评,建议收藏!


二、从行业角度来看


处于"碳中和"时期背景下,能源转型是全球都认可的,进入了电动化时代。


而稀土除了具有优秀的磁、光性能,还具有电性能好,虽说用量不多,但是的确是不可获取的一环,是改善产品结构,提高科技,促进产业技术发展不可或缺的元素。总体而言,随着新能源汽车、叠加风车、变频空调的快速发展,新兴产业的下游需求将快速发展,目前稀土磁材的市场需求突然爆发了出来,从而使得供需格局逐渐变得紧迫,稀土的价格甚至还可以继续上升。



总结性的说,我觉得在稀土行业中实力较强的北方稀土公司,指望在行业改革之前,获得极速的发展。但是文章具有一定的滞后性要是想全面了解北方稀土未来行情,干脆进入链接,有专业的投顾帮你诊股看下北方稀土现在行情是否到买入或卖出的好时机【免费】测一测北方稀土还有机会吗?


应答时间:2021-09-03,最新业务变化以文中链接内展示的数据为准,请点击查看

怎么才能知道土里含有稀土,要用什么方法检测

硫酸铵浸泡,然后过滤,得到母液,然后加草酸沉淀一下 如果母 液中有雪花一样的 白色的东西 那就是稀土了

㈧ 稀土怎么检测

要看检测什么元素,稀土元素包括17个元素,是定量还是定性?一般来说,稀土的检测采用发射光谱或X荧光分析方法,可以定性,也可以定量。
目前,发射光谱分析方法所使用的光源一般是等离子体,也就是ICP-AES。

㈨ 稀土行业废水氨氮如何去除

环瑞生态研发人员对稀土废水水质进行了大量研究实验, 例如:山东某稀土企业的废水水质:pH=3.8 氨氮360mg/L,实验总结如下:
1) PH:PH6~8时,处理氨氮效果最好。
2) 加入量:按氨氮1mg:0.025g的量加入,废水中氨氮浓度经检测低于稀土废水氨氮排放量的标准限值。
3) 反应时间:反应时间短,加入药剂5~6分钟后,废水中的氨氮便低于稀土废水氨氮的排放标准限值。
环瑞氨氮去除剂A2对于稀土废水具有较好的处理效果,反应迅速,去除率高,处理后的废水达到稀土工业污染物的排放标准。

㈩ 谁知道哪里可以做稀土元素检测、费用大概是多少,各位老师教一下、拜谢

一、深圳市集四海矿石检测权威机构 简介集四海专业检测公司提供稀土服务、矿石服务测试的综合性公司,并为客户提供多元化的技术咨询及应用服务。公司成立于2005年,是最早的一批中的检测服务机构,在矿石行业检测中取的最优秀的成绩,是深圳最大的矿石检测公司。价格实惠、周期灵活、数据准确。联合国外1500家实验室和研究机构,为客户提供产品检测认证服务。二、矿石检测我司可为您提供专业的矿石检测服务,确保您在短时间内取得矿石检测报告,帮您了解分析其中的元素含量,测出一个未知物中的所有元素占得百分比,看您手上的产品是否有价值。提供矿石检测有:铁矿石、铜矿石、金矿石、银矿石、铅矿石、铝矿石、稀有矿石等。三、检验周期及费用一般样品检验时间为3-7个工作日。本着服务企业和社会的宗旨,以最优惠的价格提供真正的一站式服务。

阅读全文

与稀土行业的检测新方法相关的资料

热点内容
思维能力的测量与评价方法是什么 浏览:367
文化产业的研究方法 浏览:516
如何比较两种络合方法的可行性 浏览:117
戴隐形眼镜的方法视频 浏览:44
插钢丝绳的方法视频 浏览:453
车胎胎压检测方法 浏览:651
引产方法有哪些 浏览:242
铬钒元素的作用及食用方法 浏览:793
绿茶品种鉴别方法 浏览:143
12588怎么用简便方法计算 浏览:610
有什么方法对付噪音不想改的人 浏览:412
塑料铁轨安装方法 浏览:631
粉仓门密封解决方法 浏览:739
大理石墙板安装方法视频 浏览:309
伤寒最快的治疗方法用什么土方法 浏览:236
13种徒手核心力量训练方法 浏览:578
食用瓜子的方法 浏览:483
卫生间瓷砖内水管漏水解决方法 浏览:654
电脑上横设置在哪里设置方法 浏览:52
论捡肥皂的正确方法txt 浏览:846