导航:首页 > 解决方法 > 数学题答案解决方法

数学题答案解决方法

发布时间:2022-10-06 09:53:27

Ⅰ 高中数学解题方法分享

导语:在中国古代,数学叫作算术 ,又称算学 ,最后才改为数学.中国古代的算术是六艺 之一(六艺中称为“数”).具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论 (数学基础 )、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性 的研究(混沌 、模糊数学 ).

高中数学解题方法分享

1、特殊与一般的思想

用这种思想解选择题有事特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的解题策略,也同样有用。

2、数形结合思想

中 学数学研究的对象可分为两大类:一类是数、一类是形,但数与形是有联系的,这个联系称之为形数结合或者数形结合。它既是寻找问题解决切入点的“法宝”,有 事优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利用正确地理解题意、快速地解决问题。

3、函数与方程思想

函 数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题 的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。

4、分类讨论思想

同 学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各 种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,公式的限制、某些定理、数学运算法 则,图形位置的不确定性,变化等均可能一起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。

5、极限思想解题步骤

极限思想解决问题的一般步骤为:

一、对于所求的'位置量,先设法构思一个与它有关的变量;

二、确认这变量通过无限过程的结果就是所求的未知量;

三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

高中数学解题方法分享

特值检验法

对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

极端性原则

将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

剔除法

利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

数形结合法

由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

递推归纳法

通过数学题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

顺推破解法

利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

逆推验证法(代答案入题干验证法)

将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

正难则反法

从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

特征分析法

对数学题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

估值选择法

有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高中数学解题方法分享

1、 不等式、方程或函数的题型,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、 在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。如函数过的定点、二次函数的对称轴等。

3、 在求零点的函数中出现超越式,优先选择数形结合的思想方法。

4、 恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。

5、 选择与填空中出现不等式的题,应优先选特殊值法。

6、 在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。

7、 求参数的取值范围,应该建立关于参数的不等式或者是等式,用函数的值域或定义域或者是解不等式来完成,在对式子变形的过程中,应优先选择分离参数的方法。

8、 在解三角形的题目中,已知三个条件一定能求出其他未知的条件,简称“知三求一“。

9、 求双曲线或者椭圆的离心率时,建立关于a、b、c之间的关系等式即可。

10、解三角形时,首先确认所求边角所在的三角形及已知边角所在的三角形,从而选择合适的三角形及定理。

11、在数列的五个量中:中,只要知道三个量就可以求出另外两个量,简称“知三求二”。

12、圆锥曲线的题目应优先选择他们的定义完成,而直线与圆锥曲线相交的问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法(使用韦达定理首先要考虑二次函数方程是否有根即:二次函数的判别式)。

13、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简。

14、在求离心率时关键是从题目条件中找到关于a、b、c的两个方程或由题目得到的图形中找到a、b、c的关系式,从而求离心率或离心率的取值范围。

15、三角函数求最值、周期或者单调区间,应优先考虑化为一次同角弦函数,然后使用辅助角公式解答;与向量联系的题目,注意向量角的范围;解三角形的题目,重视内角和定理的使用。

16、立体几何的第一问如果是为建系服务的,一定用传统做法做(例如平行应想到平行四边形或三角形的中位线,垂直的应想到勾股定理的逆定理或者等腰三角形等);如果不是,那么可以在第一问就开始建立直角坐标系来解决。

17、利用导数解决存在性的问题需要构造函数,但选取函数的最值不同。注意“恒成立”与“存在”的区别,“在某区间上,存在使f(x)m成立”,即函数f(x)的最大值大于或等于m;“在某区间上,存在x使f(x)m成立”,即函数f(x)的最小值小于或等于m。

18、概率的题目如果出解答题,应该首先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径。

19、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,全称与特称命题的否定写法,排列组合中的枚举法,取值范围或是不等式的解得端点能否取到需要单独验证,用点斜式或者斜截式方程的时候要考虑斜率是否存在等。

20、解决参数方程的一个基本思路是将其转化为普通方程,然后在直角坐标系下解决问题。

Ⅱ 数学解决问题的一般步骤

第一,从问题出发。解决数学问题,首先要从理解数学问题开始,没有正确的理解就没有正确的解答。所以说要从问题出发,分析问题的基本条件,基本要求,梳理基本脉络,形成基本观点。这就要求学生要特别注重语言的训练,包括听说读写等能力的训练,以实现对题目的充分理解。

第二,从规律出发。数学问题都是有一定规律可遵循的,发现了规律可以事半功倍,发现不了规律只能一头雾水。如何发现规律?首先要认识规律。数学的规律都是隐藏在各类问题之下的,一般很难发现。这就需要学生日常养成专心听讲的良好习惯,因为这些规律性认识都是经过老师认真备课,精心组织耐心讲授出来的。课时要会做笔记,做好笔记,课下做好复习,认识,理解规律,最好能够自主的去发现规律总结规律。

第三,从结果出发。所谓解决数学问题,在小学和中学阶段就是指解决数学题目。数学题目有一个特点,就是一定有一个疑问,有一个答案。为了解答,我们需要认真分析问题,即所谓的有的放矢。从结果出发反推问题所在,从结果中发现数学冲突和矛盾,在结果中理清解题思路。

第四,从逻辑关系出发。解决数学问题的实质是逻辑关系的理顺,学生需要从题目中找到各种数量,变量,并建立起这些量之间合理的逻辑关系和数学解释。罗辑思维能力提升的方法很多,主要是专项逻辑训练,数字规律认识,图形类型归纳,数形结合问题等等。在具体的解题过程中,我们需要抓住变量,还要抓住不变量,通过这些量之间的变化关系得出题意中的逻辑关系,进而最终求的结果。

Ⅲ 初中数学解题技巧

导语:初中数学解题技巧推荐。学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。

初中数学解题技巧推荐

一、答题原则

大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。如果发现问题,要及时报告监考老师处理。

答题时,一般遵循如下原则:

1.从前向后,先易后难。通常试题的难易分布是按每一类题型从前向后,由易到难。因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答。当然,有时但也不能机械地按部就班。中间有难题出现时,可先跳过去,到最后攻它或放弃它。先把容易得到的分数拿到手,不要“一条胡同走到黑”,总的原则是先易后难,先选择、填空题,后解答题。

2.规范答题,分分计较。数学分I、II卷,第I卷客观性试题,用计算机阅读,一要严格按规定涂卡,二要认真选择答案。第II卷为主观性试题,一般情况下,除填空题外,大多解答题一题设若干小题,通常独立给分。解答时要分步骤(层次)解答,争取步步得分。解题中遇到困难时,能做几步做几步,一分一分地争取,也可以跳过某一小题直接做下一小题。

3.得分优先、随机应变。在答题时掌握的基本原则是“熟题细做,生题慢做”,保证能得分的地方绝不丢分,不易得分的地方争取得分,但是要防止被难题耗时过多而影响总分。

4.填充实地,不留空白。考试阅卷是连续性的流水作业,如果你在试卷上留下的空白太多,会给阅卷老师留下不好印象,会认为你确实不行。另外每道题都有若干采分点,触到采分点便可给分,未能触到采分点也没有倒扣分的规定。因此只要时间允许,应尽量把试题提问下面的空白处写上相应的公式或定理等有关结论。

5.观点正确,理性答卷。不能因为答题过于求新,结果造成观点错误,逻辑不严密;或在试卷上即兴发挥,涂写与试卷内容无关的字画,可能会给自己带来意想不到的损失。胡乱涂写可以认为是在试卷上做记号,而判作弊。因此,要理性答卷。

6.字迹清晰,合理规划。这对任何一科考试都很重要,尤其是对“精确度”较高的数理化,若字迹不清无法辨认极易造成阅卷老师的误判,如填空题填写带圈的序号、数字等,如不清晰就可能使本来正确的失了分。 另外,卷面答题书写的位置和大小要计划好,尽量让卷面安排做到 “前紧后松”而不是“前松后紧”。特别注意只能在规定位置答题,转页答题不予计分。

二、审题要点

审题包括浏览全卷和细读试题两个方面。

一是开考前浏览。 开考前5分钟开始发卷,大家利用发卷至开始答题这段有限的时间,通过答前浏览对全卷有大致的了解,初步估算试卷难度和时间分配,据此统筹安排答题顺序,做到心中有数。此时考生要做到“宠辱不惊”,也就是说,看到一道似曾相识的题时,心中不要窃喜,而要提醒自己,“这道题做时不可轻敌,小心有什么陷阱,或者做的题目只是相似,稍微的不易觉察的改动都会引起答案的不同”。碰到一道从未见过,猛然没思路的题时,更不要受到干扰,相反,此时应开心,“我没做过,别人也没有。这是我的机会。”时刻提醒自己:我易人易,我不大意;我难人难,我不畏难。

二是答题过程中的仔细审题。 这是关键步骤,要求不漏题,看准题,弄清题意,了解题目所给条件和要求回答的问题。不同的题型,考察不同的能力,具有不同的解题方法和策略,评分方式也不同,对不同的题型,审题时侧重点有所不同。

1.选择题是所占比例较大(40%)的客观性试题,考察的内容具体,知识点多,“双基”与能力并重。对选择题的审题,要搞清楚是选择正确陈述还是选择错误陈述,采用特殊什么方法求解等。

2.填空题属于客观性试题。一般是中档题,但是由于没有中间解题过程,也就没有过程分,稍微出现点错误就和一点不会做结果相同,“后果严重”。审题时注意题目考查的知识点、方法和此类问题的易错点等。

3.解答题在试卷中所占分数较多(74分),不仅需要解出结果还要列出解题过程。解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含信息,联想相关题型的通性通法,寻找和确定具体的解题方法和步骤,问题才能解决。

三、时间分配

近几年,随着高考数学试题中的应用问题越来越多,阅读量逐渐增加,科学地使用时间,是临场发挥的一项重要内容。分配答题时间的基本原则就是保证在能得分的地方绝不丢分,不易得分的地方争取得分。在心目中应有“分数时间比”的概念,花10分钟去做一道分值为12分的中档大题无疑比用10分钟去攻克1道分值为4分的中档填空题更有价值。有效地利用最好的答题时间段,通常各时间段内的答题效率是不同的,一般情况下,最后10分钟左右多数考生心理上会发生变化,影响正常答卷。特别是那些还没有答完试卷的考生会分心、产生急躁心理,这个时间段效率要低于其它时间段。

在试卷发下来后,通过浏览全卷,大致了解试题的类型、数量、分值和难度,熟悉“题情”,进而初步确定各题目相应的作答时间。通常一般水平的考生,解答选择题(12个)不能超过40分钟,填空题(4个)不能超过15分钟,留下的时间给解答题(6个)和验算。当然这个时间安排还要因人而异。

在解答过程中,要注意原来的时间安排,譬如,1道题目计划用3分钟,但3分钟过后一点眉目也没有,则可以暂时跳过这道题;但若已接近成功,延长一点时间也是必要的。需要说明的是,分配时间应服从于考试成功的目的,灵活掌握时间而不墨守最初安排。时间安排只是大致的整体调度,没有必要把时间精确到每1小题或是每1分钟。更不要因为时间安排过紧,造成太大的'心理压力,而影响正常答卷。

一般地,在时间安排上有必要留出5—10分钟的检查时间,但若题量很大,对自己作答的准确性又较为放心的话,检查的时间可以缩短或去除。但是需要注意的是,通常数学试卷的设计只有少数优秀考生才可能在规定时间内答完。

五、大题和难题

一张考卷必不可少地要有大题、难题以区分考生的知识和能力水平,以便拉开档次。一般大题、难题分值都较高,遇到难题,要尽量放到最后去攻克;如果别的题目全部做完而且检查无误,而又有一定时间的话,就应想办法攻克难题。不是每个人都能得150的,先把会的做完,也可以给自己奠定心里优势。

六、各种题型的解答技巧

1.选择题的答题技巧

(1)掌握选择题应试的基本方法:要抓住选择题的特点,充分地利用选择支提供的信息,决不能把所有的选择题都当作解答题来做。首先,看清试题的指导语,确认题型和要求。二是审查分析题干,确定选择的范围与对象,要注意分析题干的内涵与外延规定。三是辨析选项,排误选正。四是要正确标记和仔细核查。

(2)特值法。在选择支中分别取特殊值进行验证或排除,对于方程或不等式求解、确定参数的取值范围等问题格外有效。

(3)反例法。把选择题各选择项中错误的答案排除,余下的便是正确答案。

(4)猜测法。因为数学选择题没有选错倒扣分的规定,实在解不出来,猜测可以为你创造更多的得分机会。除须计算的题目外,一般不猜A。

2.填空题答题技巧

(1)要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。

(2)一般第4个填空题可能题意或题型较新,因而难度较大,可以酌情往后放。

3.解答题答题技巧

(1)仔细审题。注意题目中的关键词,准确理解考题要求。

(2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。

(3)给出结论。注意分类讨论的问题,最后要归纳结论。

(4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。

七、如何检查

在考试中,主动安排时间检查答卷是保证考试成功的一个重要环节,它是防漏补遗、去伪存真的过程,尤其是考生如果采用灵活的答题顺序,更应该与最后检查结合起来。因为在你跳跃式往返答题过程中很可能遗漏题目,通过检查可弥补这种答题策略的漏洞。

检查过程的第一步是看有无遗漏或没有做的题目,发现之后,应迅速完成或再次思考解法。对各类题型的做答过程和结果,如果有时间要结合草稿纸的解题过程全面复查一遍,时间不够,则重点检查。

选择题的检查主要是查看有无遗漏,并复查你心存疑虑的题目。但是若没有充分的理由,一般不要改变你依据第一感觉作出的判断。

对解答题的检查,要注意结合审查草稿纸的演算过程,改正计算和推理中的错误。另外要补充遗漏的理由和步骤,删去或修改错误或不准确的观点。

计算题和证明题是检查的重点,要仔细检查是否完成了题目的全部要求;若时间仓促,来不及验算的话,有一些简单的验证方法:一是查单位是否有误;二是看计算公式引用有无错误;三是看结果是否比较“像”,这里所说的“像”是依靠经验判断,如应用题的答案是否符合实际意义;数字结论是否为整数、自然数或有规则的表达式,若结论为小数或无规则的数,则要重新演算,最好能用其他方法再试着去做

八、强调的一点是草稿纸,这是考试时和试卷同等重要的东西。

同学们拿到草稿纸后,请先将它三折。然后按顺序使用。草稿纸上每道题之间留空,标清题号。字迹要做到能够准确辨认,切不可胡写乱画。这样做的好处是:

1. 草稿纸展现的是你的答题思路。草稿纸清晰,答题思路也会清晰,最起码你清楚你已经做到了哪一步。如果草稿混乱的话,这一步推出来了,往往又忘了上一步是怎么得到的。

2. 对于前面提到的暂时不会,回头再做的题,由于你第一次做本题时已经进行了一定的思维过程。第二次做时如果重头再思考非常浪费时间。利用草稿纸,可以迅速找到上次的思维断点。从而继续攻破。关键结论要特殊标记。

3. 检查过程中,草稿纸更是最好的帮手。如果连演算过程都可从草稿纸上清晰找到的话,无疑会节省大量时间。

初中数学解题技巧推荐

首先,应十分熟悉习题中所涉及的内容,做到概念清晰,对定义、公式、定理和规则非常熟悉。

你应该知道,解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。我指导学生按此方法学习,几乎所有的学生都大大提高了解题的速度,其效果非常之好。

第二,还要熟悉习题中所涉及到的以前学过的知识和与其他学科相关的知识。

例如,有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是数学题中要用到的一个物理概念,而我们对此已不是十分清晰了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。这时我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。

第三,对基本的解题步骤和解题方法也要熟悉。

解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。否则,走了弯路就多花了时间。

第四,要学会归纳总结。

在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

第五,应先易后难,逐步增加习题的难度。

人们认识事物的过程都是从简单到复杂,一步一步由表及里地深入下去。一个人的能力也是通过锻炼逐步增长起来的。若简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。而我们有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。

其实,解简单容易的习题,并不一定比解一道复杂难题的劳动强度和效率低。

比如,与一个人扛一大袋大米上五层楼相比,一个人拎一个小提包也上到五层楼当然要轻松得多。但是,如果扛米的人只上一次,而拎包的人要来回上下50次、甚至100次,那么,拎包人比扛米人的劳动强度大。所以在相同时间内,解50道、100道简单题,可能要比解一道难题的劳动强度大。再如,若这袋大米的重量为100千克,由于太重,超出了扛米人的能力,以至于扛米人费了九牛二虎之力,却没能扛到五楼,虽然劳动强度很大,却是劳而无功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五楼,劳动强度也许并不很大,而效率之高却是不言而喻的。由此可见,去解一道难以解出的难题,不如去解30道稍微简单一些的习题,其收获也许会更大。因此,我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

第六,认真、仔细地审题。

对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。读题一旦结束,哪些是已知条件?求解的结论是什么?还缺少哪些条件,可否从已知条件中推出?在你的脑海里,这些信息就应该已经结成了一张网,并有了初步的思路和解题方案,然后就是根据自己的思路,演算一遍,加以验证。有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。很多时候学生来问问题,我和他一起读题,读到一半时,他说:“老师,我会了。”所以,在实际解题时,应特别注意,审题要认真、仔细。

第七,学会画图。

画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。

Ⅳ 2022中考数学备考选择题解题方法与技巧

数学透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察而产生。这次我给大家整理了中考数学备考选择题解题 方法 与技巧,供大家阅读参考。

目录

中考数学备考选择题解题方法与技巧

如何学好数学

数学怎么得高分

中考数学备考选择题解题方法与技巧

一、直接法:根据选择题的题设条件,通过计算、推理或判断,最后达到题目要求。这种直接根据已知条件进行计算、判断或推理而得到的答案的解选择题的方法称之为直接法。

二、间接法:间接法又称试验法、排除法或筛选法,又可将间接法分为结论排除法、特殊值排除法、逐步排除法和逻辑排除法等方法。

(1)结论排除法:把题目所给的四个结论逐一代回原题中进行验证,把错误的排除掉,直至找到正确的答案,这一逐一验证所给结论正确性的解答选择题的方法称之为结论排除法。

(2)特殊值排除法:有些选择题所涉及的数学命题与字母的取值范围有关,在解决这类解答题,可以考虑从取值范围内选取某几个特殊的值,代入原命题进行验证,然后排除错误的,保留正确的,这种解决答题的方法称之为特殊值排除法。

(3)逐步排除法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,即采用“走一走、瞧一瞧”的办法,每走一步都与四个结论比较一次,排除掉不可能的,这样也许走不到最后一步,三个错误的结论就被全排除掉了。

(4)逻辑排除法:在选择题的编制过程中,应该注意四个选择答案之间的逻辑关系,尽量避免等价、包含、对抗等关系的出现,但实际上有些选择题并没有注意到这些原则,致使又产生了一种新的解答选择题的方法。它是抛开题目的已知条件,利用四个选择答案之间的逻辑关系进行取舍的一种方法,当然最后还有可能使用其他排除的方法才能得到正确的答案。

<<<

如何学好数学

要想数学成绩好,首先在思想上要把数学的重要地位确立起来。数学作为三大主科之一,是公认最难的科目,不花费大量的时间和精力很难把它学好。数学学习的道路是漫长的,重点和难点知识特别多,只有每天多拿出一些时间去学数学才能日积月累把它学好。

学数学光靠努力还不够,要学会一些基本的数学思维。比如常见的代入思维、试值思维、画图思维、分类讨论等。数学公式是必须要熟记的,背会以后要在理解的基础上去做题,根据题眼去分析,即使没有思路也要尽最大努力尝试解题。

学数学做题是一方面,在做题的基础上还要学会 反思 和 总结 ,要懂得举一反三的道理,做一道题目要学会一个类型的题目,要在做题过程中触类旁通。学数学不是一蹴而就的,只有踏踏实实去做题和训练才能学会数学。

学数学最重要的一点就是提高自学能力,听别人讲多少遍也不如自己做会一遍好。实践出真知是没错的,数学成绩好的同学大多自学能力非常强,遇到不会的题目能自主研究、琢磨,一道难题甚至能思考好几天,直至弄明白为止,这种精神是难能可贵的。

<<<

数学怎么得高分

1.数学基础要打好

如果是要提高数学成绩,那么第一件要做的事情就是提高自己的基础,因为数学的基础非常重要,如果没有扎实的基础,那么后续的提高难度非常大,这样对于自己的做题效率,影响也是非常大的。部分学生之所有成绩一直无法提高,就是因为没有打好数学的基础,这样自然是对后续的学习影响非常大的,要积极做好基础的积累工作。

2.数学的 学习方法

另外学生还要知道高中 数学学习方法 ,建议各位学生要在课堂上多听老师的做题方法,还有就是了解到数学公式的应用以及具体的性质,这些都是数学学习的基础,建议各位学生在课后要保持足够的训练量,这样才能提高自己的做题能力。不可能在听了老师的讲课之后就完全掌握知识点,还需要足够的训练才能稳固这些知识点,自然才能提高数学成绩。

3.提高做题的效率

之所以长期训练数学,就是为了提高自己的做题效率,因为在考试过程中,如果因为运算而浪费太多的时间,这样对成绩的影响自然是非常大的,一定要了解到数学的提高方法,通过综合的方式来提高数学成绩。另外数学学习过程中遇到的问题一定要及时和老师沟通,多了解关于数学公式的运用,这些都是学习数学的重点。

<<<


2022中考数学备考选择题解题方法与技巧相关 文章 :

★ 中考数学解题技巧方法

★ 中考数学选择题答题技巧

★ 中考数学复习知识点和解题方法

★ 中考数学选择题解题方法

★ 中考数学备考除了做题还要有方法

★ 中考数学填空题解题技巧

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅳ 中考数学解答难题的十二种方法

中考数学解答难题的十二种方法

引导语:下面我给大家带来中考数学解答难题的十二种方法,希望能够帮助到您,谢谢您的阅读,祝您阅读愉快。

方法一:一“慢”一“快”,相得益彰

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

方法二:确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

方法三:调理大脑思绪,提前进入数学情境

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

方法四:“内紧外松”,集中注意,消除焦虑怯场

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

方法五:沉着应战,确保旗开得胜,以利振奋精神

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的'开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

方法六:回避结论的肯定与否定,解决探索性问题

对探索性问题,不必追求结论的"是"与"否"、"有"与"无",可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

方法七:应用性问题思路:面—点—线

解决应用性问题,首先要全面调查题意,迅速接受概念,此为"面";透过冗长叙述,抓住重点词句,提出重点数据,此为"点";综合联系,提炼关系,依靠数学方法,建立数学模型,此为"线",如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。

方法八:“六先六后”,因人因卷制宜

在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1.先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

3.先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗5.先点后面。近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

方法九:讲求规范书写,力争既对又全

考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成中考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、"感情分"也就相应低了,此所谓心理学上的"光环效应"。"书写要工整,卷面能得分"讲的也正是这个道理。

方法十:面对难题,讲究方法,争取得分

会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法

1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为"已知",完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

方法十一:以退求进,立足特殊

发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对"特殊"的思考与解决,启发思维,达到对"一般"的解决。

方法十二:执果索因,逆向思考,正难则反

对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

;

Ⅵ 初中数学解题方法归纳总结

想要在初中学好数学,学会解题是关键。那么初中数学解题方法有哪些呢?为了帮助同学们更好的学习数学,我给大家整理了初中数学解题方法。
初中数学解题方法归纳
1. 观察与实验

( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。

( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。

2. 比较与分类

( 1 )比较法

是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。

( 2 )分类的方法

分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。

3 .特殊与一般

( 1 )特殊化的方法

特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。

( 2 )一般化的方法

4. 联想与猜想

( 1 )类比联想

类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。

通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:

( 2 )归纳猜想

牛顿说过:没有大胆的猜想就没有伟大的发明。猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。

归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。归纳有完全归纳和不完全归纳。完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。关键是猜之有理、猜之有据。

5. 换元与配方

( 1 )换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 你可以先观察算式,你可以发现这种要换元法的算式中总是有相同的式子,然后把他们用一个字母代替,算出答案,然后答案中如果有这个字母,就把式子带进去,计算就出来啦。

( 2 )配方法

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解。配方法使用的最基本的配方依据是二项完全平方公式 (a + b) 2 = a 2 + 2ab + b 2 ,将这个公式灵活运用,可得到各种基本配方形式

6. 构造法与待定系数法

( 1 )构造法所谓构造性的方法就是数学中的概念和方法按固定的方式经有限个步骤能够定义的概念和能够实现的方法。常见的有构造函数,构造图形,构造恒等式。平面几何里面的添辅助线法就是常见的构造法。构造法解题有:直接构造、变更条件构造和变更结论构造等途径。

( 2 )待定系数法:将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。

7. 公式法与反证法

( 1 )公式法

利用公式解决问题的方法。初中最常用的有一元二次方程求根时使用求根公式的方法;完全平方公式的方法等。如下面一组题就是完全平方公式的应用:

( 2 )反证法是“间接证明法”一类,即:肯定题设而否定结论,从而得出矛盾,就可以肯定命题的结论的正确性,从而使命题获得了证明。
初中学数学解题技巧
1. 数学探索题

所谓探索题就是从问题给定的题设条件中探究其相应的结论并加以证明,或从给定的题目要求中探究相应的必需具备的条件、解决问题的途径。

条件探索题:解答策略之一是将题设和结论视为已知,同时推理,在演绎的过程中寻找出相应所需的条件。

结论探索题:通常指结论不确定不唯一,或结论需通过类比、引申、推广,或给出特例需通过归纳得出一般结论。可以先猜测再去证明;也可以寻求具体情况下的结论再证明;或直接演绎推证。

规律探索题:实际就是探索多种解决问题的途径,制定多种解题的策略。

活动型探索题:让学生参与一定的社会实践,在课内和课外的活动中,通过探究完成问题解决。

推广型探索题:将一个简单的问题,加以推广,可产生新的结论,在初中教学中常见。如平行四边形的判定,就可以产生许多新的推广,一方面是自身的推广,一方面可以延伸到菱形和正方形中。

探索是数学的生命线,解探索题是一种富有创造性的思维活动,一种数学形式的探索绝不是单一的思维方式的结果,而是多种思维方式的联系和渗透,这样可使学生在学习数学的过程中敢于质疑、提问、反思、推广。通过探索去经历数学发现、数学探究、数学创造的过程,体会创造带来的快乐。

2. 数学情境题

情境题是以一段生活实际、故事、历史、游戏与数学问题、数学思想和方法于情境中。这类问题往往生动有趣,激发学生强烈的研究动机,但同时数学情景题又有信息量大,开放性强的特点,因此需要学生能从场景中提炼出数学问题,同时经历了借助数学知识研究实际问题的数学化过程。

如老师在讲有理数的混合运算时,

3. 数学开放题

数学开放题是相对于传统的封闭题而言的一种新题型,其特征是题目的条件不充分,或没有确定的结论,也正因为这样,所以开放题的解题策略往往也是多种多样的。

( 1 )数学开放题一般具有下列特征

①不确定性:所提的问题常常是不确定的和一般性的,其背景情况也是用一般词语来描述的,因此需收集其他必要的信息,才能着手解的题目。

②探究性:没有现成的解题模式,有些答案可能易于直觉地被发现,但是求解过程中往往需要从多个角度进行思考和探索。

③非完备性:有些问题的答案是不确定的,存在着多样的解答,但重要的还不是答案本身的多样性,而在于寻求解答的过程中学生的认知结构的重建。

④发散性:在求解过程中往往可以引出新的问题,或将问题加以推广,找出更一般、更概括性的结论。常常通过实际问题提出,学生必须用数学语言将其数学化,也就是建立数学模型。

⑤发展性:能激起多数学生的好奇性,全体学生都可以参与解答过程。

⑥创新性:教师难以用注入式进行教学,学生能自然地主动参与,教师在解题过程中的地位是示范者、启发者、鼓励者、合作者。

( 2 )对数学开放题的分类

从构成数学题系统的四要素(条件、依据、方法、结论)出发,定性地可分成四类;如果寻求的答案是数学题的条件,则称为条件开放题;如果寻求的答案是依据或方法,则称为策略开放题;如果寻求的答案是结论,则称为结论开放题;如果数学题的条件、解题策略或结论都要求解题者在给定的情境中自行设定与寻找,则称为综合开放题。

从学生的学习生活和熟悉的事物中收集材料,设计成各种形式的数学开放性问题,意在开放学生的思路,开放学生潜在的学习能力,开放性数学问题给不同层次的学生学好数学创设了机会,多种解题策略的应用,有力地发展了学生的创新思维,培养了学生的创新技能,提高了学生的创新能力。

( 3 )以数学开放题为载体的教学特征

①师生关系开放:教师与学生成为问题解决的共同合作者和研究者

②教学内容开放:开放题往往条件不完全、或结论不完全,需要收集信息加以分析和研究,给数学留下了创新的空间。

③教学过程的开放性:由于研究的内容的开放性可以激起学生的好奇心、同时由于问题的开放性,就没有现成的解题模式,因此就会留下想象的空间,使所有的学生都可参与想象和解答。

( 4 )开放题的教育价值

有利于培养学生良好的思维品质;

有助于学生主体意识的形成;

有利于全体学生的参与,实现教学的民主性和合作性;

有利于学生体验成功、树立信心,增强学习的兴趣;

有助于提高学生解决问题的能力。

4. 数学建模题(初中数学建模题也可以看作是数学应用题)

数学新课程标准指出 : 要学生会应用所学知识解决实际问题 , 能适应社会日常生活和生产劳动的基本需要。初中数学的学习目的之一 , 就是培养学生解决实际问题的能力 , 要求学生会分析和解决生产、生活中的数学问题 , 形成善于应用数学的意识和能力。从各省市的中考数学命题来看 , 也更关注学生灵活运用数学知识解决实际问题能力的考查 , 可以说培养学生解答应用题的能力是使学生能够运用所学数学知识解决实际问题的基本途径之一
初中数学应用问题类型
( 1 )探求结论型数学应用问题

根据命题中所给出的条件,要求找出一个或一个以上的正确结论

( 2 )跨学科的数学应用问题

①数学与物理

②数学与生化

以上两题是与生物和化学有关的问题,体现了数学在生化学科的应用。

总之,数学应用问题较好地考察了学生阅读理解能力与日常生活体验,同时又考察了学生获取信息后的抽象概括与建模能力,判断决策能力。中考数学应用问题热点题型主要包括生活、统计、测量、设计、决策、销售、开放探索、跨学科等等,中考在强化学生应用意识和应用能力方面发挥及其良好的导向功能。这就要求我们在平时教学中善于挖掘课本例题、习题的潜在的应用功能。巧妙地将课本中具有典型意义的数学问题回归生活、生产的原型,创设一个实际背景,改造成有深刻数学内涵的实际问题,以增强应用意识,发展数学建模能力。

四、掌握初中数学解题策略提来提高数学学习效率

(1)认真分析问题,找解题准切入点

由于数学问题纷繁复杂,学生容易受定势思维的影响,这样就会响解题思路造成很大的影响。为此,这时教师要给予学生正确指导,帮助学生进行思路的调整,对题目进行重新认真的分析,将切入点找准后,问题就能游刃而解了。例如:已知:AB=DC,AC=DB。求证:∠A=∠D。

此题是一道比较经典的证明全等的题型,主要是对学生对已知条件整合能力和观察识图能力的锻炼。然而,从图形的直观角度来证明∠AOC=∠DOB,这样的思路只会落入题目所设下的陷阱。为此,在对此题的审题时,教师要引导学生注意将题目已知的两个条件充分结合起来考虑,提醒学生可以适当添加一定的辅助线。

(2)发挥想象力,借助面积出奇制胜

面积问题是数学中常出现的问题,在面积定义及相关规律中,蕴含着深刻的数学思想,如果学生能充分了解其中的韵味,能够熟练的掌握其中的数学论证思维,就有可能在其他数学问题中借助面积,出奇制胜顺利实现解题。由于几何图形的面积与线段、角、弧等有密切的联系,所以用面积法不但可证各种几何图形面积的等量关系,还可证某些线段相等、线段不等、角的相等以及比例式等多种类型的几何题。例1、 若E、F分别是矩形ABCD边AB、CD的中点,且矩形EFDA与矩形ABCD相似,则矩形ABCD的宽与长之比为( ) (A) 1∶2(B) 2∶1(C) 1∶2(D) 2∶1

由上题已知信息可知,矩形ABCD的宽AD与AB的比,就是矩形EFDA与矩形ABCD的相似比。解:设矩形EFDA与矩形ABCD的相似比为k。因为E、F分别是矩形ABCD的中点,所以S矩形ABCD=2S矩形EFDA。所以S矩形EFDA∶S矩形ABCD=k2。所以k=1∶2。即矩形ABCD的宽与长之比为1∶2;故选(C)。

此题利用了“相似多边形面积的比等于相似比平方”这一性质,巧妙解决相似矩形中的长与宽比的问题。事实上,借助面积,形成解题思路的过程,就是学生思维转换的过程。

(3)巧取特殊值,以简代繁

初中数学虽然是基础数学,但是这并不意味着就没有难度,特别是在素质教育下,从培养学生综合素质能力的角度出发,初中数学越来越重视数学思维的培养,因此在很多数学问题的设置上,都进行了相当难度的调整,使得数学问题显得较为繁杂,单一的思维或者解题方式,在有些题目面前会显得较为艰难。如有些数学问题是在一定的范围内研究它的性质,如果从所有的值去逐一考虑,那么问题将不胜其繁甚至陷入困境。在这种情况下,避开常规解法,跳出既定数学思维,就成了解题的关键。

例2、分解因式:x2+2xy-8y2+2x+14y-3。

思路分析:本题是二元多项式,从常规思路进行解题也未尝不可,但是从锻炼学生思维能力的角度出发,教师可以在立足常规解法的基础上,引导学生进行其他方面解题思路的探索。如从巧取特值的角度出发,把其中的一个未知数设为0,则可以暂时隐去这个未知数,而就另一个未知数的式子来分解因式,达到化二元为一元的目的。

解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)。当把两次分解的一次项的系数1、1;-2、4。可知,1×4+(-2)×1正好等于原式中xy项的系数。因此,综合起来有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1)。

其实,用特殊值法,也叫取零法。这种方法在因式分解中可以发挥很大的作用,帮助学生找到其他的解题思路。一般来说其步骤是:A、把多项式中的一个字母设为0所得的结果分解因式,B、把多项中的另一个字母设为0所得的结果分解因式,C、把上两步分解的结果综合起来,得出原多项式的分解结果。但要注意:两次分解的一次因式的常数项必须相等,如本题中,x+3的3和-2y+3的3相等,x-1的-1和4y-1的-1相等。否则,在综合这两步的结果时就无所适从了。

(4)巧妙转换,过渡求解法

在解数学题时,即要对已知的条件进行全面分析,还要善于将题目中的隐性条件挖掘出来,将数学中各知识之间的联系巧妙的运用起来,用全面、全新的视角来解决问题。

例如:已知:AB为半圆的直径,其长度为30 cm,点C、D是该半圆的三等分点,求弦AC、AD与弧CD所围成的图形的面积。

本题需要解出的是一个不规则图形的面积,可能大多数同学的思维就是将CD连结起来,将其转变为一个角形和弓形,两者面积之和就为该题需要解决的问题。这时,教师就要引导学生学会对半径这一已知条件加以利用,帮助其将另外两条OC、OD辅助线连结起来,将题目要求解的不规则图形的面积,转化成求扇形OCD的面积,这样该题的解题思维就能一目了然了。

综上所述,初中数学解题存在很强的灵活性。有的数学题不只一种解法,而有多种解法,有的数学题用常规方法解决不了,要用特殊方法。因此,解数学题要注意它的灵活性和技巧性。解题技巧在升学考试中至关重要,不能忽视。初中数学教师要注意对解题技巧的钻研,并鼓励学生发散思维,寻找解题技巧,提高解题效率,增强学习数学的能力。

猜你喜欢:

1. 初中数学规律题公式

2. 初中数学学习方法与技巧

3. 关于初中数学的学习方法有哪些

4. 初一数学解题技巧

5. 初中数学学习方法的六大要点

Ⅶ 初中数学解题思路和方法

初中阶段学生数学学习成绩两极分化非常严重,学习差的学生占的比例较大,如果学生在解题过程中没有机会尝尽为求解而奋斗的喜怒哀乐,那么他的数学解题训练就在最重要的地方失败了。那么有哪些解题思路可以帮助初中数学提高得分呢?

一、如何获得数学解题思路

解题思路的获得,一般要经历三个步骤:1.从理解题意中提取有用的信息,如数式特点,图形结构特征等;2.从记忆储存中提取相关的信息,如有关公式,定理,基本模式等;3.将上述两组信息进行有效重组,使之成为一个合乎逻辑的和谐结构。

数学的表达,有3种方式:1.文字语言,即用汉字表达的内容;2.图形语言,如几何的图形,函数的图象;3.符号语言,即用数学符号表达的内容,比如AB∥CD。

在初中学段中,不仅要学好数学知识,同时也要注意数学思想方法的学习,掌握好思想和方法,对数学的学习将会起到事半功倍的良好效果。

其中整体与分类、类比与联想、转化与化归和数形结合等不仅仅是学好数学的重要思想,同时对您今后的生活也必将起重要的作用。

先来看转化思想:

我们知道任何事物都在不断的运动,也就是转化和变化。

在生活中,为了解决一个具体问题,不论它有多复杂,我们都会把它简单化,熟悉化以后再去解决。

体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。

如方程的学习中,一元一次方程是学习方程的基础,那么在学习二元一次方程组时,可以通过加减消元和代入消元这样的手段把二元一次方程组转化为一元一次方程来解决,

转化(加减和代入)是手段,消元是目的;在学习一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化(分解因式)是手段,降次是目的。

把未知转化为已知,把复杂转化为简单。

同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。

在几何学习中,三角形是基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。

所以,在数学学习和生活中都要注意转化思想的运用,解决问题,转化是关键。

二、初中数学学生必备的解题理念

1.如果把解题比做打仗,那么解题者的“兵器”就是数学基础知识,“兵力”就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是“兵法”。

2.数学家存在的主要理由就是解决问题。

因此,数学的真正的组成部分是问题和解答。

“问题是数学的心脏”。

3.问题反映了现有水平与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。

问题就是矛盾。

对于学生而言,问题有三个特征:

(1)接受性:学生愿意解决并且具有解决它的知识基础和能力基础。

(2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。

(3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。

4.练习型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。

5.“问题解决”有不同的解释,比较典型的观点可归纳为4种:

(1)问题解决是心理活动。

面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。

(2)问题解决是一个探究过程。

把“问题解决”定义为“将先前已获得的知识用于新的、不熟悉的情境的过程”。

这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。

(3)问题解决是一个学习目的。

“学习数学的主要目的在于问题解决”。

因而,学习怎样解决问题就成为学习数学的根本原因。

此时,问题解决就独立于特殊的问题,独立于一般过程或方法,也独立于数学的具体内容。

(4)问题解决是一种生存能力。

重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学习生存的本领。

6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。

其次一个表现是,长期徘徊在一招一式的归类上,缺少观点上的提高或实质性的突破。

第三个表现是,多研究“怎样解”,较少问“为什么这样解”。

在这些误区里,“解题而不立法、作答而不立论”。

7.人的思维依赖于必要的知识和经验,数学知识正是数学解题思维活动的出发点与凭借。

丰富的知识并加以优化的结构能为题意的本质理解与思路的迅速寻找创造成功的条件。

解题研究的一代宗师波利亚说过:“货源充足和组织良好的知识仓库是一个解题者的重要资本”。

8.熟练掌握数学基础知识的体系。

对于中学数学解题来说,应如数学家珍说出教材的概念系统、定理系统、符号系统。

还应掌握中学数学竞赛涉及的基础理论。

深刻理解数学概念、准确掌握数学定理、公式和法则。

熟悉基本规则和常用的方法,不断积累数学技巧。

9.数学的本质活动是思维。

思维的对象是概念,思维的方式是逻辑。

当这种思维与新事物接触时,将出现“相容”和“不容”的两种可能。

出现“相容”时,产生新结果,且被原概念吸收,并发展成新概念;当出现“不容”时,则产生了所谓的问题。

这时,思维出现迂回,甚至暂时退回原地,将原概念扩大或将原逻辑变式,直到新思维与事物相容为止。

至此,也产生新的结果,也被原思维吸收。

这就是一个思维活动的全过程。

10.解题能力,表现于发现问题、分析问题、解决问题的敏锐、洞察力与整体把握。

其主要成分是3种基本的数学能力(运算能力、逻辑思维能力、空间想象能力),核心是能否掌握正确的思维方法,包括逻辑思维与非逻辑思维。

其基本要求包括:

(1)掌握解题的科学程序;

(2)掌握数学中各种常用的思维方法,如观察、试验、归纳、演绎、类比、分析、综合、抽象、概括等;

(3)掌握解题的基本策略,能“因题制宜”地选择对口的解题思路,使用有效的解题方法、调动精明的解题技巧;

(4)具有敏锐的直觉。

应该明白,我们的数学解题活动是在纵横交错的数学关系中进行的,在这个过程中,我们从一种可能性过渡到另一种可能性时,并非对每一个数学细节都洞察无遗,并非总能借助于“三段论”的桥梁,而是在短时间内朦胧地插上幻想的翅膀,直接飞翔到最近的可能性上,从而达到对某种数学对象的本质领悟:

11.解题具有实践性与探索性的特征,“就像游泳,滑雪或弹钢琴一样,只能通过模仿和实践来学到它……你想学会游泳,你就必须下水,你想成为解题的能手,你就必须去解题”,“寻找题解,不能教会,而只能靠自己学会”。

12.所谓解题经验,就是某些数学知识、某些解题方法与某些条件的有序组合。

成功是一种有效的有序组合,失败是一种无效的无序组合(它从反面向我们提供有效的有序组合)。

成功经验所获得的有序组合,就好像建筑上的预制构件(或称为思维组块),遇到合适的场合,可以原封不动地把它搬上去。

13.认为解题纯粹是一种智能活动显然是错误的;决心与情绪所起的作用非常重要。

教育学生解题是一种意志教育。

当学生求解那些对他来说并不太容易的题目时,他学会了败而不馁,学会了赞赏微小的进展,学会了等待主要念头的萌动,学会了当主要念头出现后如何全力以赴,直扑问题的核心或主干;当一旦突破关卡,如何去占领问题的至高点,并冷静地府视全局,从而得到问题的完善解决。

如果学生在解题过程中没有机会尝尽为求解而奋斗的喜怒哀乐,那么他的数学解题训练就在最重要的地方失败了。

14.教师的例题教学要暴露自己思维的真实过程,老师备课时,遇上的曲折和错误不能随草纸扔到废纸堆。

如果教师掩瞒了解题中的曲折,自己在讲台装神弄巧,得心应手,左右逢源,把自己打扮成超人,将给学生的学习产生误导。

这样的教师越高明,学生越自卑。

三、浅议初中生数学学习差的原因

一、造成分化的原因

1、被动学习。

许多同学进初中入后,还像小学那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。

表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。

2、学不得法。

老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。

而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。

也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、不重视基础。

一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。

到正规作业或考试中不是演算出错就是中途“卡壳”。

4、思维方式和学习方法不适应数学学习要求。

初二阶段是数学学习分化最明显的阶段。

一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。

而初二学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的抽象逻辑思维方式,而且学生个体差异也比较大,有的抽象逻辑思维能力发展快一些,有的则慢一些,因此表现出数学学习接受能力的差异。

除了年龄特征因素以外,更重要的是教师没有很好地根据学生的实际和教学要求去组织教学活动,指导学生掌握有效的学习方法,促进学生抽象逻辑思维的发展,提高学习能力和学习适应性。

二、减少学习分化的教学对策

1、培养学生学习数学的兴趣兴趣是推动学生学习的动力,学生如果能在学习数学中产生兴趣,就会形成较强的求知欲,就能积极主动地学习。

培养学生数学学习兴趣的途径很多,如让学生积极参与教学活动,并让其体验到成功的.愉悦;创设一个适度的学习竞赛环境;发挥趣味数学的作用;提高教师自身的教学艺术等等。

2、教会学生学习

(1)加强学法指导,培养良好学习习惯反复使用的方法将变成人们的习惯行为。

什么是良好的学习习惯?我向学生做了如下具体解释,它包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

(2)制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。

Ⅷ 小学数学解决问题的四个步骤

解决问题三步骤的实施

(一)阅读与理解

1.找信息

找信息是解决问题的第一步。在低年级多是以图画、表格、对话等方式呈现问题。随着年级升高,逐渐增加纯文字问题的量。在实际教学中,对于中低年级而言,最有效的途径是知道学生学会看图,从图中收集必要的信息。教师要注意三种情况,一是题中的信息比较分散,应指导学生多次看图,将能知道的信息尽量找到;二是题中信息比较隐蔽时,容易忽略,这是要引导学生仔细看图,三是信息的数量较多,要引导学生根据问题收集有关信息。

2.提问题

提出问题比解决问题更重要。只有认识到信息之间的联系,才能提出一个合理的数学问题。教师有意识给学生提供机会,为学生营造大胆提出问题的气氛 ,引导学生学会提出问题,鼓励学生提出问题。

3.示意图

示意图让文字有了图形的辅助,有助于体现教师教学的直观性,同时能够帮助学生更好地理解和接受所学的知识。指导学生示意图,能从根本上培养和增强学生解题能力和自主学习的能力。授人以鱼不如授人以渔,学会解题方法才能从根本上学会如何做题,学会画示意图才能使学生在今后的学习中,能进行自主学习探究,找出解决问题的方法。

(二)分析与解答

1.数量关系

心理学先入为主原则,第一次学习建立起来的“模型”表象,不仅会给学生留下深刻的印象,而且还具有导向作用。在一至四年级的除法“应用题”中,都是被除数大于除数,加之教材编排题型过于单一,缺少对比呈现。如果老师教学时缺少分析“数量关系”,或者有些老师为了追求成绩,直接告诉学生:“记住你就用大数除以小数!”以至于到了五年级形成习惯。所以,“应用题”教学一定要加强“数量关系”的分析。

数量关系就是学生在运用运算意义和基本数量关系解决生产、生活中实际问题的基础上,对周围生活中的一些数量关系积累了一些感性的认识,教师可以适当地引导他们再抽象概括一些具体的数量关系式,大家习惯上称这种数量关系为“常见的数量关系”。例如:单价与数量、总价之间的关系,工作效率与工作时间、工作总量之间的关系,速度与时间、路程的关系,等等。

2.列式计算

列式计算是解决问题最重要的步骤,找信息,提问题,以及画示意图都是为了列出式子,算出答案。下了如此多的功夫就为了这一步骤,所以要求学生细心谨慎,不要看错数据。记错数。

3.回顾与反思

回顾和反思学习过程,总结学习方法,积累教学活动经验,感悟数学思想方法。在回顾中感受成功,增强学习自信心,养成反思习惯。在教学中,我们要重视回顾和反思。其实回顾与反思属于检查。检查在列式中有没有写错加减乘除,检查式子中有没有看错数据,写错数据,检查有没有计算错误,比如低年级的满十就进一,不够减就退一,乘法口诀有没有出错,高年级的小数点有没有点错,或者分数的约分是否约完整等等。

总的来说,正因为小学数学解决问题的教学是《新课程标准》中规定的课程目标之一,在小学数学中占有非常重要的地位,是教学中的最难点之一。所以就解决问题中的阅读与理解、分析与解答和回顾与反思进行浅谈,希望对小学数学解决问题的解决方法起到作用。

Ⅸ 高中数学的解题的方法和学好数学的技巧

数学是应用性很强的学科,想要学好数学就要知到一些解题的方法,下面是我给大家带来的有关于高中数学的解题的方法介绍,希望能够帮助到大家。

高中数学的解题的方法

1、首先是精选题目,做到少而精。

只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

2、其次是分析题目。

解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

3、最后,题目总结。

解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。

④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

高中数学学好的技巧

学会听课

数学的学习是需要老师的引导,在引导下,高一学生根据自己的情况做一些相应的练习来掌握知识,巩固知识,要想提高数学学习效率,就需要高一学生做到以下一些:

1、做好预习,提出问题,进行多次阅读数学课本,查阅相关资料,回答自己提出的问题,力争在老师讲新课前尽可能的掌握更多的数学知识,如果不能回答的问题可以在老师讲课中去解决。

2、学会听课,在高一的教学中老师经常会把一个知识点进行多次的讲解和通过大量的练习让高一学生去掌握,可是到高中以后,老师对于一个数学知识点就不会再通过大量的练习来让高一学生去掌握,而是通过一些相关知识的讲解去引导高一学生明白这个知识是怎么来的,又如何用这个知识解答一些相关的疑惑,如果高一学生能明白的话就能在自己的数学知识下通过课后的练习去巩固这些知识,同时高一学生也可以根据老师的引导去扩展数学知识。

当然,对于自己在听课过程中一下子不能明白的数学知识,可以通过举手让老师再进行一次分析讲解,也同时做好相关的记录,以备在课后去进一步弄明白;对于自己在预习中提出的问题,如果老师没有解决的话,可以利用课余时间请教老师解答,这样学习数学就可能学习到更多的知识。

3、敢于发表自己的想法,在高一数学学习中,高一学生会遇到很多解题技巧,可能这种方法你知道,另外的人不是很熟悉。那么就需要高一学生敢于发表自己的想法,这样就能让大家掌握更多的技巧。也同样能激发同学学习的兴趣,如果一节课都是老师讲的话,课堂气氛也是很闷的,高一学生学习数学的效率也是很低的。

4、听好每一分钟,尤其是老师讲课的开头和结束

老师讲课开头,一般是概括前节课的要点指出本节数学课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲数学知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。

课后巩固

很多高一学生在学习过程中没有重视课后的巩固,只是觉得在课堂上掌握一些数学知识就够了,其实这是错误的。高中数学的知识很多,并且不像初中数学那么浅显,而是有很多的内涵,如果不能进一步挖掘其数学内涵,那么只是掌握这个知识的表面,于是在自己做练习时就不知道如何去解了,也不能运用这个数学知识的。

做练习是需要的,可是有些高一学生只是为了练习去做练习,而不是为了巩固这个知识,扩展这个知识去做练习,经常是做完这个练习后算做完了,这样跟初中的做题是没有区别的。其实,我们还应该把这个练习中使用到的数学知识串起来,这样我们就能明白那些知识在运用,也能掌握更多的知识。也同样能发现那个知识点是重点,也能发现难题是如何把相关数学知识串起来的。

高中数学学习的策略

听好课

在课堂上集中注意力是想要学好一门科目的关键,高中数学课也不例外。数学也是一门极难学懂的课程,所以学生在课上课下都要花费大量的时间,数学也不是一门只要掌握好方法就能学懂的学科,所以在高中数学的学习上,一定要好好听课,汲取老师的经验,转化为自己知识,才能把握住一些技巧性的东西,从而提高自己数学的分数。

勤做题

相信很多学生在高三的时候都经历了疯狂做题的阶段,每天几套几套的卷子,做的学生心理疲惫。但是题海战术面对我国现在高中生的普遍水平还是很管用的。如果你不像其他学霸那样有着过人的天分,那么在高中数学的学习上,就一定要多做题、勤做题。把每个你不会的题型都多做几遍,做的多了,数学的水平自然也就上去了。

会归纳

阅读全文

与数学题答案解决方法相关的资料

热点内容
龟头溃疡怎么治疗方法 浏览:377
鲁班锁制作方法图解步骤 浏览:275
小音箱接线安装方法 浏览:997
疲劳过度最好的解决方法 浏览:484
芦荟的扦插方法视频 浏览:316
小学分离的方法主要有哪些 浏览:733
螺旋式楼梯扶手安装方法 浏览:42
最简快速减小腿方法 浏览:50
浙江税务服务有哪些方法 浏览:282
拔丝的方法别有哪些 浏览:358
环境分析的常见方法 浏览:689
中药制剂药动学的研究方法 浏览:711
扭伤的正确处理方法 浏览:440
求解析式主要方法有哪些 浏览:613
手机上qq怎么设置黑名单在哪里设置方法 浏览:294
股四头萎缩锻炼方法 浏览:560
工厂总产值计算方法 浏览:168
如何增强投篮力量方法 浏览:651
快速的水冷方法 浏览:584
掐奶的正确方法视频 浏览:910