A. 怎样解题初中数学物理化学解题方法与技巧平
考试前,尤其是面临重要考试时,老师都会谆谆告诫莘莘学子一条非常重要初中数学解题技巧和答题方法--------会答的先答,不会答的后答。事实证明,这个方法是使考试获得成功、出奇制胜的法宝。但到了今天,这件法宝在许多同学身上不灵了,考试居然达不到平时写作业的水平,让同学们确实倍感困扰。三轮解题法就是解决怎样在考试时发挥出自己最佳水平的一种方法。它的理念是以我为主,以发挥出考试最佳状态为本,按照分轮次解题的要求,构建自信、有序。可控的机制平台,拓展自我进步、成功的轻松空间,实现应试能力的跨越。三好网初中数学辅导老师为三轮解题法要通过以下七点实现:
1对考试成功的标志要有明确的认识
初中生身经无数次的考试,有成功也有失败,有考顺之时,也有别扭之日。那么什么是考试成功的标志呢?有人说是分数,有人说是名次,还有人讲只有超过某人 才算……其实分数也有绝对值和相对值,绝对值是拿你自己的分数与及格线、满分线等比较的结果。相对值是将你自己的分数放在个人、班级、年级、全市等参照系 中衡量其相对位置的结果。
正是由于选择的参照系不同,有的同学越比信心越足,越比干劲越大,越比越乐观;而有的同学则越比越没信心,越比对自己越怀疑,越 比热情越低。考试成功的标志有两条:
一是,只要将自己的水平正常发挥出来了,就是一次成功的考试。
二是,不要横向与其他同学比,要纵向自己与 自己比。按着前述《良性循环学习法》中提到的,只要将第一类问题消灭到既定目标,就是一次成功的考试。
2确定考试目标
有资料显示,每年中考考砸的考生约占25%。因此考试前确定目标时,虽然你心中有了上述两条考试成功的标志,但是对于第一条,你千万不要以为我可以 100%的将自己的水平发挥出来,这才叫正常发挥,更不要幻想超常发挥。而应该按三层递进模式实施你的目标。
三层递进模式就是:
第一要保证不考砸。
第二要正常发挥。正常发挥就是将自己的水平发挥出80%,发挥出80%已经很不简单了,发挥出80%无疑是没考砸。
第三要向更高标准迈进,就是在保证已发挥出 80%以后,再向发挥100%努力,再向超常发挥进发。
虽然看似简单的三层,但我提出的是:不砸→80%→100%→超常。你若考试一上来,就想100% 发挥,超常发挥,就可能出现全盘皆输的惨局。
那么保证实施三层递进模式的一种最佳方法就是——三轮解题法。
3第一轮答题要敢于放弃
三轮解题法的第一轮是,当你从前往后答题时,一看这题会,就答。一看这题不会,就不答。一看这题会,答的中间被困住卡壳了,就放。这是非常关键的一点。为 什么。“会答的先答,不会答的后答’到了考场就做不到呢?要害在会与不会之间,难在会与不会的判定上。你想,会的题这很清楚。
不会的题也很明了。但恰恰有 些题是你乍一看会,一做起来就卡壳,或者我不能立即得出结论,我需要看一看,思考思考、演算演算、琢磨琢磨……真是欲行不能,欲罢不忍。很多考生和家长都曾在微信后台留言,提到,很多时候都是在这不知不觉中丧失了宝贵的时间,考试时都觉得时间不够用,稀里糊涂地败下阵来。“会答的先答,不会答的后答”作为一条原则是颠扑不破的真理。
但若同时将它当作考试方法,因为它仅是定性地指出了方向,定量分析不清楚,缺乏可操作性,所以出现有人用它灵,有人用它不灵;有时灵,有时就不灵的现象。尤其是重要的考 试,每题必争,每分必夺,哪道题都不想轻易放弃,哪一问都想攻下来,哪一分都不想丢的时候,就往往失灵。
而“三轮解题法’是一种定量的方法,量化清楚,可操作性强。当第一轮做完,有一个重要的环节——
4敢于休息30秒
当按着会做的则解,不会做的则放,卡壳的也放 的方法,从前做到最后一道题之后,要敢于休息30秒。而且这个休息一定是老老实实地休息。比如,可以看看窗外的自然景观,树在摇曳,鸟在飞翔等。也可以想 想自己喜欢的流行歌曲、电视剧等,当然不能想得太远,如果你想出十集去,考试早结束了。还可以采取一些深呼吸放松法、自我深度松驰法、积极的自我暗示法 等。当然也可以什么都不想,就是闭目养神。在休息过程中要注意一点,采用什么休息方法悉听尊便,但千万不要想自己没做上来的某道题。
为什么要用敢于休息30秒的“敢于”两字呢?是因为绝大多数同学每每都觉得时间不够,哪还敢挤出时间休息呀!其实恰恰相反,因为考试是高度的耗氧活动,对 脑力、体力消耗很大,经过一段时间便会出现疲劳的现象,此时若*意志力来坚持,效率自然不高。经过休息就会使脑力得到恢复,使体力得到补充,经休息后再投 入到解题过程中会高效发挥,所以敢于休息的同学反而时间就够了,这就是辩证法。这也正是俗话所说“磨刀不误砍柴工”的道理。
敢于休息30秒也是心理状态提 升的体现。考试时有的同学一听到其他同学快速翻页的声响就着急,眼睛的余光一看别的同学答得较快就发慌……现在我能做到不为所动,不被所引,我还敢于主动 休息。急答出现差错,稳答一次成功,孰优孰劣是不言自明的道理。心理状态的提升需要一个磨炼过程。敢于休息30秒,就是心理状态走向成熟的开始,因此一定 要敢于休息。休息后进人第二轮。
5第二轮查缺补漏
第一轮将会做的题都做了,休息后还有没有会做的题了呢?回答是肯定的。依据有两条:一条是实践的依据;一条是理论的依据。
任何一名学生几乎都曾有过这样的考试经历,在考试过程中某道题不会,不得不放弃了,但当答到后边某处时,忽悠一下想起前边那道题该怎么做了。或者是答到 后边某道题,或者看见一道题的某句话、某个符号等,立刻唤醒了记忆,产生了顿悟,激发了灵感等,前边那道题就做出来了。这就是实践的依据。
考试时,从答题开始到达到考试最佳思维状态即图中①点处需要一个上升过程,但是达到最佳思维状态后,有些人还能下来,如碰到一道4分左右的小题,自以为 能做出来,但抠了半天就是做不出来,心情一团糟,这时绝不是最佳状态了,这时思维状态就下降了。有人一落千丈,如图中①点至②点沿虚线至④点处所示。也有 人下降后还能升上去,再度达到最佳思维状态,如图中②点至③点处。而我们希望的理想状态是,角大点,尽快达到最佳思维状态,当达到最佳思维状态后,一直持 续到考试结束。由于第一轮将会做的题做了,这时你的思维状态在0~①点之间,而决不会是①~②~④点之间。因此,经休息后仍旧有会做的题。
实践和理论都证实,做过第一轮后仍旧会有能解出来的题。那么这时如第一轮所述,一看这题会,就答。一看这题不会,就不答。一看这题会,答的中间卡壳了,就放。这样从前做到最后一道题,接下来要再次敢于休息30秒。怎样休息前文已有详述不再赘述。
6第三轮换思路解题
休息以后,要从前到后检查一遍自己做过的题。检查通过后,从理论上讲,你已经将自己的水平100%的发挥出来了,但实际上是80%。因为你检查虽然通过 了,可还存在你没检查出来或检查错了的可能性,所以说是80%。虽然是80%,但已经很不简单了。在一次考试中,能将自己的水平发挥出80%就是一次成功 的考试。
你看体育竞赛,你观奥运会,有多少运动员,有多少运动队积多年训练之精华,蓄埋藏4年之心愿,只为了场上一搏。这一搏往往是发挥出平时训练水平的 80%就可以取得胜利,就可以拿牌。对发挥出80%,你一定认识到,我的水平已经发挥出来了,我就是这个水平。我对得起自己,对得起父母,对得起……但如 果这时考试还没结束,还有时间,也没有必要检查第二遍,这时决不能满足80%,要向100%进发,向超常发挥努力,做那些没做上来的题。
但是做是做不出来 了,已经做过两轮都没做出来,说明是难点,是“硬骨头”。对于难点和“硬骨头”采用常规做法已经不行了。这时要攻,要向难点和“硬骨头”发起总攻。那么如 何攻呢?可用换思路解题法来攻。
换思路解题法是基于这样的思考,当你解题时,仅仅将题做对是远远不够的,只有知道此题有几种解法,哪 种是优化的解法才算优秀。许多人都曾有过这样的经历,解题时想起了这题出自哪章哪节,老师讲这点时是如何强调的,此题是考哪个或哪几个知识点,老师出这题 想考什么……此时答这题感觉非常有把握,解题非常顺。这就是灵感。其实灵感也没有什么神秘,谁都曾经在考试过程中迸发过灵感的火花。当然如果你甚至能看透 某题的陷阱和迷惑在哪里,你就是顶尖高手了。
总之,此时已是不攻白不攻,不得白不得,攻一步进一寸,得1分是1分的时候了。但要换思路,看看哪题能攻下来 攻哪题,哪点能拿下来拿哪点。想想它是出自哪章哪节?老师想考哪个知识点?各点之间是什么关系……这时要放飞你的记忆能力、领悟能力、多向联想能力、逆向 思维能力、发散思维能力、创新能力等,多方位、多角度、多层次地思考。这时新的思路就有可能被打开,兴奋点就可能被激活,灵感的火花就可能如年三十的礼花 一样在空中绽放。同学们,大胆尝试吧!你曾经有过的灵感定会一次次再现。
7变三轮解题法为自定理
三轮解题法是 一种全新的考试答题方法,是经过实践验证的科学、合理、有效的考试答题方法。认识掌握并运用了三轮解题法的同学都取得了不同程度的进步。但应用三轮解题法 却要因人”而异,因科而异。
若想灵活运用三轮解题法,第一要认识它的科学性、合理性、有效性;第二要实践,没有多次的实践是不能掌握这样一种全新的方法 的;第三要总结,看看自己究竟是三轮好,还是二轮妙,或是四轮高。中间的两次休息,多长时间为宜。总之,绝不是一轮到底,不管会不会的题都要跟它拼上三、 五回合的从小学沿用至今的考试答题方法了。这是一种全新的分轮次解题方法。对不同的科目,应用三轮解题法也应有所差异。
比如数、理、化等是这样的三轮。而 语文则应该是阅读题之前是一轮,做完就要检查结束。然后阅读题是一轮,最后一轮全身心地写作文。理想状态是作文写完,剩余时间少于5分钟。如果剩多了,说 明你前边的时间分配不合理,要改进。英语、历史。政治、地理等的三轮也要因科而异。
这样,经过实践一总结一再实践一再总结循环往复,什么时候形成一套你自 己得心应手运用自如的分轮次解题法,什么时候你用自己的名字将其命名为某某定理,这时你才是真正掌握了三轮解题法。此时你的精力主要用于过程的完善,过程 的完成,忽略结果,你就能取得胜利。这时你才会感到考试是无憾的、考试是轻松的、考试是愉快的、考试是幸福的。考试会使你信心越来越强,考试会使你思维越 来越活跃、考试会使你的精神面貌焕然一新、考试会使你的应试能力实现跨越!
B. 怎样解题 初中数学 解题方法与技巧
我自己总结的,不知道适不适合你
求数学题,先看求什么,再看想求这个问题我需要知道什么,需要知道的条件中,哪些是不知道的,想求出这些不知道的,我还需要知道什么。然后一点一点推回去,发现所有需要的都知道了之后再反过来求答案。
例:求A,我需要知道B和C。回到题中找B和C,如果没有直接给出,再找求B需要知道什么,求C需要知道什么。若求B需要知道D和E,求C需要知道X和Y,再找哪个不知道,最后找到所有需要的都知道了,就返回求答案
C. 如何提高中学生数学解题能力方法
一、正确理解基本概念及性质。学习了用字母表示数以后,有一些同学认为a一定是正数,-a是负数只所以出现这种错误,就是因为对正数、负数和代数式的概念没有正确理解;有的同学解“-2x>3”时错解成“x>-3/2”是由于对不等式的基本性质不熟悉造成。
二、培养学生的学习兴趣,深入探讨习题。数学是双边的活动,只有教师的教没有学生的学,只会水过鸭背,不起效果。充分调动学生的主观能动性,调动学生配合老师上课是关键,通过教师的导与学生的练,同学互相讨论,加强对问题的研讨,归纳和总结。
三、要让学生学会解题的基本方法。解题的思想方法,在初中阶段通常有综合法、分析法、反证法等。利用综合法解题,考虑问题是从已知条件出发,逐步推导出未知;而利用分析法则以未知条件出发,逐步推导出解决问题所需的已知条件,探索由已知向未知的道路,这两种方法一般题目的条件较少,难度较低时运用,对于较为复杂综合性的题目,我们应学会分析和综合法,同时以已知及未知条件出发,寻求解题途径即所谓的分析综合法。解题是有方法的,但没有一种应付各种一成不变的方法,我们不应死记各种类型题的解法,应该培养自己的分析能力,善于分析各种问题的特点能以题目的特点出发,探索解题的方法,以而积累解题经验。
四、教会学生注意解题技巧积累。一些难度中上的题目,一般需要一些处理过程才可应用书本的有关知识解决。例如几何中的辅助线问题通常结合定理进行,运用不同定理解题的技巧也不同。又如代数学生若不理解并熟记一些解题技巧,即使概念定理、公式学得再熟,也难以用得上,这只能解一些较为基础的题。因此要想做好难题,技巧题的笔记是有必要的,这样能加深各种类型题的认识。
五、培养学生良好的思维习惯,通过练习巩固知识,思维的严密性是思维能力的重要方面,在解题中不考虑得周密则顾此失彼,妨碍了数学水平的进一步提高,不少学生在教师评讲完试卷后总觉得自己懂得解题知识却不会解题方法,就认为自己笨,理解能力差,却没从自己的学习方法去找原因,知识是有层次,还未达到灵活运用层次,因此遇到一些陌生的题目就束手无策,要真正把握知识,只有通过适量的练习加以认识巩固,找出知识的内涵和外延,从而在解题过程联系上已学的有关知识,再构思解题思路方法,平时多积累不同类型的解题经验,才能在考试中提高解题效率和准确性,从而得心应手。
总之,要想提高学生的解题能力,必须做到记忆基础知识——应用练习——综合巩固提高——总结方法技巧,提高升华,要有钻研精神及决心毅力,并做好解题方法摘录,积累解题经验,提高解题效率。
D. 怎样解题 初中数学 解题方法与技巧pdf版
这个问题问的很不清楚,但是我依然可以作答。首先要掌握扎实的专业知识,然后针对特定的题目在大脑中搜索出相应的答案。希望能帮到你
E. 薛金星怎样解题初中数学解题方法与技巧
F. 怎样解题-解题方法与技巧 和 怎样解题-题型题解汇编 。这两个哪个好一些
你是说薛金星主编的那个版本吗?我现在正在用的是题型汇编,个人感觉很不错,主要是是像现在暑假复习的时候用,把知识都穿成线,很有条理,也很有针对性。 至于另外一本我觉得比较适合课外的时候来翻看,它毕竟不是按知识主线来编排的。想学解题技巧的话,我觉得数理化高手不错,很全面的,
G. 怎样解题初中数学解题方法与技巧 pdf
有技巧吗,初中数学都是睡觉,说话,写作业,然后重点高中
H. 怎样解题 初中数学解题方法与技巧
把定义公式记熟了,不能死记硬背,要理解者去背。代数的话,简单一些,但是函数比较难。几何的话,那些求证公式,性质,必须记熟了。初二下册数学最后一章都是求证,平行四边形,菱形,正方形…,还有≌,∽这些都必须记熟了,几何当然不只是背,要多做题,把自己的思维放开
I. 怎样解题初中平面几何解题方法与技巧 主要内容
平面几何要掌握好多个基本公式(圆的,三角形的,解析几何等),而且有三条线索解题:
将全部已知量列下来,并仔细观察,推导其它未知量
寻找能推导出需求量的直接条件,再找该条件的需求条件...最后就可以倒推到已知量
用平面直角坐标系辅助,将几何转为代数
当然,前提是掌握公式很熟练!