⑴ 什么是酶工程,目前进行酶工程研究的手段有那些请说明用定点突变的方法进行酶工程研究的原理
简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。
实际上,人类有意识地利用酶已经有好多年历史了,也经历了几个发展阶段,开始的时候,人们直接从动植物或微生物体内提取酶做成酶制剂,用于产品生产,这种方法直到现在仍被诞用。
比如说,现在我们使用的洗涤剂,大部分是加酶的,其去污力大大加强了。此外,在制造奶酪、水解淀粉、酿造啤酒及砚烤制中,酶制剂都可以得到直接的应用。
由于从动植物中撮酶化较麻烦,数量也有限,人们普遍看好通过微生物大规模培养,然后从中提取酶,以获取大量酶制剂的方法。目前,很多的商品酶,如淀粉酶、糖化酶、蛋白酶等等,主要是来自于微生物的。所以酶工程离不开微生物发酵工程,也可以说是发酵工程的产物。
在七十年代以后,伴随着第二代酶——固定化酶及其相关技术的产生,酶工程才算真正登上了历史舞台。固定化酶正日益成为工业生产的主力军,在化工医药、轻工食品、环境保护等领域发挥着巨大的作用。不仅如此,还产生了威力更大的第三代酶,它是包括辅助因子再生系统在内的固定化多酶系统,它正在成为酶工程应用的主角。
我们知道,酶在生物体内的含量是有限的,不管是哪种酶,在细胞中的浓度都不会是很高的,这也是出于生物机体生命活动平衡调节的需要。可是这样一来,就限制了直接利用天然酶更有效地解决很多化学反应的可能性。
利用基因工程的方法可以解决这一难题。
只要在生物体内找到了某种有用的酶,即使含量再低,只要应用基因重组技术,通过基因扩增与增强表达,就可能建立高效表达特定酶制剂的基因工程菌或基因工程细胞了。把基因工程菌或基因工程细胞固定起来,就可构建成新一代的生物催化剂——固定化工程菌或固定化工程细胞了。人们也把这种新型的生物催化剂称为基因工程酶制剂。
新一代基因工程酶制剂的开发研制,无疑是使酶工程如虎添翼。固定化基因工程菌、基因工程细胞技术将使酶的威力发挥得更出色,科学家们预言,如果把相关的技术与连续生物反应器巧妙结合起来,将导致整个发酵工业和化学合成工业的根本性变革。
对酶进行改造和修饰也是酶工程的一项重要内容。
酶的作用力虽然很强,尤其是被固定起来之后,力量就更大了,但并不是所有的酶制剂都适合固定化的,即使是用于固定化的天然酶,其活性也往往不能满足人们的要求,需要改变其某些性质、提高其活性,以便更好地发挥其催化功能。
于是,酶分子修饰和改造的任务就被提出来了。
一般来说,科学家们是通过对酶蛋白分子的主链进行“切割”、“剪切”以及在侧链上进行化学修饰来达到改造酶分子的目的的。被修饰、改造的酶分子,无论是物化性质,还是生物活性都得到了改善,甚至被赋予了新的功能。
人工设计和合成具有生物活性的非天然大分子物质,是科学家们共同努力的目标。
⑵ 酶工程技术是怎样形成的
酶是一种在生物体内具有新陈代谢催化剂作用的蛋白质。它们可特定地促成某个反应而它们本身却不参与反应,且具有反应效率高、反应条件温和、反应产物污染小、能耗低和反应易控制等特点。酶工程就是利用酶催化的作用,在一定的生物反应器中,将相应的原料转化成所需要的产品。它是酶学理论与化工技术相结合而形成的一种新技术。
酶工程的应用主要集中于食品工业、轻工业以及医药工业中。例如,固定化青霉酰胺酶可以连续裂解青霉素生产;α—淀粉酶、葡萄糖淀粉酶和葡糖异构酶这三个酶连续作用于淀粉,就可以代替蔗糖生产出高果糖浆;蛋白酶用于皮革脱毛胶以及洗涤剂工业;固定酶还可以治疗先天性缺酶病或是器官缺损引起的某些功能的衰竭等。至于我们日常生活中所见到的加酶洗衣粉、嫩肉粉等,就更是酶工程最直接的体现了。
⑶ 酶工程主要涉及哪些方面的研究和运用
酶工程的主要内容包括酶的发酵工程,酶的分离工程,固定化酶和固定化细胞,化学酶工程,生物酶工程,酶反应器和传感器,酶的非水相催化,酶抑制剂及酶的应用。
酶工程研究的目的是为了获得大量所需要的酶,并且能高效利用所得的酶
⑷ 什么是生物酶工程
简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。
实际上,人类有意识地利用酶已经有好多年历史了,也经历了几个发展阶段,开始的时候,人们直接从动植物或微生物体内提取酶做成酶制剂,用于产品生产,这种方法直到现在仍被诞用。
比如说,现在我们使用的洗涤剂,大部分是加酶的,其去污力大大加强了。此外,在制造奶酪、水解淀粉、酿造啤酒及砚烤制中,酶制剂都可以得到直接的应用。
由于从动植物中撮酶化较麻烦,数量也有限,人们普遍看好通过微生物大规模培养,然后从中提取酶,以获取大量酶制剂的方法。目前,很多的商品酶,如淀粉酶、糖化酶、蛋白酶等等,主要是来自于微生物的。所以酶工程离不开微生物发酵工程,也可以说是发酵工程的产物。
在七十年代以后,伴随着第二代酶——固定化酶及其相关技术的产生,酶工程才算真正登上了历史舞台。固定化酶正日益成为工业生产的主力军,在化工医药、轻工食品、环境保护等领域发挥着巨大的作用。不仅如此,还产生了威力更大的第三代酶,它是包括辅助因子再生系统在内的固定化多酶系统,它正在成为酶工程应用的主角。
我们知道,酶在生物体内的含量是有限的,不管是哪种酶,在细胞中的浓度都不会是很高的,这也是出于生物机体生命活动平衡调节的需要。可是这样一来,就限制了直接利用天然酶更有效地解决很多化学反应的可能性。
利用基因工程的方法可以解决这一难题。
只要在生物体内找到了某种有用的酶,即使含量再低,只要应用基因重组技术,通过基因扩增与增强表达,就可能建立高效表达特定酶制剂的基因工程菌或基因工程细胞了。把基因工程菌或基因工程细胞固定起来,就可构建成新一代的生物催化剂——固定化工程菌或固定化工程细胞了。人们也把这种新型的生物催化剂称为基因工程酶制剂。
新一代基因工程酶制剂的开发研制,无疑是使酶工程如虎添翼。固定化基因工程菌、基因工程细胞技术将使酶的威力发挥得更出色,科学家们预言,如果把相关的技术与连续生物反应器巧妙结合起来,将导致整个发酵工业和化学合成工业的根本性变革。
对酶进行改造和修饰也是酶工程的一项重要内容。
酶的作用力虽然很强,尤其是被固定起来之后,力量就更大了,但并不是所有的酶制剂都适合固定化的,即使是用于固定化的天然酶,其活性也往往不能满足人们的要求,需要改变其某些性质、提高其活性,以便更好地发挥其催化功能。
于是,酶分子修饰和改造的任务就被提出来了。
一般来说,科学家们是通过对酶蛋白分子的主链进行“切割”、“剪切”以及在侧链上进行化学修饰来达到改造酶分子的目的的。被修饰、改造的酶分子,无论是物化性质,还是生物活性都得到了改善,甚至被赋予了新的功能。
人工设计和合成具有生物活性的非天然大分子物质,是科学家们共同努力的目标。
⑸ 什么是酶工程
酶是生物机体中一种特殊的蛋白质,在生物机体内进行的生化反应中起着生物的催化剂作用。而酶工程就是一项在一定的生物反应器中,利用酶的特异的催化功能,快速、高效地将相应的原料转化成有用物质的重要技术。目前,由于酶工程的发展,人们已经开发生产、分离和提纯了多种生物酶,并已有效地应用于化学分析、临床诊断及农业生产和水产加工等诸多方面。
⑹ 酶工程是什么和蛋白质工程有何区别
酶工程:酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。
蛋白质工程 :利用遗传工程手段,包括用基因的点突变和基因表达等改造蛋白质分子的结构与功能的技术。
⑺ 酶工程是什么
酶工程是研究酶的生产和应用的一门技术性学科,它包括酶制剂的制备、酶的固定化、酶的修饰与改边及国匠应旱等方面内容。
⑻ 酶工程 郭勇
酶工程
酶工程是指在一定的生物反应器中,利用酶的生物催化作用,生产出人类所需产品的一门科学技术。作为生物技术重要支柱之一的酶工程真可以说是造福人类,成果喜人。
蔗糖几乎全部是通过加工甘蔗或甜莱得到的。但是,甘蔗和甜菜的种植范围都比较有限,因此,蔗糖的产量也就受到了影响。能不能利用淀粉来生产类似蔗糖的物质呢?科学家通过 -淀粉酶、糖化酶和固定化葡萄糖异构化酶,将淀粉转化成和蔗糖具有同样甜度的甜味剂——高果糖浆。现在,一些发达国家高果糖浆的年产量已达到几百万吨,高果糖浆在许多饮料的制造中已经逐渐替代了蔗糖。
胰岛素是胰脏中胰岛细胞分泌的一种激素,是由两条肽链组成的一种蛋白质:一条由21个氨基酸组成,称为A链;另一条由30个氨基酸组成,称为B链。胰岛素是治疗糖尿病的一种常用药物。由于糖尿病患者很多,胰岛素的需要量很大,所以许多糖尿病患者使用的曾是猪的胰岛素。但是,猪胰岛素与人胰岛素在化学结构上有一处差别:猪胰岛素B链上最后一个氨基酸是丙氨酸,人胰岛素B链上最后一个氨基酸是苏氨酸。因此,用猪胰岛素治疗人的糖尿病,容易使一些患者产生免疫反应。近些年来,科学家们采用酶工程的方法,利用一种专一性极高的酶,切下并移去猪胰岛素B链上的那个丙氨酸,然后接上一个苏氨酸。这样猪的胰岛素就魔术般地变成人的胰岛素了。
现在,科学家正在研究如何修饰酶的化学结构,以便改善酶的性能;用DNA重组技术大量地生产酶,甚至设计酶的基因,以便人工合成出自然界中没有的酶来。
酶工程的应用
酶作为一种生物催化剂,已广泛地应用于轻工业的各个生产领域。近几十年来,随着酶工程不断的技术性突破,在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。
—、食品加工中的应用
酶在食品工业中最大的用途是淀粉加工,其次是乳品加工、果汁加工、烘烤食品及啤酒发酵。与之有关的各种酶如淀粉酶、葡萄糖异构酶、乳糖酶、凝乳酶、蛋白酶等占酶制剂市场的一半以上。
目前,帮助和促进食物消化的酶成为食品市场发展的主要方向,包括促进蛋白质消化的酶(菠萝蛋白酶、胃蛋白酶、胰蛋白酶等),促进纤维素消化的酶(纤维素酶、聚糖酶等),促进乳糖消化的酶(乳糖酶)和促进脂肪消化的酶(脂肪酶、酯酶)等。
二、轻化工业中的应用
酶工程在轻化工业中的用途主要包括:洗涤剂制造(增强去垢能力)、毛皮工业、明胶制造、胶原纤维制造(粘接剂)牙膏和化妆品的生产、造纸、感光材料生产、废水废物处理和饲料加工等。
三、医药上的应用
重组DNA技术促进了各种有医疗价值的酶的大规模生产。用于临床的各类酶品种逐渐增加。酶除了用作常规治疗外,还可作为医学工程的某些组成部分而发挥医疗作用。如在体外循环装置中,利用酶清除血液废物,防止血栓形成和体内酶控药物释放系统等。另外,酶作为临床体外检测试剂,可以快速、灵敏、准确地测定体内某些代谢产物,也将是酶在医疗上一个重要的应用。
四、能源开发上趵应用
在全世界开发新型能源的大趋势下,利用微生物或酶工程技术从生物体中生产燃料也是人们正在探寻的一条新路。例如,利用植物、农作物、林业产物废物中的纤维素、半纤维素、木质素、淀粉等原料,制造氢、甲烷等气体燃料以及乙醇和甲醇等液体燃料。另外,在石油资源的开发中,利用微生物作为石油勘探、二次采油、石油精炼等手段也是近年来国内外普遍关注的课题。
五、环境工程上的应用
在科学技术高度发展的同时,环境净化尤其是工业废水和生活污水的净化,作为保护自然的一项措施,具有十分重要的意义。
在现有的废水净化方法中,生物净化常常是成本最低而最可行的。微生物的新陈代谢过程,可以利用废水中的某些有机物质作为所需的营养来源。因此利用微生物体中酶的作用,可以将废水中的有机物质转变成可利用的小分子物质,同时达到净化废水的目的。人们利用基因工程技术创造高效菌种,并利用固定化活微生物细胞等方法,在废水处理及环境保护工作中取得了显着的成效。
另外,生物传感器的出现为环境监测的连续化和自动化提供了可能,降低了环境监测的成本,加强了环境监督的力度。
分子酶工程学与分析生物技术
分子酶工程学在分析生物技术领域有广阔的技术发展空间。酶法分析是分析生物技术中的主要内容之一,包括酶试剂盒、酶联免疫(ELISA)、酶标基因探针、酶传感器等等,已经在临床诊断、生物工艺过程分析与监控、环境监测、检疫、生命科学研究等方面逐渐取代传统的化学分析法。
分析用酶之所以被青睐,归功于酶分子高度特异性和高催化效率,使微观生物学反应过程得以放大。然而,天然酶蛋白分子并非完美无缺,它们或太“娇嫩”,热稳定性差,容易受抑制,受蛋白酶水解而失活,或催化性能不理想,固定化回收活力低下等等,导致许多分析用酶还未能实际发挥作用。特别具有很多优点的固定化酶分析法和各类酶传感器,并没有获得广泛应用。
如何能够对酶蛋白实施分子改造,使它们的性能得到改善,是具有挑战性的课题。化学修饰法曾经是主要的手段,但盲目性比较大,效果常常不理想。分子酶工程学是近年发展起来的新的学科领域,其基础是结构生物学和生物信息学,尤其是利用蛋白质超分子结构知识,采用基因工程和蛋白质工程手段,对天然酶实施定向改造和体外分子进化,在开发新型、高质量分析酶试剂方面意义重大。
近期在作者实验室的研究进展,包括:(1)大肠杆菌碱性磷酸酶的定向改造与分子体外进行;(2)固定化酶空间取向控制的“锚链”(anchor―chain)模型;(3)顺序酶反应融合蛋白分子系统的构建;(4)免疫酶光开关;(5)增强电子传递速率的融合酶分子系统等等。这些研究成果不仅在生物传感、蛋白质芯片和酶标等分析生物技术中有重要应用价值,而且为发展其它的分析酶系统提供了一些新的技术思路和模式方法。
分子酶工程学的研究进展得益于蛋白质结构知识的增长。如今,越来越多的酶的三维结构被解析出来,成为重塑蛋白质分子的依据。然而,在现阶段,我们还不具有“设计”蛋白质的能力,这需要更加完备的结构生物学知识。
相对于其它各种功能蛋白质,酶的结构与功能研究还处于幼年期,在分析生物技术中的应用更是较晚,但已经展示出广阔的发展前景。另外两个值得关注的方向是抗体工程和抗体酶或催化抗体,它们在分析生物技术中具有潜在的贡献
工程领域的展望与热点
随着人们对酶生物合成、结构与催化分子机理的深入了解和物理化学技术的长足进展,促进了分子酶学与酶工程学的迅猛崛起,使酶工程已成为生物工程的重要角色。事实上是人类认识酶,改造构建新酶和广泛利用酶的划时代飞跃,科学技术的发展已不存在纯粹的酶工程学概念,此学科在研究内容、手段和目的上与基因工程、蛋白质工程、细胞工程、发酵工程等孪生学科是相互交融的整体生物工程部分,对21世纪酶工程发展的正确导向,进行哲理性的正确科学分析和判断,探讨此领域的研究方向和策划是很有必要的。
一、微生物酶源是酶工程研究的主源流生物多样性与人类生存密切相关已为人们所共识,由于微生物的多样性、传代生长速度快、培养可控性、生产成本低、易进行基因突变、克隆重组及高效表达等优点,使人类能很快获得优良的基因工程菌,微生物酶源无疑将会发挥更大的作用和潜力,对动、植物中特殊用途酶转入微生物和地球各大物种间基因的有效相互转化、改良物种性能、整合小基因及基因异源性等问题是有待开发、探讨的课题。
二、以基因工程和蛋白质工程改造和设计酶是革命性导向
酶结构与功能关系的研究仍然是酶工程研究的基础和依托核心:改造或设计新酶的成败基础在于对天然酶静态、动态结构与催化机理关系的精确认识,也有赖于对基因模版分子结构与蛋白质合成机制的大量情报,但这两个问题并未深化,使酶的设计仍存在很大的盲目性、片面性和偶然性,只有对天然酶的功能基因组,酶催化的超分子和构象变化的关系,结构与立体专一性、稳定性、变态性的关系以及多酶体系的定位及高效催化机制有彻底的认识,才能自觉改造和设计出新酶。
基因工程与蛋白质工程构建酶是十分诱人的领域:在30亿年生物进化中,只发现了1055种功能蛋白和酶,经计算300个氨基酸可组成不同序列的蛋白质有约10390种,因而在自然界,绝大多数新蛋白或酶仍未产生,有待人类去进行人工定向进化,创造开发新酶类,其中对大量天然蛋白质的DNA测序,建立大量蛋白质功能基因库,为杂交提供重要信息,通过计算机模拟,从头设计及合成全新的非天然有用酶已成为可能。此外,利用天然酶的多样性,通过靶子基因的定点突变噬菌体展示技术,结合化学修饰技术,赋予酶的新结构,新特性,改进酶的催化功能,可使酶制剂工业进入一个崭新的时代。
三、酶工程热点———酶法转化、折分合成手性药物及精细化合物
酶法合成引入到有机合成领域中带来了新的机遇和革命,酶法合成的专一性及选择性较化工合成有明显的优势,利用微生物和酶区域、位点、立体的选择性,如羟化、环氧化、异构化、水解、对映体折分,药物中间体合成,其中一些反应是化学法难以实现的。进行酶催化的定向调控,可使生物转化合成效率成倍增加,可改变反应平衡方向。酶法合成生物功能分子,非天然有用物质和功能性高分子材料,应用于化工材料生产,电子工业已成为可能。酶在有机合成中扮演的重要角色是不对称合成或折分醇、醛、酮、酸、胺、酰胺、氨基酸、抗生素、糖苷酶抑制剂及抗病毒药物等手性药物。如:农药、药物、香料、杀虫剂、除虫剂、昆虫激素、信息素等。只有特定的手性才具有生物活性,直接关系到药理作用,毒副作用,药效时间及疗效等,在有机材料中,如液晶,“靶”性化合物,半导体及导电性功能高分子材料,手性组分决定其物理性能。
水解酶类、氧化还原酶类、裂解酶类、连接合成酶类、异构酶类及转移酶类均可用于有机合成及手性化合物合成。如脂肪酶可广泛用于合成各种氨基酸、羧酸、手性醇等。利用酶在非水相中酯化或转酯化可折分得到光学纯的外消旋羧酸及醇手性药物中间体。蛋白酶用于不可逆的大肽链合成。糖基化转移酶可合成有医用价值的糖基化蛋白质。大多数醇脱氢酶及羟类固醇脱氢酶催化羟—酮的氧化还原制备药物、信息素、甾类、三羧酸铬复合物及合成纤维等。酵母醇脱氢酶主要催化脂肪醇或醛酮氧化还原,马肝醇脱氢酶对肪肪环烷醇或醛酮专一氧化还原,而甾醇脱氢酶主要催化稠环脂肪醇或醛酮的氧化还原,氧酶合成链烯化合物,环化酶合成甾体和萜烯类化合物。
在酶合成具有特色的功能性高分子材料方面,如过氧化物酶催化酚及芳香胺类的聚合反应,这类分子材料刚性增强且有明显导电性,与金属离子络合性,场致发光性及制备为纳米材料。酪氨酸酶聚合多巴胺合成有导电性能的聚吡咯薄膜材料用于生物传感器。脂肪酶和碱性蛋白酶在非水介质中催化羟基羧酸酯自身缩合得到高分子聚酯或聚糖醇。大环内酯常用于合成抗生素中间体,香料添加剂,昆虫性外激素及植物生长调节因子及液晶类化合物中间体,聚酯可被生物降解,用于控制药物释放,包装材料,消除白色污染。
酶法聚合物在结构、性质和功能上与化学法相比较存在明显差异,具有化学法无法聚合一些物质的优势。手性生物合成仍处于探索阶段,改进酶催化的选择性及优化合成工艺路线,相信在近期会取得重大进展。
四、构建新酶———抗体酶、核酶及人工合成酶是一个前沿生长点
构建有别于天然功能酶的新酶类,是酶工程研究的又一前沿领地。
催化抗体(Catalyticantibody)并称抗体酶(Abzyme)是人们赋予其催化功能的免疫球蛋白,抗体是目前最大的多样性家族,与抗原有结合部位与酶相似,但无催化活性。酶促催化在于与底物结合产生过渡态,降低能障。人们设想以过渡态类似物作为半抗原用诱导法、拷贝法、插入法、化学修饰法和基因工程法,制备有催化功能的抗体酶,在哺乳动物中已制备了五十多种抗体酶,以及催化羧酸酯水解的分枝酸变位酶,有胆碱酯酶及过氧化物酶活性的抗体酶,抗体酶的研究可为酶作用机理及过渡态理论提供依据,可以用来设计出专一性强的多肽水解酶去破坏病毒蛋白或清除血管凝血块的抗体酶或用于吸毒、癌症药物治疗减轻化疗副作用,以及制药工业的对映体折分,但大多数抗体酶催化效率与天然酶仍相差很远,急需建立抗体基因文库,用基因克隆突变技术,催化辅因子引入技术,正确选择过渡态类似物,探讨酶结构与功能的分子关系,才能真正获得有特殊用途的抗体酶。
分子剪接——核酶(Ribozyme)近年来发现RNA也是一种多功能催化剂,称为核酶,可催化四种类型的RNA自我切割及断裂反应,RNA还具有催化自身复制功能,这发现打破了只有蛋白质才有催化功能的概念,也提供了先有核酸,后有蛋白质的自然进化证据,是生命进化过程中有信使及催化自身复制功能的最简单、经济的RNA原始世界。
我们可设计各种用途的核酶,治疗植物及人畜病毒病、遗传病或癌症。最终目标是构建出一套核酶能在细胞质中高效表达的系统。
人工合成酶(Synzyme)是合成具有催化功能的高聚物分子,目前使用分子印迹和生物印迹技术制备人工酶,原理与抗体酶过渡态理论大致相同,已经初步制备了具有蛋白酶功能,氧化还原酶催化功能的人工酶,人工酶亦可用于手性药物及化合物的分离纯化及生物传感器的分子识别,目前人工酶的催化转换数仍很低,需要多学科配合,对酶催化分子机理的深入了解,才会有可能在特殊反应中优于天然酶。
酶学与酶工程的研究领域还有固定化生物催化剂及酶反应器的工业应用,以及作为生物功能信息分子参与生命过程调控的糖药物酶促合成的糖工程等,相信在电子信息技术,高物理、化学技术、生物高技术密切合作的时代,酶工程必然会走向深化境界,无论在理论上或在应用上将有更大的创新性成就。
⑼ 简述蛋白质及酶工程的概念、研究内容及应用。
蛋白质工程:通过基因工程能够大规模生产生物体内微量存在的活性物质,并借助转基因而改变动植物性状,得以在人类医疗保健中进行基因诊断和基因治疗。是生物工程的重要组成部分。
研究内容:
(一)蛋白质的分子设计与改造
蛋白质作为生物大分子是生物化学和分子生物学的研究重点,大量蛋白质被分离纯化,测定了它们的结构、性质和生物学作用。分子生物学有关基因组的研究,也可以用以推测出一些未知蛋白质的结构与功能。采用定位诱变的方法,可以对编码蛋白质的基因进行核苷酸密码子的插入、删除、置换和改组,其结果为分子改造提供新的设计方案。现有的蛋白质是生物长期进化的结果,蛋白质工程则是对生物进化的模拟,按照蛋白质形成的规律,改造蛋白质或构建新的蛋白质。
蛋白质工程举例:
1.水蛭素改造水蛭素是水蛭唾液腺分泌的凝血酶特异抑制剂,它有多种变异体,由65或66个氨基酸残基组成。水蛭素在临床上可作为抗栓药物用于治疗血栓疾病。为提高水蛭素活性,在综合各变异体结构特点的基础上提出改造水蛭素主要变异体HV2的设计方案,将47位的Asn(天冬酰胺)变成Lys(赖氨酸),使其与分子内第4或第5位Thr(苏氨酸)间形成氢键来帮助水蛭素N端肽段的正确取向,从而提高凝血效率,试管试验活性提高4倍,在动物模型上检验抗血栓形成的效果,提高20倍。
2.生长激素改造
生长激素通过对它特异受体的作用促进细胞和机体的生长发育,然而它不仅可以结合生长激素受体,还可以结合许多种不同类型细胞的催乳激素受体,引发其他生理过程。在治疗过程中为减少副作用,需使人的重组生长激素只与生长激素受体结合,尽可能减少与其他激素受体的结合。经研究发现,二者受体结合区有一部分重叠,但并不完全相同,有可能通过改造加以区别。由于人的生长激素和催乳激素受体结合需要锌离子参与作用,而它与生长激素受体结合则无需锌离子参与,于是考虑取代充当锌离子配基的氨基酸侧链,如第18和第21位His(组氨酸)和第17位Glu(谷氨酸)。实验结果与预先设想一致,但要开发作为临床用药还有大量的工作要做。
3.胰岛素改造
天然胰岛素制剂在储存中易形成二聚体和六聚体,延缓胰岛素从注射部位进入血液,从而延缓了其降血糖作用,也增加了抗原性,这是胰岛素B23-B28氨基酸残基结构所致。利用蛋白质工程技术改变这些残基,则可降低其聚合作用,使胰岛素快速起作用。该速效胰岛素已通过临床实验。
4.治癌酶的改造
癌症的基因治疗分二个方面:药物作用于癌细胞,特异性地抑制或杀死癌细胞;药物保护正常细胞免受化学药物的侵害,可以提高化学治疗的剂量。疱疹病毒(HSV)胸腺嘧啶激酶(TK)可以催化胸腺嘧啶和其它结构类似物磷酸化而使这些碱基3’-OH缺乏,从而阻断DNA的合成,杀死癌细胞。HSV—TK催化能力可以通过基因突变来提高。从大量的随机突变中进行筛选出一种酶,在酶活性部位附近有6个氨基酸被替换,催化能力20倍以上。