A. 一组数据,一个标准值,如何利用统计方法进行分析
一组数据:我理解是一些样本数据
一个标准值:我理解是总体的参数,如,均值
你的目标应该是:根据实验得到的样本对这个标准值进行对比,如:样本的均值和标准值有差别,我们是否可以认为,总体均值已经发生了变化。
如果是上述情况,应该是参数的假设检验
B. 论文中统计学分析怎么写
经常有人问到在论文或标书中应该如何写作统计分析部分。标准的答案是:你怎么做的就怎么写,每篇文章都是唯一的存在。好装,汗……。如果我们尝试去归纳和小结,这部分内容的写作其实是有一定规律的。
我曾经听过Thomas Allen Long教授关于论文写作的课,人很和蔼,他主编的书也不错,操作性很强。在他的书稿《How to Write, Publish & Present in the Health Sciences》第154页中他小结到,统计分析部分应该包括如下内容:统计描述部分、所有的基本统计方法以及分析方案(如ITT或PP等)、样本量的说明、分组方法、检验水准的设定和所使用的统计分析软件。
同样在本书的第155页中也写得:统计分析人员可以帮助作者对数据进行合理的分析、对分析结果进行正确解读,同时可以负责统计分析部分的撰写。他建议将统计分析人员作为作者之一,也许这样统计分析人员就不会粗枝大叶、不负责任了。
关于医学统计分析的写作,其实他还有一本书《How to Report Statistics in Medicine》,在统计分析的报告上写得更专业。
言归正传,本文既然是要小结“统计分析”部分,那就小结吧。个人觉得“统计分析”部分写作时应该包括以下几个内容:
(1)样本量估算及随访/数据收集情况;
(2)数据录入和管理的软件和方法;
(3)本研究所使用的统计分析软件和分析方案;
(4)统计描述的方法,分计量和计数资料两种;
(5)统计推断的方法,分单因素和多因素两种;
(6)检验水准的选取。
由于某些“你懂的”原因,很多普通的论文没有进行样本量估算和区分不同的分析方案(ITT/PP)。所以简单举例如下:
本研究采用……数据库进行数据录入和管理,数据录入采用双录入核查方式进行。采用……软件对研究数据进行统计分析。计量资料采用……对其进行正态性检验,符合正态分布的计量资料采用均值±标准差的形式进行描述,不符合正态分布的计量资料采用中位数(25%位数,75%位数)进行描述,计数资料采用例数(百分比)进行描述。符合正态分布的计量资料组间比较采用独立样本t检验或单因素ANOVA进行,不符合正态分布的计量资料组间比较采用非参数检验进行,计数资料组间比较采用卡方检验进行。在多因素分析上,采用多重线性/逻辑回归分析……的影响因素。所有检验以双侧p<0.05为差异有统计学意义。
有人说我要写英文的“统计分析”部分,该怎么办?同样,你需要多阅读别人的优秀文章,然后用它们的句式来构建属于你自己统计分析内容。可供参考的句式有:
(1)数据采集:Study data were collected on standard forms, checked for completeness, and double keyed into an …… database.
(2)统计软件:All statistical analyses were performed using SAS version 9.2 (SAS Institute Inc, Cary, North Carolina).
(3)统计描述:…… were described using mean, median, standard deviation, and 25thand 75th percentiles for continuous variables; frequencies and proportions were used for categorical variables.
(4)单因素分析:A two sample independent t test/ one-way analysis of variance (ANOVA)/ Nonparametric tests(Kruskal-Wallis test)/ Pearson’s x2 tests or Fisher exact tests was used to compare the differences between …….
(5)多因素分析:Multivariable linear regression/ Multivariable binary logistic regression/ Cox proportional hazards were used to estimate …….
(6)检验水准:A p value of less than 0.05 (2-sided significance testing) was considered statistically significant in all analyses.
C. 两定量数据的统计分析方法选择~
直接从数据面上来看,这两组数据完全没有关系,这不是方法选择的事情。不管哪种方法,这两组数据没办法做的。
D. 生活中成功运用统计学方法解决实际问题的案例有哪些
转自以前一个教授的PPT,挺好玩的,分享下
由于战争,德国有一个时期物资特别紧缺,对面包实行配给制:政府把面粉发给指定的面包房,面包师傅烤好了面包再发给居民。有一个统计学家,怀疑他所在区域的面包师傅私扣面粉,于是就天天称自己的面包。几个月以后,他去找面包师傅,说:“政府规定配给的面包是400克,因为模具和其他因素,你做的面包可能是398、399克,也可能是401、402克,但是按照统计学的正态分布原理,这么多天的面包重量平均应该等于400克,可是你给我的面包平均重量是398克。我有理由怀疑是你使用较小的模具,私吞了面粉。”面包师傅承认确实私吞了面粉,并再三道歉保证马上更换正常的模具。又过了几个月,统计学家又去找这个面包师傅,说:“虽然这几个月你给我的面包都在400克以上,但是这可能是因为你没有私吞面粉,也可能是因为你从面包里特意挑大的给我。同样根据正态分布原理,这么多天不可能没有低于400克的面包,所以我认为你只是特意给了我比较大的面包,而不是更换了正常的模具。我会立刻要求政府检查你的模具。”面包师傅只好当众认错道歉,接受处罚。
PS.你应该了解正态分布原理吧
E. 常用统计学方法
感知机 二分类
二分类的线性分类模型,也是判别模型。
目的是求出把训练数据进行线性划分的分离超平面。
感知机是神经网络和支持向量机的基础。
学习策略:极小化损失函数。损失函数对应于误分类点到分离超平面的总距离。
基于随机梯度下降法对损失函数的最优化算法,有原始形式和对偶形式。
K近邻法 K-nearest neighbor, K-NN 多分类和回归
是一种分类和回归方法,有监督学习。在训练数据集中找到和新的输入实例最接近的K个实例,这k个实例的多数类别就是这个新实例的类别。
三要素:K的选择,距离度量,分类决策规则。
实现方法:kd树(二叉树)快速搜索K个最近邻的点。
K值选择:反映了对近似误差和估计误差的权衡。交叉验证选择最优的K值,K小,模型复杂,K大,模型简答。
朴素贝叶斯法 多分类 用于NLP
朴素贝叶斯法是基于贝叶斯定理和特征条件独立假设的分类方法。首先学习输入输出的联合概率分布,然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。
后验概率最大等价于0-1损失函数的期望风险最小化。
是典型的生成学习方法,由训练数据求出联合概率分布,再求出条件概率分布(后验概率)。
概率估计方法是:极大似然估计或者贝叶斯估计。
基本假设是条件独立性
决策树 decision tree 多分类,回归
是一种分类和回归算法。包括三个步骤:特征选择,决策树生成和决策树的修剪,常用算法:ID3,C4.5,CART
逻辑斯地回归和最大熵模型 多分类
本质就是给线性回归添加了对数函数
它的核心思想是,如果线性回归的结果输出是一个连续值,而值的范围是无法限定的,那我们有没有办法把这个结果值映射为可以帮助我们判断的结果呢。
而如果输出结果是 (0,1) 的一个概率值,这个问题就很清楚了。我们在数学上找了一圈,还真就找着这样一个简单的函数了,就是很神奇的sigmoid函数(如下):
逻辑回归用于二分类和多分类
逻辑斯地分布是S型曲线
最大熵模型:熵最大的模型是最好的模型。
X服从均匀分布时候,熵最大
最大熵模型的学习等价于约束最优化问题。
对偶函数的极大化等价于最大熵模型的极大似然估计。
模型学习的最优化算法有:改进的迭代尺度法IIS,梯度下降法,牛顿法,或者拟牛顿法
支持向量机 二分类
线性可分支持向量机利用间隔最大化求最优分离超平面。
函数间隔
F. 问卷统计分析方法,如何进行调查问卷统计分析
第一,定性分析法
定性分析是调研工作中的一种探索性分析方法。定性分析方法是先要对问题进行定位,对问题进行深层次的认识和理解。这种方法一般只适用于专业人员,因为这种方法是要对调研的问题有深入的了解和较高的专业水平。
第二,定量分析法
定量分析首先要对问卷进行数量化,利用量化后的数据对资料进行分析。这里涉及到两个方面:一是简单的定量分析;二是复杂的定量分析。
1.简单的定量分析是对调查问卷进行一些相对比较得单的数据分析,最常用的有百分比、频数、平均数分析法。
2.复杂定量分析法
复杂定量分析是相对于简单的定量分析而言的,由于在问卷中的变量较多,不是简单的一个或两个,而是多个,这时就需要用复杂的分析方法,复杂分析方法又分为多元分析和聚类分析。
多元分析是通过分析数据由表到里,由外到内的一种分析方法,通过变量之间的规律变化而从中找出一定的规律性。
聚类分析是根据一定的规则把应答者进行划分成为相对类似的群组,然后把群组进行具体的分析。
无论采用哪种方法对问卷进行分析,我们首先需要掌握好问卷的信度问题,如查问卷的可信度低,那么用哪一种方法进行分析都是徒劳的。
G. 以下几个问题各应该用什么样的统计学检验方法进行分析
(1)用随机区组设计的方差分析,先将年龄进行不同的分组,再进行统计分析。
(2)可用t检验
(3)可用单因素多水平的非重复测量的方差分析
(4)等级方差分析
H. 统计方法如何选择
统计资料丰富且错综复杂,要想做到合理选用统计分析方法并非易事。对于同一个资料,若选择不同的统计分析方法处理,有时其结论是截然不同的。
正确选择统计方法的依据是:
①根据研究的目的,明确研究试验设计类型、研究因素与水平数;
②确定数据特征(是否正态分布等)和样本量大小;
③ 正确判断统计资料所对应的类型(计量、计数和等级资料),同时应根据统计方法的适宜条件进行正确的统计量值计算;
最后,还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择统计分析方法。
I. 如何判断一组应该选择何种统计方法
哎,误区啊,其实统计方法是在你做实验之前就应该设计好的。而不是做完再来想怎么分析。