❶ 评价原理与方法
(一)主要影响因子
由于地下水系统是一个开放系统,所以其脆弱性与其埋藏条件、补给源等有着密切的关系,包括包气带岩性、地形地貌、含水层水文地质条件等,还与人类活动也有一定的关系(图4-6)。因此,地下水脆弱性评价需要考虑的因素较复杂,应结合具体问题遴选主要影响因子。
地下水脆弱性评价因子,包括两部分:一是固有脆弱性评价因子;二是特殊脆弱性评价因子。固有脆弱性评价因子主要有土壤性质、包气带特征、含水层特征、补给量、地形、含水层的下伏地层以及与地表水或海水的水力联系状况。在地下水特殊脆弱性评价时,除考虑了以上因子外,还需要考虑与人类活动有关的影响因子和影响污染物发生降解的地质条件和污染物特性。
1)土壤(soil media)是地球最表层风化地带,它对地下水的补给有很重要的影响作用。一般情况下,土壤的颗粒愈小,地下水入渗补给量愈小,入渗水流所携带进入地下水中的污染物愈少。另一方面,土壤中含有大量的微生物,是污染物进行物理-化学分解的重要条件。
图4-6 地下水脆弱性评价有关因子
2)包气带(vadose zone)位于土壤层之下、地下水位以上非饱水区,通常将土壤层纳入其中。包气带的厚度决定污染物下移进入地下水含水层的所需时间。包气带厚度愈大,地下水脆弱性愈弱,地下水愈不容易遭污染。包气带的岩性以及其渗透性,也是重要影响因素。粘土地层组成的包气带,有利于地下水免遭受污染。
3)净补给(net recharge)是指来自研究区含水层以外的水分对地下水净补给量,它增加储存资源(水量)。这部分水量在补给地下水的同时,还携带一定数量的污染物进入含水层中。补给量愈大,进入含水层中的污染物几率或数量愈大,地下水脆弱性愈强,愈容易遭污染。
4)含水层特征(aquifer media)是指含水层岩性、厚度、有效孔隙度、水力传导系数和储存能力等,这些因素都影响污染物在含水层中迁移、聚集和稀释状况。
5)地形(topography)主要是指陆地表面的坡度和植被覆盖率。陆地表面的坡度控制污染物随着雨水产汇流而迁移状况。当地形坡度较缓,降雨就不容易形成径流,污染物进入地下水中潜在性较大;反之,地形坡度较大,则降雨易形成快速径流,不利于污染物进入地下水中。植被覆盖率通过延缓降雨地面产流的时间,增大入渗速率而影响污染物进入地下水中情势。
6)含水层导水系数是决定污染物在含水层的传播速度,传导系数愈大,污染物传播速度愈快,地下水的脆弱性愈强。
(二)评价方法
地下水脆弱性评价方法很多,一般包括4个步骤:①建立评价指标体系;②确定指标体系中各因子的权重;③应用数学方法计算;④评价分级与编绘地下水脆弱性分布图。
地下水脆弱性评价方法的选取,应根据研究区的自然地理状况、相关数据情况及研究目的来确定。比较常用的评价方法,有:过程数学模拟法、统计方法、模糊数学法和叠置指数法(表4-13)。
表4-13 地下水脆弱性评价方法对比
注:引自姜桂华,2002。
1.过程数学模拟法
过程数学模拟法是在水流和污染质运移模型基础上,建立一个脆弱性评价数学表达式,然后将各评价因子量化处理之后应用该式进行求解,由此可得出一个有关地下水脆弱性的综合指数。
该方法最大的优点是它可以描述影响地下水脆弱性的物理、化学和生物等过程,但只有在充分认识污染质在地下水环境中迁移过程,并有足够的水文地质资料和长序列污染质迁移监测数据,才能取得比较好的结果。尽管描述污染质运移的二维、三维等模拟模型很多,但在区域地下水脆弱性评价中,多数采用包气带的一维过程模型。例如 Britt等(1996)从包气带的衰减能力、污染质的对流-弥散以及污染质代谢物的毒理性等角度,应用衰减因素指数模型、污染质渗漏潜势指数评价模型和分级指数模型开展了相关研究。这3种方法,需要输入的数据较少,便于广泛应用;缺陷是不能模拟污染质迁移、转化详细过程。
2.统计方法
统计方法是通过对已有的地下水污染监测数据进行数理统计分析,确定地下水脆弱性评价的主要因子,然后采用分析方程进行计算,再根据计算结果进行脆弱性分析(Mi⁃chael,1999)。Tesoruero等(1997)和Sophocleous等(1998)分别采用逻辑回归分析和线性回归分析方法,评价了
应用统计方法进行地下水脆弱性评价,需要有足够的相关监测资料。在地下水脆弱性评价中,这种方法不如叠置指数法和过程数学模拟法应用广泛(姜桂华,2002)。
3.模糊数学法
模糊数学法是在确定评价因子、各因子的分级标准和因子赋权的基础上,采用单因子模糊评判和模糊综合评判进行地下水脆弱性评价的。这种方法在我国地下水脆弱性评价中应用较多(陈守煜,2002;周金龙,2004)。
4.叠置指数法
叠置指数法是通过选取评价参数的分指数进行叠加,然后形成一个反映地下水脆弱程度的综合指数,再根据综合指数进行评价。该方法又分为“水文地质背景参数法”和“参数系统法”。前者是通过条件类似地区的已知脆弱性标准,进行比较分析来确定研究区地下水脆弱性。这种方法需要建立多组地下水脆弱性评价的标准模式,且多为定性或半定量性评价,一般适用于地质、水文地质条件比较复杂的大区域。后者是将选择的评价参数,构建成为参数系统,每个参数都有一定的取值范围,这个范围又分为几个区间,每一个区间给出相应的评分值或脆弱度(即参数等级评分标准),然后将各参数的实际资料与该标准进行比较评分,进而获得评分值或脆弱度。该方法又分为“矩阵系统法”、标定系统法和计点系统法。
叠置指数法所需数据比较容易获得,算法简单,易于掌握,是国外最常用的一种方法(孙才志,2000)。它的缺陷是评价指标分级和评分没有统一的标准,具有很大的主观性。
(三)评价因子权重确定
确定各影响因子对目标影响的权重,是地下水脆弱性评价的基础工作,对评价结果具有显着的影响。确定权重方法主要有主观赋权法和客观赋权法两类。主观赋权法是指由专家根据经验主观判断确定评价因子权重,评价结果具有一定的主观性,这类方法有层次分析法、最小平方法、专家调查法、环比评分法和TACTIC法。客观赋权法是指根据原始数据之间关系来确定评价因子的权重,它具有较强的数学理论依据,这类方法有主成分分析法、熵值法、神经网络法和灰色关联度法等。目前比较普遍的做法是通过多种方法确定权重,然后相互验证确定权重的合理性。
1.层次分析法
层次分析法(AHP)是一种定量与定性相结合的多目标决策分析方法,它是将决策者的经验判断给予量化,在目标结构复杂且缺乏必要数据情况下更为实用。该方法是在建立有序递阶的指标系统基础上,通过指标之间两两比较对系统中各因子给予优劣评判,进而确定各因子权重系数。具体步骤:①建立层次结构,构造判断矩阵,明确上一层次因子与其所属层次因子之间的权重关系;②所有因子权值层次排序及求解权向量;③检验和修正各判断矩阵的一致性。
与其他方法相比,AHP方法的最大优点是通过一致性检验保持逻辑上的一致性,当出现3个以上的指标相互比较时,不会出现内部相互矛盾、不协调一致问题。
2.BP神经网络法
人工神经网络法(ANN)是指在计算机上采用一定算法模拟人脑智能的技术,它是由大量具有非线性响应运算功能的神经元构成,形成一种并行分布式的信息处理系统,各神经元之间权值可以不断调整,使系统具有自学习能力(尚丽,2002)。
BP(Back Progagation)网络算法又称为反向传输算法,是一种多层学习算法。BP网络算法模型为:
设n维m个学习样本X=(x11,x12,…,xmn),已知与其对应的教师d=(d1,d2,…,dm),同时存在一个连接权W=(w1,w2,…,wn),通过输入样本、连接权和作用函数,产生一个输出项Y=(y1,y2,…,ym),于是有
区域地下水功能可持续性评价理论与方法研究
f(x)=1/(1+ex) (4-64)
式中:netji为节点i在学习第j个样本时的输出项;Yj为第j个样本的输出项;m为学习样本;n为样本节点;f(x)为输出作用函数。
每个输入样本,网络输出(ym)与期望输出(dm)之间误差为
E=Ej=(dm-ym) (4-65)
则,总误差为
权重修正为
ΔW(j,i-1)=ηyj(dj-yj)(4-68)
当E小于某一数值时,权重修正的网络学习结束。
假设有m个n维变量,则求取权重的计算模型为
区域地下水功能可持续性评价理论与方法研究
权向量为
区域地下水功能可持续性评价理论与方法研究
该模型为数据输入层、中间隐含层(权重层)和输出层3层。在输入向量、权向量和作用函数后,会产生m个1维输出向量:
dT(m)=(d1,d2,…,dm)
同时,根据实际资料,得到m个1维实际结果向量:
YT(m)=(y1,y2,…,ym)
于是,有
W(m+1)=W(m)+ΔW(m)
ΔW(m)=η[dm-f(ym)]f(ym)sgn[dm-f(ym)]
已知样本变量X(n)和实际结果向量Y(m),则可以求得连接权W(n)。
3.灰色关联度法
灰色关联度法是一种比较常用的方法,具体算法如下。
设有m个子因素(X1,X2,…,Xm),它们都与母因素(X0)有一定关联。每个评价指标都有N个统计值,构成母序列和子序列:
母序列{X0(i)},i=1,2,…,N
子序列{Xk(i)},i=1,2,…,M
为了进行比较,将母序列和子序列进行标准化处理,使所有的值在0~1之间。
区域地下水功能可持续性评价理论与方法研究
式中:
经标准化后的数列,无量纲,则第k条子线在某一点t与母线在该点的距离:
Δ0k(t)=|X0(t)-Xk(t)| (4-70)
可用Δ0K(t)值衡量它们在t处的关联性。Δ0k(t)愈小,子线与母线在t处的关联性愈好。母、子序列在t=1到t=N的关联性,用关联系数表示,有
区域地下水功能可持续性评价理论与方法研究
式中:ξ0k(i)为第k条子线与母线X0在i点关联系数,其值满足0≤ξ0k≤1,ξ0k愈接近1,它们的关联性越好;Δmin,Δmax为m条子线在区间[1,N]母线的距离Δ0k(i)的最大值与最小值;ζ为分辨系数,一般取0.5。
于是,有第k条子线与母线在[1,N]间的关联度为
区域地下水功能可持续性评价理论与方法研究
采用下式使关联度之和为“1”,对关联度进行标准化。标准化后的关联度,可作为每个评价指标的权重。
区域地下水功能可持续性评价理论与方法研究
(四)脆弱性评价方法
1.DRASTIC模型
DRASTIC法是一种评价地下水污染潜势的分级标准化系统方法,也是地下水脆弱性评价中参数系统法的一个经典方法,被较广泛应用。该方法由美国水井协会(NWWA)和美国环境保护局(USPEA)于1987年合作研发,它综合了40多位水文地质学专家的经验,适用于大尺度区域性地下水脆弱性评价。DRASTIC模型取7个参数的开头字母组成DRASTIC模型名称,D为地下水位埋深(Depth to Water)、R为净补给(Net Recharge)、A为含水层介质(Aquifer Media)、T为地形(Topography)、S为土壤介质(Soil Media)、I为非饱和带影响(Impact of Vadose Unsaturated Zone)和C为含水层水力传导(Hydraulic Conctivity of the Aquifer)。DRASTIC法已被美国40个县和许多国家采用,包括不同水文地质条件地区,例如喀斯特地区多含水层系统。
DRASTIC方法有4个主要假定:①污染物存在于地表;②污染物通过降雨渗入地下;③污染物随水迁移;④研究区面积不小于100英亩(约0.4km2)。
DRASTIC评价模型为
DrDw+RrRw+ArAw+SrSw+TrTw+IrIw+CrCw=DRASTIC(4-74)
式中:D,R,A,S,T,I和C分别为地下水位埋深、净补给、含水层介质、土壤介质、地形、非饱和带影响和含水层水力传导系数;r和w分别为评价指标等级和权重;DRAS⁃TIC为综合指数,该值代表地下水脆弱性的不同程度。DRASTIC值愈小,地下水脆弱性愈低;DRASTIC值愈大,地下水脆弱性愈高。
2.评价指标及特征值
DRASTIC模型的各评价因子含义及其对地下水脆弱性影响情况如下。
1)地下水位埋深(Depth to Water):地下水位埋深是指从地面至地下水位的距离。地下水位埋深愈浅,地下水愈容易遭污染,地下水脆弱性愈高;反之,地下水愈不容易遭污染,地下水脆弱性愈低。地下水位埋深分级及特征值,如式4-75所示
区域地下水功能可持续性评价理论与方法研究
式中:f(h)为地下水位埋深评分;h为地下水位埋深(m)。
2)净补给(Net Recharge):是指每年在单位面积到达地下水位的总补给水量。地下水入渗补给量愈小,随之进入地下水中污染物愈少,则地下水脆弱性愈低;反之,地下水入渗补给量愈大,随之进入地下水中污染物愈多,则地下水脆弱性愈高。
降雨入渗影响评分表达式,如下式4-76(Jeffrey D.,2001):
RN=(Recharge×0.265722)1/2+1 (4-76)
式中:RN为降雨入渗影响评分;Recharge为单位面积的地下水净补给量(m3/km2·a)。
3)地形(Topography):是指地表面的倾斜度。地形坡度愈小,愈不利于降雨在地面形成径流,而污染物愈容易通过入渗进入地下水中,脆弱性愈高;反之,地形坡度愈大,愈利于降雨在地面形成径流,而污染物愈不容易通过入渗进入地下水中,脆弱性愈低。
地形坡度影响评分表达式,如式4-77:
区域地下水功能可持续性评价理论与方法研究
式中:RT为地形坡度影响评分;a为地形坡度。
4)包气带影响(Impact of the Vadose Zone):包气带评分值与含水层岩性评分相似。当含水层上覆为渗透性较弱的粘土时,则评分较低;当含水层上覆为渗透性较弱的砂性土时,则评分较高。
5)含水层岩性(Aquifer Media):岩土颗粒愈大,或裂隙较多,则脆弱性评分愈高。
6)含水层水力传导系数:它影响污染物在含水层的迁移速度。传导系数愈大,污染物迁移速度愈大,则脆弱性评分愈高。
7)土壤类型(Soil Media):土壤颗粒愈小,或含有大量微生物,则脆弱性评分愈低。
3.权重体系
在建立DRASTIC评价模型时,根据评价不同目的,赋予每个评价因子一个分级特征值(1~10之间),并建立两套相关的权值系列(1~5),其中显着性最高的权值为5,最低为1。
❷ 地层特性研究
地层层序初步建立后,必须对该地区的地层特性进行研究。其内容包括厚度、岩性以及对不整合面上下地层分布的研究。常用的手段是地质分析推理和地下制图方法,通过绘制剖面图、平面分区图、平面等值线图来达到恢复与展现地下地层结构的目的。对这些图件的综合解释,有助于建立正确的地层对比关系,有助于构造的研究,有助于建立地下地层结构的时空概念,从而指导油气田的勘探与开发。
(一) 地层厚度的研究与应用
1. 等厚图的编制
等厚图是最基本的地层特性图件。地下地层等厚图的资料来源于录井或测井资料的对比结果。井点之间的厚度变化是通过等值线来体现的。勾绘的等值线,即等厚线,要与图上各井点的厚度相吻合。井点之间的等值线由内插法作出,但要与沉积特点相一致。因为等厚线的分布受物源区大小、远近,相对沉积速率,剥蚀作用等因素的控制,如果不考虑这些因素而采用井间机械内插,必然会出现解释上的不协调或与其他地质现象不协调的矛盾。图2-5A是根据井点提供的地层厚度内插作图的,既没有考虑到中心区沉积较厚,也没有考虑到在地层缺失区地层减薄率的变化。图2-5B用同样资料,但考虑了上述因素,勾出的等值线图能较真实地反映客观情况。在图2-5B的西区,零线到200m厚度线间的密集等值线表明那里的地层沿着花岗岩斜坡分布,说明西边为近岸沉积,地层减薄率大是由于花岗岩体上升受剥蚀所致,密集的等值线应保持与花岗岩体平行。在图的东区地层加厚率大,岩心样品为粗的长石砂岩和砾岩,推断其物源为花岗岩体,从密集的等厚线及粗的岩性,可以进一步圈定秃顶花岗岩区的形状和范围。此外,在图的东南部位,厚度为190m,450m,590m的3个井点间厚度变化率小,岩性为细粒沉积,推断该区为一地势较高的平缓台地,向东南方向倾没。由B图与剖面图C的综合解释,可以看出东区沉降较早,西区沉降较晚。
图2-4 地层对比中常见地质现象实例
图2-5 在不整合面和花岗岩之间 (C)用同样厚度数据勾出两种不同的等厚图 (A、B) (据Low,1977)
等厚图是利用直井的铅直厚度资料,当地层水平时,直井所穿地层的铅直厚度等于地层真厚度,当地层倾斜时,铅直厚度大于真厚度。所以,在有构造倾角变化的地区,应一律用真厚度作等厚图。当然根据工作需要也可作铅直厚度等值图,如利用地层顶面构造图推算底面构造图时,就要利用铅直厚度等值图。
2. 等厚图的应用
等厚图很有意义,它经常能揭示出令人困惑的问题。等厚图的应用很广泛,包括:
(1) 指导勘探工作,如预测探井标准层深度和估计完钻井深以下的深部标准层海拔。
(2) 利用地层等厚图与地层顶面构造图叠加,编绘地层底面构造图。
(3) 利用不同时期等厚图研究古构造。
(4) 利用不同时期等厚图配合岩相图,研究沉积环境,建立相的时、空概念。
(二) 岩相图的编制与应用
如何把一套反映环境的岩层组合变化表现出来,是地层特性研究的另一个重要课题。常用手段是编制岩相图。
在编制各类岩相图件之前,首先要对井的剖面资料予以整理,即在对比基础上,确定出同一时间层段的井号、井深、岩性、分层厚度、分岩类统计厚度,以及各岩类所占厚度的百分比值,等等。在此基础上,可以按资料准备程度及要求,编制各种类型的相图。表现岩性组合的图件形式有剖面图、平面图及立体图3类。平面图又可有等值线图、分区图及点图3种形式。表现相变化最直观的图件是立体图,但当相变快、井剖面资料少时,难以做到。目前,运用最多的是岩性组合平面展布图。在计算机处理数据与作图日益普及的今天,需广泛开展岩性组合的定量研究。
1. 岩相图
岩相图是把能够说明岩相的主要岩性组合,以分区形式表现出来,它的背景图为该层的等厚图。如图2-6所示,图中按主要岩性组合划分为6个相区。从图上可以清楚了解到物源区、沉积区、盆地相对升降等区域性变化情况。对于简单的砂泥岩地层,可以选择能说明相带特征的资料,如砂岩体形态或测井曲线形态等作为分区的依据。
图2-6 岩相图 (岩性组合图) 与等厚图 (据Low,1977)
当岩性变化复杂,井点资料少,勾画不出岩相带的平面分布时,可以点图形式直接将资料整理结果标在井位上。以圆的直径表示该井所钻遇某层段的视厚度值,圆内用不同符号代表各种岩性在层段内所占的百分比。从图上可以粗略地看出各种主要岩类的厚度及岩性组合的大致变化。
2. 等岩图
等岩图是一套图件的组合 (图2-7)。先以等值线形式表示某层段内不同岩类的厚度分布,然后在各等厚图上按不同岩性类型分区。一个地区等岩图采用何种岩性组合方式,要看用所选岩性组合作出的等岩图能否明确表示出主要岩类的分布特点。对一套等岩图、地层等厚图以及表明沉积物矿物组分的图件进行综合分析,对阐明沉积物源区,判断沉积环境以及了解沉积过程都极为重要。显然,分的层段越薄,研究也就越仔细。对大套多层重复的岩性组合,由于划分不出薄的制图层,因而分岩类研究较为有利。
图2-7 等岩图 (据Lerey,1977)
3. 比率图
在制图层段中,求一种岩类的累计厚度与其余岩类总厚度之比,将该值标于井位旁边,按内插法勾绘等值线图。在勾等值线图时,要注意与地质特征相吻合。
4. 百分比图
在要制图的层段,计算某一种岩类的累计厚度与该层段总厚度之比,以百分数表示。将该值标于井位旁边,按内插法勾绘等值线图。
以上介绍了各种常规图件的编制方法及其代表意义。在多数情况下,不管什么类型的地层图件,都仅仅显示了某个方面的基本特征,它并不能精确完整地描绘出一个复杂的地层结构。所以,在研究地层特征时,必须将所有编绘的各类图件进行综合分析,并且对上下相邻层段也进行类似的研究,以建立地层发育的时、空概念。此外,为了评价可能的储集岩,还需要细分相带,进行定量的测绘制图。
❸ 盆地动力学背景
莺歌海盆地位于印支半岛与南海北部大陆边缘交接区(图2-2)。从莺歌海盆地形成的动力学背景来看,印度-亚洲大陆的陆-陆碰撞和太平洋板块向欧亚板块俯冲是该盆地发育的一级区域构造控制背景,南海扩张也对其施加了重要的影响。这些区域构造活动对南海大陆边缘盆地形成与演化均起到重要的控制作用。莺歌海盆地形成演化的研究是揭示南海西北部大陆边缘历史、地球动力学过程及其印度-亚洲大陆碰撞和太平洋板块俯冲的相互关系的关键地区之一。
印-澳板块对欧亚板块的构造演化影响最大的地质过程是印度地块在青藏地区与欧亚板块的碰撞活动。晚古新世,随印度-欧亚板块之间的会聚速率从170mm/y迅速减小到60mm/y左右,印度地块与欧亚板块在56Ma(晚古新世)开始碰撞,一直到中始新世末期(约43.5Ma)时,全面碰撞并逐渐向欧亚板块楔入。这种大规模的陆-陆碰撞一方面导致了喜马拉雅碰撞带内发生大陆地壳的相互冲断叠置和加厚作用,另一方面引起当时呈角状凸出在欧亚板块南缘的印支半岛发生挤出运动(Tapponnier等1986,1990),形成东南亚地区大规模的逃逸构造(图2-2所示)。
图2-2 莺歌海盆地区域动力学背景
印支地块内部及边缘发育多条作为逃逸构造边界的巨型走滑断裂。该地块的东北侧为NW向哀牢山-红河断裂,该断裂现今表现为右旋走滑,分隔了华南地块和印支地块。其陆地上的延伸长度在1000km左右,该带的核心区带为一个10km宽的韧性剪切带,对该带内糜棱岩的显微构造和宏观构造运动学研究证实了该剪切带具有左旋剪切的运动过程,位移量在300~700km以上(Tapponnier等,1990;Leloup等,1995),同位素年龄值为35~22Ma之间(Scharer等,1990;Leloup等,1993,1995)。40Ar/39Ar热年代学研究表明,红河断裂带在34~25Ma之间为一缓慢的冷却作用时期,之后在25~17Ma之间经历了快速的隆升,并且在抬升过程中存在左行走滑的运动分量(Leloup等,1995)。第四纪地貌及近代地震震源机制揭示5Ma以来红河断裂带北段表现为右旋走滑运动,滑移速率为7±3mm/y(Leloup等,1995;Allen,1984)。大量的证据表明,印度-欧亚板块自晚古新世开始碰撞,其最显着的构造效应是引起印支半岛与华南地块发生相对运动。通过印支半岛与华南地块中生代沉积盆地之间的古地磁对比研究,其结果普遍支持中生代以后印支半岛相对于华南地块曾发生左行运动(Funahara等,1993;Yang和Besse,1993),并且揭示了印支半岛内部的古地块在左行运动过程中发生了差异的顺时针旋转。
红河断裂带向SSE方向延伸,进入海域,海域延伸长度也在1000km左右。红河断裂带南段的构造活动远较北部复杂,红河断裂带南段临近海域的地带由多条平行的NW向断裂带,如黑水河断裂带、斋河断裂、齐江断裂、马江断裂带等组成,在河内及其海域中的延伸处均以裂谷形态出现。Rangin(1995)详细研究了越南东京湾凹陷内红河断裂带的发育演化特征,研究揭示30Ma以前,印支地块与华南地块的相互错动是由多条NW向断裂带的左行走滑运动组成的,地壳的变形以伸展作用为主,形成一系列伸展断陷(Rangin等,1995)。30Ma以后,红河断裂的左旋走滑幅度减小,仅几十千米,不超过100km,其中15.5Ma的界面是一个重要的分界面,从30Ma至15.5Ma之间左行走滑运动表现为转换伸展作用,而15.5Ma至5.5Ma则为转换挤压作用。
莺歌海盆地内莺西断裂带向北延伸与红河断裂、黑水河断裂和马江断裂相连接,Ran-gin等(1995)详细研究过这个地区海域范围内的构造变形样式和演化。莺西断裂带向北延伸到越南的东京湾凹陷后,构造样式变化为一套约30km宽的波状褶皱发育区,并伴生有明显的逆冲断层。这种强烈的反转发生在SN向的莺西断裂和NW向的斋河-红河-齐江断裂带的弧形过渡区段。Rangin(1995)将其确定为S50-S30(15.5~5.5Ma)构造反转时期的产物,认为这是一套左旋挤压作用机制下形成的褶皱-冲断构造。Rangin(1995)的研究还证明,30Ma之前,越南东京湾主要表现为左旋走滑总体背景下的区域性的伸展断陷作用,而30Ma之后,红河断裂的左旋位移明显减小,不超过几十千米,其中30Ma至15.5Ma之间为左行走滑变形场内的转换伸展作用。而15.5Ma至5.5Ma则为左行走滑变形场内转换挤压作用,而且变形区域局限在边界断裂带内不到30km宽的范围,构造反转的强度从NW向SE方向逐渐减弱,没有波及莺西断裂带,相反,在S50~S30期间,临高凸起地区处于微弱的伸展状态。图2-3所示的简单模式可以解释这种同一个时期、不同位置显示出不同的构造应力场状态的情形(即S50~S30期间北部Tonkin湾区挤压而南部莺西-临高区拉伸)。图中的断面类似于红河断裂带,产状陡倾,在S50~S30期间,尽管其位移量已经急剧减小,但是仍然处于左旋滑移状态,滑移过程中并伴生有围绕垂直于断面的一个轴的顺时针旋转(图2-3中的旋转箭头1),形成“枢纽断层”,同时古地磁资料显示印支地块在向南东的滑移过程中存在顺时针的水平旋转(图2-3中的箭头2)。在枢纽线的北侧向南东运移的印支地块以及其顺时针的水平旋转作用在SN向的莺西断裂和NW向的斋河-红河-齐江断裂带的弧形过渡区段,可以导致左旋挤压变形场,形成强烈的逆冲断层和挤压褶皱。在枢纽线的南侧,断块向下旋转,同时印支地块的顺时针的水平旋转导致拉伸应力场,表现为正断层(贯通式或隐伏式)作用。由于印支地块向SE运移,反转的力源来自于NW一侧,所以构造反转的强度向南逐渐减弱以至消失。
图2-3 红河断裂带附近印支地块与华南地块相对运动简化模式图
正是由于以上动力学背景,导致莺歌海盆地始新世开始伸展,晚渐新世—中新世虽然具有热沉降地层结构特点,但是沉降史分析显示具有非常快速的、幕式的沉降。这些伸展盆地的形成与印支地块大规模向东南挤出逃逸过程中地块及其内部的次级地块顺时针旋转引起的伸展作用有关。
❹ 原位开采油砂矿藏的综合勘探方法与应用
单玄龙1 付永昌2 管宏图3 罗洪浩1
(1.吉林大学地球科学学院,吉林 长春 130061; 2.吉林中财石油开发有限公司,吉林 长春 130122; 3.中化地质矿山总局吉林地质勘查院,吉林 长春 130022)
摘 要:我国适合原位开采的油砂油地质资源量为41.14×108t,可采资源量为19.16×108t。油砂原位开 采方法主要有两类:热采和溶剂提取。针对我国油砂资源分布广、非均质性强和厚度不大、含油率中等地质 特征,将油砂勘探划分为预探、普查和详查三个不同阶段,明确了不同阶段的主要目的和工作方法手段。借 鉴加拿大油砂勘探方法,提出了一套适合我国油砂原位开采方法的地质-地球化学和地球物理的综合勘探方 法,包括化探法、瞬变电磁法或油气自电法、钻探、测井、分析测试和地质综合研究等。预探阶段以物化探 为主,通过少量预探井进行异常验证,结合典型样品的分析测试数据,确定油砂矿是否具有远景。在远景区 进行普查,普查阶段以普查井岩心研究、测井解释和岩心系统分析测试数据为主,确定油砂矿有无工业规模。在有规模的油砂矿区进行详查,详查阶段以详查井岩心研究、测井解释和地质综合研究为主,确定油砂矿的 成藏条件与主控因素、计算油砂储量、评价开采经济技术条件并完成开发可行性建议。最后在松辽盆地西部 油砂矿藏勘探中进行了应用,取得了良好的勘探效果。本文提出的油砂综合勘探方法旨在促进我国油砂原位 开采的工业化,并对规范我国埋藏油砂勘探具有一定的指导意义。
关键词:松辽盆地;油砂;原位开采;勘探方法;应用
The Comprehensive Exploration Method and Application of Oil Sands in situ
Shan Xuanlong1,Fu Yongchang2,Guan Hongtu3,Luo Honghao1
(1.The college of the earth science,Jilin university,Changchun 130061,China; 2.Zhongcai petroleum development Co.Ltd,Changchun 130122,China; 3.Jilin Geological Exploration Institute of China Chemical Geology and Mine Bureau,Changchun 130022,China)
Abstract:Oil sands in place is about 41.41×108t for in situ,and reserves and resources are 19.16×108t in China.SAGD and SOIV are main development methods in situ.Exploration for oil sands is divided into three stages: preliminary,prospecting and general exploration,and objectives and methods are brought up according to geological conditions of oil sands in China.The authors bring up an geological,geochemical and geophysical comprehensive exploration method of oil sands in situ,including geochemical exploration,transient electromagnetic method or oil-gas self- potential method,drilling,logging,forecasting and analysis and geological comprehensive research.The geochemical and geophysical explorations are important on preliminary stage,and the geochemical and geophysical anomalies would be tested by some drillings,and it is estimated that the oil sands is perspective or not.Then,on the perspective area,prospecting exploration would be carried on.It is estimated that the oil sands has commercial scale or not by more drillings,logging,analytical data.If it has commercial scale,General exploration would be done.On the stage,forming conditions and main factors of oil sands,calculation of reserves,developing economic and technica 1 conditions,exploitable proposal would be made.At last the method was applied in oil sands exploration in west Songliao basin,and got good explorating result.We hope that the method can promote instrialization of oil sands development in situ and it can become the standard for oil sands exploration.
Key words:Songliao basin;oil sands;in situ;exploration method;application
引言
我国的油砂资源相当丰富[1]。据全国新一轮油气资源评价结果,我国油砂资源量近60×108t,是 重要的石油天然气补充资源。它们在能源、化工、材料等领域显示出巨大的应用前景。这些资源的开发 利用将对缓解我国能源供给紧张形势,维护我国能源安全意义重大。
近年我国油砂地质与成因研究取得了重要进展。目前,我国油砂研究地质与成因研究的主要进展为 以下四个方面:油砂矿藏开展了较为系统的地质研究[2~17],基本建立了适合我国的油砂资源评价体系 与潜力分析[18~20],基本查清我国油砂形成的构造背景和成藏模式[21~25],探索了油砂勘探方法,包括 化探法[26]、瞬变电磁法[27]、油气自电法[28]等。
我国大部分油砂资源适合原位开采,但缺少针对原位开采油砂矿藏的勘探方法。我国适合原位开采 油砂埋深深度为100~500m,预测油砂油地质资源量为41.14×108t,可采资源量为19.16×108t。但如 何获得这些油砂资源分布的详细特征,是制约我国油砂原位开采的关键因素之一。国外油砂原位开采方 法主要有两类:热采和溶剂提取[29,33]。本次研究针对我国油砂实际地质条件,提出了一套适合两类油 砂原位开采方法的地质-地球化学和地球物理的综合勘探方法,并在松辽盆地西部镇赉油砂矿藏勘探中 进行了应用,取得了良好的效果。
1 原位开采油砂矿藏的综合勘探方法
参照油气勘探规范和油砂的实际地质特征,将油砂勘探阶段划分为预探、普查和详查三个阶段,每 个阶段的勘探目地和勘探方法如表1。
表1 原位开采油砂矿藏的勘探阶段与方法
预探阶段是某地区利用瞬变电磁法或油气自电法进行了油砂勘探,结合油砂化探方法,确定了本区 油砂层位置和深度。再通过预探井和测井(包括伽马测井、电阻率测井、密度测井、中子测井)进行 油砂矿层的验证,并获取油砂样品,分析油砂含油率,综合以上工作成果,分析这一地区油砂的前景。
普查阶段是在预探基础上,选择有前景的地区钻探普查井,井距1600m,并进行测井(包括伽马测 井、电阻率测井、密度测井、中子测井、油砂层温度和压力),取得5类样品(油砂样、油样、储层物 性样、油砂力学性质样、油砂分离和合成油实验样)。钻井液体通常会污染岩心。当取小直径岩心样品 时,特别要注意这点。取出的岩心切成75厘米长,两端加盖封闭,并用胶带封好,在现场冷藏。了解 油砂层的厚度、分布、品质等,初步估算油砂资源量,确定油砂规模。
详查阶段是针对普查认为有规模的油砂矿,制在800~400m,并进行测井(包括伽马测井、电阻率 测井、密度测井、中子测井、油砂层温度和压力),增加5类样品的数量,进行分析测试。本阶段要求 查清搞清油砂矿地质条件及控制因素、计算油砂矿储量、评价开采经济技术条件、开发可行性建议。
2 原位开采油砂矿藏的综合勘探方法的应用实例——松辽盆地西部× ×油 砂矿
松辽盆地西斜坡油砂主要是在0~300m以浅,其中0~100m油砂油地质资源量1.64×108t,100~ 300m油砂油地质资源量3.11×108t,为西斜坡油砂主要富集深度,适合进行原位开采。
××油砂矿位于吉林省的西北部,行政区划隶属白城市。构造位置属于松辽盆地西部斜坡超覆带(图1)。油砂富集于上白垩统姚家组和嫩江组中。
图1 油砂矿构造位置图
松辽盆地位于西太平洋陆地边缘北部,其主体部分位于黑龙江板块群的中部,该板块群北部西伯利 亚板块,南部中朝板块。松辽盆地的地理位置西邻大兴安岭,东邻张广才岭,向北经孙吴-逊克盆地穿 过小兴安岭是俄罗斯的捷雅盆地,南部是渤海盆地的下辽河断陷;在东西方向上构成两峡一盆的盆山体 系。黑龙江板块群在二叠纪末期已固结为统一的 块体,三叠纪后中国东部地应力场由近东西向的 主导方向转变为北北东方向,并使中国东部陆内 处于一个以伸展作用为主的张性环境,在此基础 上中生代盆地群开始发育。松辽盆地主要由基底 和盖层两部分组成,前中生代地层为盆地的基底,经过多期碰撞拼贴形成,由前古生代、早古生代 与晚古生代地层组成。盆地的盖层为中新生代地 层,包括侏罗系、白垩系、古近系、新近系和第 四系,其中白垩系最为发育。
2.1 油砂化探
由于油砂性质与原油中的重油相近上,选择 烃类(甲烷、乙烷、丙烷、异丁烷、正丁烷、乙 烯、丙烯)作为寻找油砂的直接指标。研究区油 气化探测量统计结果表明,在台地丘陵景观区内,烃类异常中乙烷/乙烯比值在12~58之间,在草原 景观区内,乙烷/乙烯比值在33~82之间,表明烃 类异常是由地下深处的油气藏(油砂)引起[26]。
研究区内共圈出3处以烃类为主的油砂土壤 化探异常,Ht1异常呈块状,Ht2异常呈条带状,Ht3异常呈串珠状(图2)。
图2 台地丘陵区(左)和草原区(右)化探异常特征[26]
2.2 瞬变电磁法
在油砂化探异常区域,进行瞬变电磁测量,在剖面2D反演视电阻率等值线图(图3)上,在整个 区域普遍存在浅部泥岩层,引起低阻正常场,视电阻率为5~15Ω·m,计算深度为-30~100m,推断 泥岩为油砂矿体上覆标志层。其下为过渡层,视电阻率为15~25Ω·m,计算深度为-100~-150m,推断为砂岩层。再下为异常所在层,视电阻率为25~100Ω·m,计算深度为-150~-200m,推断为含 油砂岩层[27]。
图3 矿区地面瞬变电磁0000线2D反演视电阻率断面图[27]
2.3 钻探与测井
先针对化探和瞬变电磁方法确定的油砂可能的位置和深度,布置预探井。在化探异常地区先后布置 了13个钻孔进行验证。结果有11个孔见到了油砂,取得了良好的地质效果。与预测结果不一致的仅有 两个钻孔,预测准确率近84.6%。其中施工在瞬变电磁异常和化探异常区上的6个钻孔全部见矿,见 矿率100%。ZK006见矿深度为141.53m,ZK002见矿深度为174.8m,与瞬变电磁计算深度一致。分析 测试数据表明油砂含油率平均大于7%。综上分析镇赉油砂矿具有较好前景。
在圈定的具有远景的区域内进行普查工作,按1600m的井距布置普查井63口,并进行测井(包括 伽马测井、电阻率测井、密度测井、中子测井、油砂层温度和压力),图4为Zk1609的综合柱状图。系 统测试5类样品57件。初步了解了本区油砂形成的地质过程和资源量。
2.4 油砂矿藏地质
临近的齐家-古龙凹陷青山口组和嫩江组烃源岩在燕山晚期进入生油门限.原油生成之后,进入 “储层”,此时正逢晚中生代的重要构造运动——燕山运动晚期,它使松辽盆地西部边缘地带强烈抬升,储层中的原油在构造运动的动力支持下开始向抬升方向由地层深处向浅处运移,运移过程中,在 “与 地表水不连通的” 系统内原油被“稠化”,变稠了的原油被地层带到地表,当地层遭强烈剥蚀,变稠变 重的原油开始向地表泄漏,发生了根本性的转变,由 “与地表水不连通的系统(封闭系统)” 向 “与地 表水连通系统”(开放系统)转变,稠化了的原油与地表水接触,被水洗、氧化、生物降解,使稠变了 的原油进一步变稠变重,流动性大减,一部分便与剥蚀层的岩石碎屑-细砂、粉砂发生了物理方式相互结合,形成油砂。
图4 ZK1609的综合柱状图
2.5 油砂储量和开采经济技术条件
矿区内地质储量5734.97×104t,根据加拿大现有开采技术的经验以及矿区的实际情况初步预定油 砂矿的开采系数为65%,据此计算油砂矿的可采资源储量为:5734.97×65%=3727.73×104t。
本区油砂矿藏埋深150~200m,厚度变化较大,从0.5m到26m左右,多数油砂层厚3~5m,含油 率均值大于7%,综合上述特征,适合采用原位有机溶剂提取法进行开采。从当今世界石油价格来看,每桶(国际标准)油的价格为104美元/桶(时价),普查区油储量约为3.6亿桶,可采油储量约为 2.34亿桶,资源价值约为2.34亿×104美元/桶=243.36亿美元,约合人民币1594亿元。
3 结论
针对我国油砂实际地质条件和国内外油砂原位开采技术特点,提出了一套适合油砂原位开采方法的 地质-地球化学和地球物理的综合勘探方法。将油砂勘探划分为预探、普查和详查三个不同阶段,明确 了不同阶段的主要目的和工作方法手段。最后在松辽盆地西部油砂矿藏勘探中进行了应用,取得了良好 的效果。为我国油砂原位开采的工业化奠定了地质勘探基础,并对规范我国埋藏油砂勘探具有一定的指 导意义。
由于本方法只在一个油砂矿的勘探中进行了应用,而且还只是进行到普查阶段,因此随着勘探的不 断深入,本方法还有待进一步完善。
参考文献
[1]单玄龙,车长波,李剑.国内外油砂资源研究现状[J].世界地质,2007,26(4):857~861.
[2]贾承造,刘稀俭,雷群等.油砂资源状况与储量评估办法[M].北京:石油工业出版社,2007,6.
[3]胡见义,牛嘉玉.中国重油、沥青资源的形成与分布[J].石油与天然气地质,1994,15(2):15~18.
[4]刘洛夫,赵建章,张水昌等.塔里木盆地志留系沉积构造及沥青砂岩的特征[J].石油学报,2001,22(6): 11~17.
[5]郭建军,陈践发.塔中志留系沥青砂岩的地质特征及研究进展[J].新疆石油地质,2006,27(2):151~155.
[6]黄卫,孙新铭.风城下白垩统油砂沉积环境研究[J].长沙铁道学院学报(社会科学版),2007,8(3): 169~174.
[7]魏伟,杨海军,杨芝林等.塔里木盆地喀什凹陷北部油砂分布特征[J].中国石油勘探,2006,(3):76~78.
[8]臧春艳,单玄龙,李剑等.准噶尔盆地中生代油砂分布质特征及开发前景[J].世界地质,2006,25(1): 49~53.
[9]方朝合,刘人和,王红岩等.新疆风城地区油砂地质特征及成因浅析[J].天然气工业,2008,28(11): 127~150.
[10]金文辉,周文,张银德等.准噶尔盆地西北缘白碱滩油砂成矿因素分析[J].特种油气藏,2009,16(6): 19~21.
[11]梁峰,刘人和,拜文华等.风城地区油砂层分布规律及其控制因素[J].天然气工业,2008,28(12): 121~123.
[12]刘人和,王红岩,方朝合等.准噶尔盆地西北缘红山嘴油砂特征[J].天然气工业,2008,28(12):114~116.
[13]周文,于雷,张银德等.准噶尔盆地乌尔禾地区油砂成矿的因素[J].新疆石油地质,2008,29(6):710~712.
[14]刘虹强,孙燕,王祝彬等.准噶尔盆地风城油砂矿床储层特征及成因分析[J].中国地质,2008,35(6): 1307~1314.
[15]刘兴兵,黄文辉.内蒙古图牧吉地区油砂发育主要地质影响因素[J].资源与产业,2008,10(6):83~86.
[16]孙晓猛,许强伟,王英德等.川西北龙门山冲断带北段油砂成藏特征及其主控因素[J].吉林大学学报(地球科 学版),2010,40(4):886~896.
[17]单玄龙,罗洪浩,孙晓猛等.四川盆地厚坝侏罗系大型油砂矿藏的成藏主控因素[J].吉林大学学报(地球科学 版),2010,40(4):897~904.
[18]张明玉,何爱东,单守会等.准噶尔盆地西北缘油砂资源潜力及开采方式探讨[J].新疆石油地质,2009,30(4):543~545.
[19]邓虎成,周文,丘东洲.西藏伦坡拉盆地油砂资源潜力分析[J].桂林工学院学报,2008,28(2):167~173.
[20]刘人和,王红岩,王广俊等.中国油砂矿资源开发利用潜力及前景[J].天然气工业,2009,29(9):126~128.
[21]拜文华,刘人和,李凤春等.中国斜坡逸散型油砂成矿模式及有利区预测[J].地质调查与研究,2009,3(33): 228~235.
[22]王清斌,单玄龙,臧春艳,高有峰.楚雄盆地洒芷油砂地质特征及成藏模式[J].世界地质,2007,26(1): 52~57.
[23]方朝合,李剑,刘人和等.准噶尔盆地红山嘴油砂特征及成藏模式探讨[J].西南石油大学学报(自然科学版),2008,30(6):11~13.
[24]赵群,王红岩,刘人和等.准噶尔盆地黑油山地区油砂成矿模式及分布[J].天然气工业,2008,28(12): 117~120
[25]赵群,王红岩,刘人和等.挤压型盆地油砂富集条件及成矿模式[J].天然气工业,2008,28(4):121~126.
[26]朱军平,关淑艳,吴冬铭等.应用化探方法在松辽盆地西部斜坡地带确定油砂[J].吉林地质,2009,28(1): 64~68.
[27]朱军平,张洪普等.瞬变电磁法在寻找油砂矿中的应用[J].吉林大学学报(地球科学版),2008,38(增刊): 15~19.
[28]拜文华,杜庆丰,肖渊甫等.油气自电法在东胜地区隐蔽油砂矿勘探中的应用[J].地质调查与研究,2008,31(2):154~160.
[29]Elise B.Bekele,Mark A.Person,Benjamin J.Rostron,et al.Modeling Secondary oil migration with core-scale data: Viking Formation,Alberta basin[J].AAPG Bulletin,2002,86(1):55~74.
[30]Frances J.Hein,Darrell K.Cotterill.The Athabasca Oil Sands—A Regional Geological Perspective,Fort McMurray Area,Alberta,Canada[J].Natural Resources Research.2006,15(2):85~102.
[31]Groeger A,Bruhn R.Structure and Geomorphology of the Duchesne Graben,Uinta Basin,Uta[J].h,and its Enhancement of a Hydrocarbon Reservoir.AAPG Bulletin,2001,85(9):1661~1678.
[32]Keighley D,Flint S,Howell J et al.Sequence Stratigraphy in Lacustrine Basins:A Model for Part of the Green River Formation(Eocene),Southwest Uinta Basin,Utah[J].U.S.A.Joural of Sedimentary Research,2003,73(6): 987~1006.
[33]Qiang T,Claudia J,Schroder A,et al.A New Lithostratigraphic Framework for the Cretaceous Colorado Group in the Cold Lake Heavy Oil Area,East-Central Alberta,Canada[J].Natural Resources Research.2007,16(1):17~30.
❺ 矿井防治水方法研究
(一)煤层底板高压灰岩水带压开采技术
对于华北型煤田,防范煤层底板水的主要方法是带水压安全开采。虽然深部高压水存在,若充分利用隔水层的防护作用,可消减部分水压值,在不进行或很少进行疏水降压的情况下将可实现带压开采。当矿井采煤工作面突水系数Ts大于0.06MPa/m时,应当采用降压疏干或(和)煤层底板注浆加固方法减小突水系数,以保证煤矿安全生产。
1.带压开采技术
与华北型煤田类似,郑煤集团各矿井二1煤开采应采用带压开采技术。所谓带压开采就是煤层底板受承压水威胁,充分利用煤层底板至承压含水层间隔水层性能,在不采取或在国家经济、技术条件许可情况下,采取某些技术措施后,实现安全采掘的一种综合性防治水技术。国内外对该技术曾做过大量研究,特别是近几年在我国进行了较为广泛而深入的研究,取得了显着成绩。
评价带压开采安全的标准是突水系数。20世纪60年代由煤炭工业组织的焦作会战提出的突水系数是
郑州煤矿区水害防治规划研究
式中:P——水压值(MPa);
M——隔水层厚度(m)。
20世纪70年代煤炭科学研究总院西安分院和其他有关单位对上式所表示的突水系数进行了修正,提出以下突水系数公式:
郑州煤矿区水害防治规划研究
式中:Cp——采动后底板导水破坏深度(m),其他符号同前。
该公式1984年5月由煤炭工业部正式批准作为矿井水文地质规程防治底板突水的依据,并于1986年写入“煤矿防治水工作条例(试行)中”。
突水系数在以往的应用中取得了显着成效,解放了受水害威胁的大量煤炭资源,特别是在突水可能性分区上已有了较为明确的界限值,所以在评价郑煤集团各煤矿二1煤带压开采时,我们采用了煤炭科学研究总院西安分院提出的公式。
就整个华北型煤田而言,关于底板奥陶系灰岩突水可能性分区问题,可以考虑以下方案:
Ⅰ区:奥陶系灰岩承压水面以上的地区;
Ⅱ区:奥陶系灰岩承压水面以下,但突水系数Ts<0.06MPa/m;
Ⅲ区:突水系数Ts介于0.06~0.15MPa/m的地区;
Ⅳ区:突水系数Ts>0.15MPa/m的地区。
Ⅰ区不存在底板奥陶系灰岩突水问题;Ⅱ区为可能发生底板突水危险地区,应在加强矿井防治水工作的情况下进行带压开采;Ⅲ区发生底板突水危险较大,仅在构造简单的地段采取可靠安全技术措施后才可进行带压开采;Ⅳ区是发生底板突水最危险的地段,底板突水是不可避免的,只有在采取疏水降压把突水系数Ts减小到0.15MPa/m以下才能实施带压开采。
按照以上公式,我们初步计算了奥陶系灰岩含水层对二1煤层的突水系数。结果显示,本井田内存在突水系数超过临界突水系数,需要进行底板水防治和底板改造。
为了在本井田实施带压开采技术,必须做好以下工作:
1)把防治水工作的重点放在二1煤层顶板砂岩水和底板奥陶系灰岩水上,采用综合物探、化探和钻探等各种手段,查明陷落柱、断层和裂隙密集带等,以及固井质量差的废旧钻孔;并采用留设防水煤柱或底板加固等手段对地质异常体进行改造,做到采煤工作面底板不出水或不出大水,以节约排水费用,保护水资源和生态环境。
2)根据涌水量预测结果,适当加大矿井和采煤工作面排水能力,以防不测。
3)发展突水预测预报技术。实现突水预测预报的可视化和适时化,建立水害预警系统,推进矿井防治水信息系统集成。
4)在采掘过程中为防治底板出现灾害性突水,应坚持先探后掘、先探后采和先注浆后掘进、先注浆后回采的技术原则。为了节约工程量和保证安全,在采取钻探、物探、化探等综合手段时,应坚持物化探先行、钻探验证的技术方法,以杜绝采掘巷道误揭陷落柱和落差大的断层。
5)关于避灾路线和通讯联系。在有突水危险,尤其是有大危险突水的地区,安全畅通的避灾路线是保证不发生人员伤亡的有效途径。同时应具备畅通的通讯联系,以达到及时将井下的情况迅速报告和将调度命令传达到每一个井下工作人员的目的。
6)矿井防治水工作管理。煤矿设专门负责矿井防治水领导小组,配备探水钻和专职探水组。严格地讲没有征兆的突水是不存在的,所以每个生产班应设水情观测员负责水文地质资料收集和突水前兆观测。
2.中间指示层
为了研究奥陶系灰岩含水层与太原组薄层灰岩的水力联系,在带压开采工作面各布置了一个中间层地下水动态监测孔,本规划还要求在今后设计的每一个采面中,至少应布置一个中间层地下水动态监测孔。终孔层位在L1-4薄层灰岩底面。
3.煤层底板注浆加固改造
应根据物探及钻探探测结果,分析煤层底板的实际情况,对煤层底板存在垂向越导通道的区段,进行注浆加固,以防堵为主,确定注浆层位。注浆层位可以是奥陶系灰岩顶部含水层、薄层灰岩含水层和隔水层中的可注层位及构造薄弱带。目前焦作和肥城等大水矿区已成功地在九里山、韩王等多个矿区实施底板注浆加固改造,取得了巨大经济效益。
应对准备注浆加固的工作区编制专门设计方案,其中包括注浆层位、注浆孔布置、注浆方法、注浆系统和注浆工艺等。
4.疏干降压
疏干降压一般应在主要充水含水层(薄层灰岩含水层)中进行。可以采用疏干钻孔、疏干巷道等。对于郑煤集团各矿井,由于煤层下部的L7,L8灰岩处于煤层底板采动破坏带内,由于采动裂隙的存在,L7,L8灰岩水势必通过采动裂隙进入回采空间,增大工作面的涌水量,在个别富水区段还可能引起涌水量过大而影响生产,因此,应对L7,L8灰岩进行超前疏干降压,减少其对工作面回采的影响。准备实施疏干降压的矿井,应进行数值模拟计算,以确定疏干漏斗和疏干水量的变化。
疏干降压应编写专门设计,内容包括疏干降压工程布置,疏干降压计算结果以及疏干降压的安全措施等。
(二)顶板砂岩水控制技术
1.顶板砂岩富水性探测
由于在不同岩石所组成的地质体中,岩石的含水性对其相对电阻率有较大的影响,含水地层具有相对电阻率较低的物性特点,且含水程度的差异与地层电阻率的变化幅度相对应,所以,通常采用电磁探测技术测量地下地质体中的电性分布规律进而达到探查矿区导含水地质体的分布及其导含水条件。这种对地层电性参数的获取是三维地震等弹性探测方法所不能及的。
在工作面形成以前,应首先在地表进行瞬变电磁法勘探,探查顶板砂岩的富水性。
在采煤工作面形成后,直流电法在下巷中进行,而音频电穿透则需同时在上巷和下巷中进行。直流电法对地质异常体在垂向上的分布分辨比较清晰,而音频电穿透法对地质异常体的位置分辨比较清晰,因此两者结合可以取得满意的效果。
(1)音频电穿透法
音频电穿透法是利用电磁波在介质中传播时,其电流强度随介质层电阻率的大小而有规律变化的特征,进而计算出穿透各点的视电阻率相对关系,做出反映探测区域富水性强的等视电阻率平面等值线图,并可结合具体水文地质条件推断出顶底板含水体的性质、富水性大小、空间形态及分布范围,为防治水工作提供依据。该方法的主要用途如下:
1)采煤工作面底板下100m内富水区域探测;
2)采煤工作面顶板100m内富水范围探测;
3)工作面内老窑分布范围探测;
本规划选用这种方法探测井下工作面隐伏含水断层、破坏带和裂隙带空间位置及其赋水性变化。
(2)井下直流电法
井下直流电法主要用于巷道顶底板探查,工作面顶板探查和掘进堵头超前探测。具体解决以下问题。
1)巷道顶底板探查:①利用现有的巷道工作,探查深度可达100m,可探测含水层深度,局部富水体深度范围、导升高度及沿巷道方向分布宽度;②提供沿巷道方向垂向电阻率切片剖面,用于解释工作面巷道底板100m深度内的含水、导水体,潜在的突水通道、底板隔水厚度、含水层厚度、含水层原始导升高度;③要求巷道内无大范围积水。
2)工作面顶底板探查:①改变工作方法利用巷道侧壁可以探测工作面内的隐伏含水构造;②利用多条巷道(上巷、下巷、切眼等)的数据进行立体成图——对工作面底板不同深度进行类似“CT”成像的断面、平面切片,分离出电法含水异常区域,得到视电阻率异常断面图、平面图,进行立体解释。
3)掘进堵头超前探查:①利用巷道超前探测使用三极空间交会探测法,可以预测堵头前方80m范围内存在的导、含水构造(断层、陷落柱、裂隙破碎带、老窑巷道),提供前方80m范围内岩石的视电阻率变化信息;②异常为相对异常,可以肯定解释正常区不会存在突水或出水的危险,解释的异常区不能肯定一定出水;③预测堵头的后方必须有不小于前方探测深度的施工空间;④智能傻瓜化资料处理,容易掌握使用。
2.采动三带的探测
煤层顶板采动三带的探测采用水文地质钻孔观测法和物探方法结合的探测方法。
(1)水文地质钻孔观测法
水文地质钻孔观测法的实质是在采空区地面布置一定数量的观测钻孔,在钻进过程中测定钻孔冲洗液的漏失量、钻孔水位变化,并记录各种异常现象,经综合分析确定垮落带和断裂带的最大高度及破坏特征。
1)观测内容和方法:①钻孔冲洗液漏失量观测。冲洗液漏失量是指钻进单位时间或单位进尺冲洗液的漏失量。通过对钻孔中冲洗液漏失量的观测,可以确定断裂带的顶点以及了解垮落带和断裂带内覆岩的破坏特征。冲洗液漏失量的测定方法有两种:一是使用流量表观测,另一种是测定水池中水量的变化。②钻孔水位观测。在钻孔冲洗液正常循环过程中以及冲洗液完全漏失前,应对钻孔中的水位变化进行观测,这也是确定断裂带顶点和覆岩破坏的重要标志。③钻孔冲洗液循环中断状况观测。此时应记录钻孔深度和钻孔冲洗液循环中断的时间。④记录钻进过程中的异常现象。在钻进过程中,及时记录掉钻、卡钻及钻具振动等异常现象,此外还应注意有无吸风或瓦斯涌出现象。
2)观测结果的分析整理。导水裂缝带高度主要是根据钻孔冲洗液消耗量和钻孔水位观测等结果加以确定,垮落带高度则主要是根据钻进异常现象加以确定。各观测钻孔一般均在第四系下套管止水后开始观测,一般可分为3种类型,其一是从某一孔深位置开始,钻孔冲洗液消耗量明显增大,孔内水位显着下降,而且向下钻进时继续保持这种趋势,直至钻孔冲洗液全部漏失,孔内水位很低或无水;其二则是从某一孔深位置开始,钻孔冲洗液突然全部漏失,孔内水位很低或无水;其三是导水裂缝带顶界以上的岩层程度不同地出现钻孔冲洗液全部漏失现象,甚至同时伴有孔内水位很低或无水现象。位于浅部区且岩柱尺寸较小的钻孔一般均属前两种类型,而位于深部区及岩柱尺寸较大的钻孔一般则属后一种类型。钻孔冲洗液法具有简单、易操作、可靠、实用、观测数据较能反映实际导水情况等优点,是获取冒落带和导水裂缝带高度及特征的基本方法。
i.裂隙带顶点的确定。有下列情况之一时,即可认为进入了裂缝带:①若岩体的原始渗透性较差,当钻孔的冲洗液漏失量显着增加,即大于1L/min或0.1L/s·m时;②钻孔水位显着降低,水位下降速度加快,甚至无水时;③岩心有纵向裂缝及轻微吸风现象时。
ii.垮落带顶点的确定。钻孔进入垮落带以前,冲洗液早已完全漏失,孔内无水。此时应根据钻进中的异常现象及岩心破碎情况来确定垮落带的顶点。
iii.垮落带和导水裂缝带高度的确定。垮落带和导水裂缝带的高度,分别等于钻孔孔口至煤层的垂直距离减去垮落带和裂缝带起始点的钻孔孔深。考虑到垮落带和裂缝带内覆岩的压缩量,因此有
H垮=H-h1+W
H导=H-h2+W
式中:H——钻孔孔口至煤层顶面的垂直距离(m);
h1——垮落带起始点至钻孔孔口的垂直距离(m);
h2——裂缝带起始点至钻孔孔口的垂直距离(m);
W——垮落带和裂缝带内覆岩的压缩量,相当于打钻过程中地表点的下沉值(m)。
3)钻孔的孔位、孔径、孔数及施工时间。钻孔孔数一般以5个为宜,分布布置在采空区地面沿煤层走向和倾向主断面上,每个主断面上布置3个钻孔,其中一个位于两个主断面的交点上,钻孔位置应选在能获得垮落带和裂缝带的最大高度的地方,走向主断面上钻孔应位于距开切眼30~50m、距停采线20~30m的采空区内,倾向断面上采空区中央应布置一观测钻孔,其余两个钻孔应设在距回风巷和运输巷3~5m的采空区一侧地表。钻孔孔径一般为91mm。
(2)形变-电阻率探测法
1)基本原理。岩体的电阻率大小不仅取决于岩性,还与岩体中的裂隙大小、裂隙数量及充水程度密切相关。地下煤层采出后,上覆岩体遭受破坏,裂隙增多,阻碍了电流传导,导致电阻率增大。但若裂隙内充水,因水的导电性能优于岩体,电阻率便相应降低。因此,对比开采前后岩体电阻率的变化规律,就可探测出覆岩的破坏高度和破坏形态。
2)观测方法。首先,在某一固定点上测量岩体电阻率随深度的变化,以确定岩体的破坏高度。固定O点,对称地打入A1B1及M1N1电极,M1N1的距离一般可取为A1B1距离的1/30~1/3。通过测量电流及电位差,即可计算出探测高度为A1B1/2时的视电阻率ρs1。加大供电极距到A2B2,测量电极距按比例扩大至M2N2,获得探测深度为A2B2/2时的视电阻率ρs2。依此进行,即可得出视电阻率ρa随探测深度的变化曲线。实际上真正的探测深度H与供电极距AB具有如下关系:
郑州煤矿区水害防治规划研究
式中换算系数K因地而异,可依实测资料反演得出。
之后,固定某一探测深度H,测量岩体视电阻率ρa随某一剖面的变化。对比开采之后视电阻率的变化情况,则可确定出覆岩的破坏高度和沿某剖面覆岩的破坏形态。钻孔冲洗液消耗量观测法(简称为钻孔冲洗液法)是通过直接测定钻进过程中的钻孔冲洗液消耗量、钻孔水位、钻进速度、卡钻、掉钻、钻孔吸风、岩心观察及地质描述等资料来综合判定垮落带和导水裂缝带高度及其破坏特征的一种方法。
3.顶板砂岩水的预疏放
对顶板砂岩水进行预疏放为工作面回采大幅度降低水压,以防顶板冒落时大流量突水冲溃工作面,减少工作面涌水对回采的影响。一般采取两种形式:
1)顶板疏放钻孔。在用物探手段查明顶板富水区的前提下,为了减少顶板砂岩水对回采的影响,探明工作面顶板上方岩层赋水状况,对二1煤顶板上覆含水层进行预疏放,对顶板砂岩水提前疏水降压,降低由于顶板冒落引起顶板水集中涌入工作面的峰值强度,消除或减弱工作面回采时砂岩水对开采的威胁。在工作面上巷施工放水钻孔,将顶板砂岩水相对集中的涌水方式改为相对分散的、循序渐进的逐段放水方式。分析水文地质条件,调查矿井裂隙发育方向,提高单个钻孔放水效率,扩大放水区域,减少放水孔数量。为获得顶板砂岩资料,将放水钻孔水文地质条件探测分解消化于逐段放水之中。
2)疏水巷。当放水钻孔对顶板砂岩含水层疏放效果不理想时,可以在适当地段修建疏水巷道,该巷道应与顶板砂岩径流方向垂直,尽可能切穿顶板砂岩裂隙,以达到最佳的放水效果。通过疏水巷道对工作面顶板砂岩含水层的袭夺,形成以疏水巷道为中心的降落漏斗,达到减少工作面涌水的目的。
4.排水措施
由于煤层顶板主要为数百米的砂岩弱含水层,含水性虽然较弱,但存在局部强含水段。采用放顶煤工艺后,顶板破坏加大,导水裂隙发育向上延伸可达百米以上,上下沟通多个含水段。采煤后随着顶板垮落,上覆砂岩水多从老塘以老塘水形式涌出,老塘水受到堵塞时积聚,当压力升高超过临界值时突然涌出,危害严重,因此需考虑对涌水采取排水措施。
(1)采空区埋设花管
为了将采空区积水引出采空区,可预先在采空区每隔20m设置一根花管,沿下巷向上巷布置,花管长100m左右。将采空区水引至下巷排出。需要说明的是由于二1煤较软,因此并不能完全将涌水排除,该花管只能减少涌水在采空区的积聚,减小大量积水对工作面生产的危害。
(2)施工泄水巷
1)专用泄水巷。专用泄水巷在工作面下巷北侧,距离下巷约5m,在煤层底板下的细砂岩中修建,泄水巷涌水采用自流形式。每隔50m施工一条联络巷,或在低凹地段设置联络巷,将工作面涌水排除,这样可以在水量较大的情况下仍不影响生产。
2)施工双下巷。在距离工作面下巷约20m处再施工一条巷道,该巷道对工作面可以作为泄水巷,可以将工作面涌水排出,同时该巷道也可以作为相邻工作面的上巷。每隔50m设一条联络巷,以保证工作面涌水顺利进入泄水巷。缺点是增加了掘进巷道,同时增加了维护费用。
❻ 地球物理勘探技术面临的问题与发展趋势
随着勘探领域的扩大与深入,遇到的地质条件越来越复杂,地球物理勘探将面临多种多样的问题。其中主要问题可以概括为以下3个方面,今后的发展也将围绕克服这些问题而开展。
1.提高微弱地球物理信号的采集与处理水平
地球物理勘探技术是依据对观测的地球物理场数据的分析来实现探测目的的。因此,数据采集是地球物理工作的基础。历史的发展充分说明,数据采集精度的提高,使得地球物理探测的应用效果、应用范围不断扩大。例如重力仪的精度从20世纪50年代的(0.2~0.4)×10-5m/s2提高到目前的(0.01~0.03)×10-5m/s2,使得重力勘探的能力和应用范围大大加强和拓宽。地球物理方法和理论的进展,需要数据采集技术的进步作保证才能得以实现。世界上所有地球物理技术发达的国家,都有强大的仪器研究与制造业做后盾。为了使我国地球物理工作的发展居于世界先进水平,也必然要加强仪器的研制。
其中包括:①高性能探测换能器的研制,如新型地震检波器和核射线探测器等;②高性能人工源的研制,在地球物理方法中,除观测重力场和磁场等天然场的方法之外,有许多是借助人工场激发的物理场进行的,如地震勘探和大部分电法勘探,为了获得更多的地质信息,场源往往起很大作用,因此,各种场源的研究,也会是今后发展的一个重要方面,如高性能的震源、大功率的电源、高产额的射线源等;③高性能数据记录系统的研制,随着方法的进步,数据量的加大,要求记录系统有更高的性能,例如三维地震和高密度电法,都要求仪器的道数增加。为了提高探测的分辨率,则要求记录系统的带宽和动态范围加大等。
地球物理数据处理的目的是消除各种干扰因素,突出所需的地质信息。这些干扰因素包括:与测量技术有关的影响因素、环境影响因素以及非研究目标的其他地质因素的影响等。不同地球物理方法,受各种因素的影响程度不同,因而处理的重点和方法也不相同。以地震勘探为例,为了提高数据的精度,需要消除近地表因素对一致性的影响;为了有效地提高分辨率,需要进行提高信噪比处理;在反射倾角比较大时,为了减少空间假频,需要进行道内插处理;为了提高解释精度,需要进行提高地震数据的保真处理等。
2.非均匀地质体的探测与描述
几何形体简单、物性分布均匀、埋藏深度较浅且易于发现的矿产资源,今后将越来越少,物探人员面对的将是岩性不均匀、结构与构造复杂、物理性质在纵向和横向上均有较大变化,并且埋藏较深、地质条件复杂的勘探对象。为了查明空间上不均匀变化的对象,必须获得足够的能表征地下内部结构和性质的参数,才有可能比较细致地勾画出对象的复杂特征。所谓足够的参数,一是指参数的种类,二是指每种参数的数量。为了清晰显示研究对象的空间特征,近20年来各种物理场的成像研究取得很大进展,包括地震波成像、电磁波成像和位场成像等。
地震波成像可以在地面、井间和井地之间进行。在已知速度的情况下可以进行几何结构成像,或已知几何结构的情况下进行物性结构成像。地震波成像在石油天然气勘探中已取得一些实用的效果,其中突出的实例如利用叠前深度偏移清楚地获得了古潜山的内幕(杨长春等,1996),但是目前地震勘探实际观测的主要还是纵波的垂直分量,多波多分量的观测与应用研究还只是开始。另外,实际地下介质不仅具有纵向和横向的不均匀性,而且具有纵向横向的各向差异性。只有充分地利用地震波的多种信息,才能够对岩性变化、裂隙的发育状况和孔隙中流体的性质有更准确的了解。井向地震波层析成像比地面地震的分辨率高,随着井下设备的发展,将成为开发地震的重要工具。单井地震波成像即保持井下地震波不受表层干扰的优点,同时不受需要两口井的限制,有可能得到较大发展。超声波井壁成像是成像技术在油田勘探中的另一项重要应用,它可以划分裂缝发育层段,从而有效地圈定裂缝储层,目前它的分辨率还比较低,定量解释技术有待开发。
电磁波成像包括低频的电磁感应法和大地电磁测深,以及高频的探地雷达成像等。电磁波成像也可以在地面、井下、井间或井地间进行。相对于地震波成像,电磁波成像的方法理论和技术还处于发展的初始阶段,许多地方沿用了地震波成像的方法技术。但是由于描述电磁波传播过程的方程中含有扩散项,且其传播常数为复数,因此采用地震波成像方法和技术处理电磁波成像问题,往往得不到理想的效果。目前,低频电磁波成像的应用还处于萌芽阶段(何继善1997),因此,电磁波成像的进一步发展,必须根据自身的特点探索新的路子。
由于高频电磁波方程可以简化为类似于弹性波的波动方程,所以探地雷达的数据处理和解释多采用反射地震的方法技术,主要修改在于尺度标定和参数选择。跨孔的高频电磁波成像,当井间距离不大时,在探测高导金属矿体和溶洞方向已取得一些成功实例。为了提高高频电磁波法对几何结构的分辨率,发展针对其动力学特征的处理技术势在必然(王妙月等,1998)。
随着数据采集技术的改进,直流电阻率法成像方法近年来也取得了一些进展。在理论上,直流电阻率法成像与地震波和电磁波成像方法不同,直流电场由拉普拉斯方程描述。由于直流电阻率法观测设备与野外作业方法简单、探测深度较大,因此在油气勘探、金属矿勘探和工程勘查中应用前景更广阔。
地球物理对复杂对象的探测,是在计算机技术迅猛发展的带动下才得以实现的。成像技术的特点是未知数多,观测数据量大,只有观测信息对每个未知数的覆盖次数足够多,才能使解出的未知数比较可靠。同样,地球物理勘探结果可视化的需求也推动了计算机技术的进步,并且计算机将在今后的地球物理数据的运算中起主要作用。
3.综合利用多种信息,减少地球物理反问题的多解性
地球物理勘探是通过在地表、空中或井下局部地球物理场的观测结果,去分析推断地下不能直接观测部分物质的性质和形态。由于物质形态和性质变化对地球物理场影响的等效现象,使得反问题解答不唯一。如果再考虑观测误差和干扰等因素的影响,以及描述物理场的数学表达和计算方法的不精细,问题就进一步复杂化。从某种意义上讲,地球物理探测技术就是围绕着如何减少多解性的影响,给出更可靠的地质答案这一目的向前发展的。今后仍将沿这个方向继续前进。
地球物理探测的对象越复杂,表征其性质、结构和构造的变数越多。另外,不同的地质对象可能具有某些相同的物理性质。因此,为准确描述一个复杂的探测对象,或区分不同的研究对象,都应该综合利用多种信息,这已成为广大研究人员的共识。例如在油气勘探中,除地震、测井数据综合外,综合使用其他勘探数据,如重磁勘探和电法勘探数据,在处理复杂地质条件的问题时,也是非常重要的。随着多种信息综合应用的进展,油气勘探研究思路也在发生变化。油储地球物理的发展就是一个很好的说明(刘光鼎等,1998)。可以预计,随着复杂探测对象的不断出现,将推动综合信息找矿方法进一步发展。同时,将推动下列几个方面的研究向前发展。
1)新方法和新参数的探索:地球物理勘探理论和方法在客观需要的推动下,始终是在不断完善已有方法和探索新的方法两个方面同时前进的。新的物理参数的应用,将减小多解性的影响,例如,当地震波被利用之后,通过纵横波综合利用,大大减小了对岩性判断的不确定性。地震勘探中对多波多分量的研究,电法勘探中地电化学法和电磁导弹的研究,以及震电效应和震磁效应的研究等,都是为探索新方法和新参数所做努力的一部分。当地球物理数据中不含有足够的地质信息时,只依靠数据处理是达不到目的的,必须增加新的物性参数以补充和丰富地球物理数据中携带的地质信息,再通过适当的数据处理方法才有可能获得可靠的地质结论。
2)“直接”找矿和“间接”找矿相结合(孙文珂,1991;赵文津,1991):“直接”找矿是根据矿体或矿体群产生的地球物理场异常直接指出矿体或矿体群的属性、具体位置或其他有关情况。“间接”找矿是根据矿床的直接控矿因素及近矿围岩引起的异常现象指出矿床可能的分布地段。为了正确确定物探的任务是“直接”找矿还是“间接”找矿,就需要正确了解勘探对象的地质、地球物理特点,建立目标物的地质-地球物理模型。地球物理勘探的目的是要对地质单元作精细的刻画,因此模型首先是以地质模型为基础。通过模型建立将得出最佳的勘探工作程序和方法组合,即勘查工作模式,以及识别目标物的标志,即预测目的物的准则(孙文珂,1988,1991)。预测准则就是能指示或圈出矿产资源目的物存在的有效标志信息组合或系统。在这个系统中,如果既包括“直接”找矿信息,又包括“间接”找矿信息,将会大大减小解的非唯一性的影响。通过矿床成因模式的研究,使人们对不同的成矿地质背景下不同类型矿床的成因及矿床赋存条件,能有一个比较清楚的了解。因此,借助于矿床成因模式,人们可以获得清楚的找矿思路和找矿工作方向。地球物理工作者在矿床成因模式的基础上,结合地球物理场的特征分析,逐步形成了比较完整的综合找矿模式,用以指导勘查工作和作为资料解释的依据。按照“模式找矿”的思路,国内外都有许多成功的找矿实例(何继善,1997;赵文津,1991)。然而,矿床模式只能代表人们当时对已取得的矿床特征、矿床成因认识的总和。地质情况的变化是十分复杂的,完全相同的情况是很难遇到的。因此,既要重视模式找矿,同时又要考虑到会不会有未包括在已概括的找矿模式之内的新类型矿床或新的矿产资源。特别是在一个新的地区不要拘泥于某一种模式。
3)正反演方法的改进:地质现象十分复杂,其物理场特征的数学表述不够准确,往往是造成正反演不准确的原因。例如,一个非线性问题,往往由于不恰当的用线性近似处理,得不到好的结果。因此,地球物理工作者应不断吸收数学等相关学科的最新成果,来改进地球物理正反演方法,以取得可靠的地质效果。
4)多参数联合反演:对同一研究对象的两种以上物理场的观测结果,或同一种物性参数两种以上不同观测方式得到的结果进行联合反演,是减小解非唯一性影响的有效途径之一(王家映,1997)。
5)数据综合管理:为了有效地实现多种信息综合应用,数据的综合管理是关键因素之一。地球物理与地质数据类型的多样性和数据量的不断增大,使得数据管理的任务更加复杂。为了能有效地存储和管理大量的勘探数据,提出了数据仓储概念,以便为多种数据集成创造条件。
小结
通过简单的介绍物探方法的分类、实质、特点及地球物理勘探在资源勘查中的作用,地球物理勘探面临的任务、问题及发展趋势,激励学生学习热情,树立信心,努力掌握物探技术。
复习思考题
1.何谓地球物理勘探?
2.地球物理勘探面临的任务?
3.地球物理勘探在资源勘查中的作用?
❼ 研究背景及意义
中国矿产资源丰富,开采历史悠久,地下矿产资源采出后留下大量的采空区,特别是自20世纪80年代以来,中国矿业开采秩序较为混乱,非法、无规划的乱采滥挖现象严重,在一些国有矿山周边留下大量的不明采空区,致使矿山开采条件恶化,给矿山生产和安全带来严重影响。采空区按矿产被开采的时间,可分为老采空区、现采空区和未来采空区。矿体被采出后,自顶板开始由下向上依次垮落、断裂、离层、弯曲变形并在地表一定范围内形成下沉盆地。采空区上覆岩层按其破坏程度不同,从下到上大致可划分为“三带”:垮落带、导水裂隙带和弯曲带。采空区上方地表存在下沉和水平两种移动,倾斜变形、曲率变形与水平变形3种变形。地下开采地表移动分开始期、活跃期、衰退期3个阶段[1]。老采空区的移动主要应考虑衰退期结束后的地表移动,主要包括两个部分:①是已采块段对地表影响尚未结束的部分;②是采动碎裂岩体及上覆岩层在覆岩重力作用下逐步压实变形过程,此变形受上覆岩层地质环境条件的影响,如地下水的软化、风化及外部荷载影响等,使煤岩体强度降低,导致结构失稳,引起地表产生连续或非连续变形,这一时间过程往往比较漫长,由此带来一系列环境地质灾害问题,如山体边坡发生蠕滑而变形,甚至产生采空区大面积塌陷等,而塌陷区会导致地下水位下降以至枯竭、耕地破坏、生态环境恶化、道路变形破坏、房屋倒塌等,给矿区或穿越矿区的铁路、公路等工程建设留下很大隐患。
煤炭是中国的基础能源和重要原料,在一次性能源生产和消费构成中历来占70%左右,在国民经济发展中具有重要的战略地位。“煤为基础、多元发展”,是解决中国能源问题的基本方略,但在今后相当长的时间里,以煤炭为主体的一次能源结构不会改变。中国的煤炭消费量已由2005年的18.43×108t增长至2011年的37.27×108t,年均增幅达到12.45%,煤炭产量由2005年的21.13×108t增长到2011年的35.20×108t,年复合增长率为8.88%,预测“十二五”期间,全国煤炭需求总量仍将保持增长态势,到2015年中国煤炭需求总量将达到40×108t[2]。煤炭采出后导致上覆岩层移动和变形,岩体强度也会降低,在建筑荷载或列车动荷载作用下,甚至无建筑荷载或列车动荷载而由于其他地质原因作用下,有可能使老采空区重新“活化”,使冒落岩体再压密而导致地表产生新的移动和变形,甚至垮落,形成塌陷坑。采空区的存在对工程建设及地表建(构)筑物能产生潜在的安全威胁并具有以下特点:采空区特征难以弄清,其“活化”过程受多种自然因素和人为因素的影响并难以直接观察,采空区活化失稳破坏具有突发性,塌陷时间难以准确预计。
随着煤炭资源的大规模开发和利用,在给社会带来巨大的经济效益和社会效益的同时,也给矿山周围生态环境带来严重的伤害和破坏。采空区突然塌陷引发突发性地质灾害给人民群众财产和生命安全带来了巨大的经济损失和威胁,2011年7月28日,因连日强降雨,河北迁西县金信铁选厂红石崖嘴矿区职工宿舍发生地表塌陷,造成6人遇难。2007年8月29日凌晨3时许,陕西省神木县孙家岔镇边不拉煤矿矿井采空区发生塌陷引发地震,附近村民在睡梦中被惊醒。2005年12月26日13时05分,位于河南省安阳县都里乡林州市三鑫工贸公司都里铁矿,突然发生大面积塌陷,形成一个长约100m、宽约50m、平均深度6m的大坑。经勘验,这一地表塌陷区地下空洞是1992 年铁矿采空后留下的,塌陷与铁矿现采掘活动没有直接关系,在这起突发的地质灾害中,共有8人坠落、3人失踪。在晋城矿区,铁路从运营开始就受到了采空区的危害和影响,由于采空区本身还未稳定以及机车车辆动载的影响,线路经常处于不稳定状态,给行车安全带来了极大的隐患,1999年4月1日清晨,成庄线路巡道工发现DK2+600、DK2+800 路段又突然下陷长约12m,线路两侧田地出现多处最宽约10cm的裂缝,轨道几何尺寸发生严重变形,偏差极大,由于发现及时,迸行了迅速处理,防止了列车脱轨、颠覆重大事故的发生(图1.1)。位于四川省甘洛县境内的成昆铁路K309—K312段线路两侧存在大量铅锌矿,形成多处采空区,危及铁路安全要求,当地政府提前采取有效的预防治理措施后,确保成昆铁路的运营安全。随着矿产资源不断被开采,类似由于采空区的变形破坏给铁路安全运行带来隐患的报道还在增多。
图1.1 铁路附近采空区塌陷
铁路沿线采空区在火车动荷载的作用下更易引起地表变形和采空区塌陷,影响铁路路基的稳定性,是铁路运营必须解决的一个严重问题。首先威胁着铁路运输的安全,由于采空区本身未稳定以及机车车辆动载的影响,采空区沉陷不断发生,线路处于不稳定状态,给行车安全带来极大隐患;其次影响铁路运输效率,采空区的沉陷造成线路的不稳定,使行车不能按照规定的时间和速度要求行驶,运输生产效率受到严重的影响;再者增加铁路线路的维护保养难度和工作量,采空区地段线路极不稳定,且沉陷发生在时间和空间上都不能确定,因而线路的几何状态变化也变得复杂,很难控制和掌握,需要经常性地监测和维护。因此采空区顶板的稳定性问题作为铁路建设的不良地质问题已越来越突出。铁路线路是延伸性的建筑物,如果某一区段出了故障,全线通车将受到影响,如果不对地下采空区迸行稳定性评估及加固处理,就可能引起地表沉陷并降低路基的稳定性,给行车带来不安全因素。在地表的拉伸区,线路也发生拉伸变形;在地表的压缩区,线路亦发生压缩变形,将在钢轨内部产生拉应力或压应力,当钢轨内部的应力大于许用应力时,将在列车运行动荷载作用下,导致钢轨线路失稳造成列车脱轨事故[3,4]。
采空区是一种特殊的岩土工程对象,实际上是矿山开采沉陷学的延伸、拓广与发展,是开采沉陷学与岩土力学、土木工程、矿山地质、采矿工程、地下工程控制相结合的产物。因此,对老采空区顶板稳定性影响因素分析研究,迸而更合理的对采空区稳定性做出评价,不仅是对采空区迸行安全管理的前提和制定治理措施的依据,而且对保证铁路在设计使用年限内安全营运有着重要的理论和现实意义。
❽ 城市地下岩土工程发展的背景
城市地下岩土工程是岩土工程的一部分,是城市可持续发展,特别是我国大城市可持续发展所面临的诸多问题之一,更是摆在岩石力学工作者面前的新课题和新任务。
1 城市地下岩土工程是新世纪城市建设的重要环节
随着国民经济的高速发展,我国城市化水平正在快速提高,从1990年的18.96%提高到1997年末的28.9%。城市化水平的提高标志着城市工程建设的飞速发展。但是,我国城市建设基本上沿用“摊大饼”的粗放发展模式,给国民经济带来不应有的损失。主要是:
(1)城市范围无限制地外延扩展,耕地损失严重。据卫星遥感资料判断和测算,1986~1996年间,全国31个特大城市城区实际占地规模扩大50.2%,有的城市占地成倍增长。另据预测,至2010年,我国城市总数将从1996年的640座增加到1 000座,其结果是占用了大量耕地。到下世纪中叶,我国城市化水平将提高到65%左右,这意味着城市人口将比1990年增加7亿多人,按每个城市人口用地100 m2计,将占用耕地1亿多亩。土地问题是我国可持续发展的关键,城市人口急剧增长与地域规模的限制已成为城市发展的突出矛盾,城市 发展非走节约土地的集约化发展模式不可。
(2)城市人口密度大,形成了所谓的“城市综合症”。首先表现在城市交通阻塞,行车速度缓慢。例如北京市干道的平均车速比10年前降低50%以上,且正以年递减2 km/h的速度持续下降。上海、北京每公里道路的汽车拥有量相应为506辆与345辆,为发达国家大城市相应拥有量的1倍及至数倍。其次是,由于城市基础设施落后于城市面积的扩展和城市人口的增长,造成城市环境的恶化。当前我国城市环境形势日趋严重,大气污染日趋加剧,全国500多座城市大气质量达到一级标准的不到1%,酸雨面积超过国土面积的40%,重庆等城市尤为严重;城市污水80%未经处理排入江河;城市地下水受到污染;垃圾围城现象普遍;噪声污染普遍超标,建筑空间拥挤,城市绿地减少,生态恶化。
(3)城市总体抗灾抗毁能力偏低。在城市总体规划中,除防洪、防空外,目前尚缺少综合防灾的内容,城市基础设施的防灾措施处于空白。为了克服这方面的弊端,解决城市人口、环境、资源三大危机,医治“城市综合症”,实施城市可持续发展,世界发达国家都在把地下空间作为新的国土资源,开发利用城市地下空间,成为越来越受到重视的城市建设指导方针和发展方向。
城市功能空间能转入和宜转入地下的领域是很广阔的,包括商业、交通、部分市政设施、文化娱乐休闲、部分工业生产、仓储、防灾(避难)和救灾空间等。充分利用地下空间是城市立体化开发的最重要组成部分。它可以达到扩大空间容量、提高开发集约度、消除步车混杂、交通顺畅、商业更加繁荣,地面绿地增加,环境优美开敞,购物与休闲,娱乐相互交融的多功能效果,与向城市上空发展的模式相比,是一种更为合理的发展模式。
向地下要土地、要空间已成为城市建设发展的必然趋势,显示了无比的优越性。我国及国外大城市的地下商业城(街)、地下车库、地下影剧院、地下铁道、地下人防系统,是众所周知的城市地下工程。有的国家已开始实施和计划采用地下污水收集和处理设施、地下垃圾处理厂、地下超导磁直接储存电能、地下供热供冷系统、地下多功能公用隧道(共同沟)以及具有抗灾功能的地下空间系统。它们是未来城市建设的发展方向。
2 城市地下岩土工程的特点及难点
众所周知,地下岩土工程是一个具有悠久历史的领域。可以说自有人类以来就有岩土工程,特别是进入工业社会以后岩土工程处处存在,但是城市岩土工程,除了传统的地面房层工程外,地下岩土工程却是随着现代城市的兴起而发展的。经过最近几十年的实践,无论从设计、施工、设备和工艺,还是理论、技术和经验,都已达到相当高的水平,特别是深埋地下岩石工程,更是达到了较成熟的程度。
但是,城市地下岩土工程却具有与一般岩土工程不同的特点,主要是:多数埋深较浅。地面建筑、交通设施密集,地下管线多,开挖造成的影响大,地质条件复杂,多以土体为主,常有膨胀土、沙层、地下水,尤其是沿海沿江城市,淤土、软土的开挖难度更大。因此,城市地下岩土工程存在许多需要解决的特殊问题。主要是:
(1)浅埋、超浅埋暗挖施工技术。城市地下工程的埋深,不仅直接影响工程造价,而且关系到工程使用方便与否,因此,城市地下工程一般埋深较浅。在浅埋、特别是超浅埋的条件下,地下工程需要穿越建筑物和线路、街道,地面保护成为施工技术中的首要问题。
(2)复杂、恶劣环境下的开挖技术。诸如流砂层、膨胀土、高压缩性软土淤土、风化破碎岩石、高浓度瓦斯地层、大涌水、硫化氢、岩溶、高应力、地下管线、地面大车流量、大型载重车多、建筑物密集等等,都是地下岩土工程施工中的难题。
(3)大断面隧道开挖、支护技术。主要是地铁车站及商场、仓库、厅、室,其跨度尺寸达10 m以上。
(4)开挖影响控制技术。随着工程埋深的减小,开挖对地面的影响越来越大,在超浅埋条件下,开挖影响的控制与开挖方式、施工工艺、支护方法等众多因素有关,是地下工程施工中最为复杂的问题。
3 城市地下岩土工程的开挖技术及其适应条件
我国城市地下工程建设起步较晚,随着人防、地铁、地下商场、仓库、影剧院等大量工程的建设,特别是近年来的工程实践,城市地下空间开挖技术得到了长足发展和提高。我国城市地下隧道及井孔工程先后采用了明挖法、暗挖法、盖挖法、盾构法、沉管法、冻结法及注浆法等,这些技术有的已达到国际先进水平。
3.1 明挖法
明挖法具有施工简单、快捷、经济、安全的优点,城市地下隧道式工程发展初期都把它作为首选的开挖技术。其缺点是对周围环境的影响较大。
明挖法的关键工序是:降低地下水位,边坡支护,土方开挖,结构施工及防水工程等。其中边坡支护是确保安全施工的关键技术。主要有:
(1)放坡开挖技术。适用于地面开阔和地下地质条件较好的情况。基坑应自上而下分层、分段依次开挖,随挖随刷边坡,必要时采用水泥粘土护坡。
(2)型钢支护技术。一般使用单排工字钢或钢板桩,基坑较深时可采用双排桩,由拉杆或连梁连结共同受力,也可采用多层钢横撑支护或单层、多层锚杆与型钢共同形成支护结构。
(3)连续墙支护技术。一般采用钢丝绳和液压抓斗成槽,也可采用多头钻和切削轮式设备成槽。连续墙不仅能承受较大载荷,同时具有隔水效果,适用于软土和松散含水地层。
(4)混凝土灌注桩支护技术。一般有人工挖孔或机械钻孔两种方式。钻孔中灌注普通混凝土和水下混凝土成桩。支护可采用双排桩加混凝土连梁,还可用桩加横撑或锚杆形成受力体系。
(5)土钉墙支护技术。在原位土体中用机械钻孔或洛阳铲人工成孔,加入较密间距排列的钢筋或钢管,外注水泥砂浆或注浆,并喷射混凝土,使土体、钢筋、喷射混凝土板面结合成土钉支护体系。
(6)锚杆(索)支护技术。在孔内放入钢筋或钢索后注浆,达到强度后与桩墙进行拉锚,并加预应力锚固后共同受力,适用于高边坡及受载大的场所。
(7)混凝土和钢结构支撑支护方法。依据设计计算在不同开挖位置上灌注混凝土内支撑体系和安装钢结构内支撑体系,与灌注桩或连续墙形成一个框架支护体系,承受侧向土压力,内支撑体系在做结构时要拆除。适用于高层建筑物密集区和软弱淤泥地层。
3.2 暗挖法
适用于城市中不能采用明挖法施工的地方,亦适用于松散层及含水松散层地层。
一般应按照“新奥法”原理设计和施工,采用较强的初期支护,先注浆后开挖的方法。施工原则是:“管超前、严注浆、短开挖、强支护、快封闭、勤量测”。一般用30~50 mm钢管超前棚顶导管,然后注入水泥或化学浆,形成“结石体”,以增强围岩自稳能力。每次开挖进尺0.75 m左右,先进行环状开挖,留核心土,预喷5~8 cm混凝土,架拱架和钢筋网,再喷25~30 cm混凝土,形成初期支护,做防水层后再做二次衬砌。
暗挖法有单拱单跨和多拱多跨暗挖施工技术。北京地铁西单车站为多拱多跨。也有三连拱、四连拱、五连拱地铁车站、公路隧道和地下商场。北京天外天地下商场为五连拱结构。还有平直墙暗挖施工技术。国际上传统的暗挖法其顶部都是拱形结构,我国创造出平顶直墙超浅埋暗挖施工技术,如北京长安街过街道。
在岩石中进行暗挖施工时,一般采用钻爆法。为了保护围岩的自承能力,普遍采用光面爆破技术。为了减少对地面的振动影响,还采用微差爆破及合理设计爆破参数等减振技术。
3.3 盖挖法
指的是边坡支护为连续墙、混凝土灌注桩,其上为盖板所构成的框架结构,并在其保护下开挖及结构施工的方法。它具有快速、经济、安全的优点,是较明挖法对环境影响少,较暗挖法成本低的一种方法。适于市区高层建筑密集区。
盖挖法可分为由浅而深地逐层开挖、逐层做结构的盖挖逆作法以及依次开挖至底后再做结构的正作法两种。前者适用于地质条件复杂、开挖断面大的情况,后者反之。
3.4 盾构法
指的是全断面推动园筒状钢盾构进行开挖的方法。施工方法有人工、半机械及全机械化多种。盾构由液压千斤顶推进。用盾构法能完成直径几十厘米至十多米尺寸的隧道,以及双联、三联和四联盾构的大型工程。它适于稳定和不稳定松散含水地层。
从施工技术上看,盾构法有泥水盾构法、土压平衡法(可控制地面沉降)、开敞式机械化盾构、气压盾构、插刀盾构及混合盾构等多种。在岩石地层中,也可采用隧道掘进机(岩石盾构)。
此外,国内外还开发了称为“地老鼠”的非开挖技术,包括导向钻进、定向钻进、冲击矛、夯管、水平顶管及螺旋钻等。我国首都机场跑道下采用这种方法完成一次顶进�273 mm、壁厚8 mm、长110 m作为安装通讯电缆用的钢管。我国最长铺管长度可达500 m,最大铺管直径800 mm,铺设设备达到国际先进水平。
3.5 冻结法
地层冻结法是采用人工制冷固结不稳定松散砂土地层或软岩地层,并隔断地下水的施工方法。在拟开凿的地下工程周围钻凿一定数量的冻结孔,通过冻结管中的供液管,循环由制冷设备提供的低温盐水,使地层局部形成不透水且有一定强度能抵抗地压的冻结壁,并在其保护下进行开挖施工,工程完工后,冻结壁融化,地层岩土恢复原状。此法适用于松散含水地层,已在煤矿广泛采用。上海地铁1#线、2#线的联结通道及泵站、上海杨树浦水厂泵站基坑、北京地铁大北窑区间隧道等复杂高难地段,均用此法获得成功,并首次试成水平冻结技术及液氮快速冻结技术。
3.6 沉管(箱)法
沉管(箱)法是采用将事先预制的钢筋混凝土结构,焊封头部钢板、然后放水浮运沉入到设计的位置来建造水下岩土工程的方法。国外及我国煤矿均有大量施工实例。广州珠江隧道采用了这种方法。适于修建过江、过海隧道的水中部分及浅表土层中的竖井施工。
3.7 钻井法
钻井法是一种用途广泛、技术先进的岩土井、孔施工方法,其全部开挖工程在地面操作,工人不需“入地”,劳动强度小,它是通过专门的大直径钻机(我国最大钻井直径9.3 m)驱动钻杆及钻头钻进,泥浆护壁,压气排渣,井壁漂浮下沉,壁后充填固井等工序,一次超前钻进,分级扩孔成井。我国煤矿已成功采用此法完成47个深井井筒。此外还有由下而上施工的反井钻进技术。钻井法在我国矿山、铁路、交通、国防、水电等复杂及水下岩土工程中得到成功应用。
3.8 注浆法
注浆法指的是通过注浆设备以选定的注浆工艺利用钻孔进行岩土加固的一种施工技术。它早就被广泛应用。根据注浆材料不同有单液和双液注浆,水泥注浆、粘土水泥和化学材料注浆;根据注浆机具不同有重力注浆和压力注浆,有渗透注浆和喷射注浆等。
近年来发展起来的高压喷射注浆法,在岩土工程的加固和治水中更是发挥了独特作用,例如高压旋喷桩法、高压定喷墙法以及水平旋喷法。三重管高压旋喷桩法在上海地铁1#线的施工中,对淤泥地层进行帷幕堵水、防渗加固,效果十分理想。高压旋喷桩与灌注桩结合法在高层建筑地基基坑护坡工程中更是得到广泛应用。
4 城市地下岩土工程中的开挖影响及环境保护
城市地下岩土工程中的开挖影响指的是开挖引起的围岩移动与地面沉降,不包括其它扰民影响。地下开挖必然会在其周围岩土体中引起位移与变形。由于开挖深度小,其影响必然要波及到地面上,但由于开挖宽度有限,其影响也是可以控制的。影响的程度与范围,取决于众多因素。对于浅理、超浅埋隧道式开挖工程,主要取决于开挖方式、断面跨度、导坑形式、机具、支护方式与时机、构件刚度、回填、地面载荷(动、静载)、岩土体性质及地下水抽排等。
据实测研究,隧道式开挖引起的地面沉降,其横剖面一般呈盆状,大体上用可概率积分曲线来描述。
对于浅埋和超浅埋隧道式开挖引起的地面沉降,其最大下沉值大致由开挖空间支护前的下沉、地下水抽排引起的下沉以及开挖空间支护后的下沉等构成。这些下沉可通过采取一定的减沉措施减少到最小程度。从北京、上海和广州等城市的地铁施工实例结果看,北京地铁“复—八线”两侧高大建筑物累计下沉量最大仅为2.5 mm,北京地铁西单车站正上方累计地表最大下沉量也未超过30 mm;广州地铁有一段隧道横穿市区主干道天河路,隧道顶距路面7 m,地层为饱含水细砂层,地下密布有供水管、污水管及电缆线,地面昼夜车流量约12万辆,还有载重30~60 t大型集装箱运输车快速通过。开挖后,据对128个测点观测,最大下沉为20.7 mm,低于国际上地面沉降控制标准。
根据国内外浅埋开挖实践,地面减沉的措施有:
(1)围岩预加固。为了加固软弱和松散岩、土体,一般采取导坑或全断面预注浆。对于软弱或破碎岩体,采用单液或双液压力预注浆;对于松散土体,采用单液或双液高压旋喷预注浆。
(2)强力支护。包括预支护、提高支护构件刚度及壁后充填等。预支护有管棚和插板两种方法。管棚钻孔深度受导坑尺寸限制,可兼作注浆管,适用条件广泛。插板需用千斤顶顶进,具有防水效果,但不能用于卵石地层。及时支护可以有效减少支护前的下沉。锁脚锚管是用于分步支护构件基础的稳定,为下部开挖与支护安装创造良好条件,减少上部支护构件的沉降。提高支护构件刚度可以减少支护后的下沉。壁后充填是减少支护构造与岩土体之间空隙的有效措施,在一次支护和二次支护后采用小导管注浆法进行充填。
(3)分步开挖,及时支护。实践证明,分步开挖、及时支护可以有效地减少围岩及地面下沉。例如北京长安街过街道,跨度大(开挖跨度11.6 m)、超浅埋(表土厚度仅0.6~1.0 m)、有动载、地下管线多,为了减少地面下沉,采用“中洞法”分步施工,地面下沉减到24 mm,效果良好。
(4)降水—回灌技术,是治理地下水和减少地面下沉的有效方法,已在北京地铁施工中推广应用。一般是“浅抽深灌”或“前抽后灌”。据北京地铁“复—八线”实测,采用此法后其两侧高大建筑物下沉未超过2.5 mm。
值得研究的是,近年来我国试验成功的“高水速凝材料”,具有快速固结含水砂层的性能。如能在地下工程中进行试验,对于阻隔地下水渗入施工空间,将具有良好的应用前景。
5 国外地下岩土工程开挖技术的新进展
(1)全过程机械化。从护坡、土方开挖、结构施工,包括暗挖法施工的拱架安装、喷射混凝土、泥浆配制和处理等工序的机械化,同时采用计算机技术进行监控,从而保证了施工安全、快速施工和优良的工程质量。
(2)盾构法得到较大发展。近30年内英、美、法、日等国大量采用盾构施工技术,日本已生产盾构近万台,用于地铁、铁路、公路,水工及管网施工,已出现双联、三联、四联盾构,能完成三跨地铁车站,开挖宽度达17 m。日本正设想设计直径80 m的盾构,在地下建造人造太阳和住宅区。
(3)微型盾构和非开挖技术已广泛应用。主要用于建造各种直径的雨、污水、自来水管道和电缆管道。微型盾构就是直径2 m以下的盾构。刀盘掘进,遥控和卫星定位控制方向和坡度,然后安装管片。非开挖技术就是采用微型钻机,通过切割轮成孔,退回钻杆后安装管线或电缆。
(4)预砌块法施工技术。拱圈是在土方开挖后采用拼装机安装,管片上留有注浆孔,衬砌拼装完成后,由注浆孔向壁后注浆,堵塞空隙,增强围岩与衬砌的共同作用。法国用此法施工的最大单拱跨度达24.48 m。
(5)预切槽法施工技术。意、法等国制造了一种地层预切槽机,采用链条沿拱圈将地层切割出一条宽15 cm,长4~5 m的槽缝,然后向槽缝内喷射混凝土,并在其保护下开挖土方,做防水层及二次衬砌,形成隧道。
(6)顶管大管棚法。修建地铁车站时,在顶管内灌混凝土,形成大管棚,再在其保护下进行暗挖施工。
(7)微气压暗挖法。就是在具有1个大气压以下的压缩空气环境下,按照“新奥法”原理进行施工。优点是可以排出地下水,保证工作面干燥;由于气压存在,可减少地面沉降;还可降低衬砌成本。
(8)数字化掘进,又称计算机化掘进(Data drilling,Computerised drilling),应用于硬岩工程的开挖。在数字化掘进时,钻杆的推进是程序化的,从一个洞到另一个洞也是自动的。掘进机手可以同时管理3套钻杆,其作用是监督钻杆的运动,必要时予以调整。孔位、孔深和掘进序列预先已在掘进机的计算机软件中安排,掘进方向由激光束控制,实现了孔的严格定位,从而可以实现掘进工艺的最优化以及曲线隧道的掘进。数字化掘进的优点是:控制隧道掘进的超挖;实现掘进方案的优化;消除了工作面上的人工测量。
作者简介 刘天泉 教授,院士,1927年生,1958年毕业于波兰克拉科夫矿冶学院采矿系,获硕士学位,1959年起至今,在煤炭科学研究总院从事地下开挖影响理论与控制技术研究工作。地址:北京市和平里煤炭科学研究总院,邮码:100013。
作者单位:刘天泉(中国工程院院士,煤炭科学研究总院)
钱七虎(中国工程院院士,总参军事科学技术委员会)
参 考 文 献
1 城市地下空间开发利用设计与施工技术.中国建筑科学研究院,1998(8)
2 钱七虎.可持续城市化与地下空间开发利用.世界科技研究与发展,1998(10)
3 邵根大.北京地下铁路建设中最新的技术进步.北京地铁建设,1994(5)
4 侯景岩等.北京地铁工程降水—回灌技术研究.北京地铁建设,1996(4)
5 洪伯潜等.地下工程特殊施工技术.能源与矿业工程学部学术报告汇编,1998
6 傅同雷.从广州地铁施设中探求防止地面下沉的方法.北京地铁建设,1996(3)
这个很有权威性哦,对您有帮助么?
❾ 动态法测定煤层气井压裂裂缝方位技术
张金成1 王爱国1 王小剑1 丁娜2
(1.大港油田石油工程研究院 天津 300280 2.青海油田钻采工艺研究院 敦煌 736002)
摘要:本文介绍一种应用地球物理方法,即电位法测定压裂裂缝方位、长度等参数的测试技术,它是针对油(煤)层所固有的特点,进行了大量室内外试验及理论研究后取得的科研成果。在简要阐述电位法测试技术的基本原理、测量方法及测量仪器的基础上,文章重点对山西吉试1井、延长油矿8118井的现场应用效果进行了分析,证明了电位法测试技术的可行性及在油(煤)层气田勘探与开发领域中所发挥的重要作用。
关键词:电位法 测量仪器 测量工艺 裂缝监测
Dynamic Testing Technology of Orientation by Potentiometry Method for Coalbed Fracturing
ZHANG Jincheng1WANG Aiguo1WANG Xiaojian1DING Na2
1. Dang Gang Oil Field Co,Tianjin 300280,China; 2. Qing Hai Oil Field Co,Dunhuang 736002,China
Abstract: An applied geophysics method is introced in this paper and this is a new testing technology of o- rientation and length by testing potentiometry of coal-bed fracturing. For attaining the scientific research,substan- tial field experiment and the theory study was carried out based on a large number of physical model and indoor ex- periments against the inherent characteristics of coal-bed seams. The measurement technology was assessed in ap- plication that it had high accuracy and not any break to proction compared with other measurement meth- ods. After showed the fundamental principles of testing、measuring instruments and measuring methods,the tes- ting data of well JiShi 1 and well WuShi 5 3 was focusly analyzed and the result indicated the testing technology of orientation by potentiometry method was entirely feasible and had more significance for coal-bed fracturing.
Keywords: Potentiometry method; Measuring instruments; Measuring technique; Orientation of coal-bed fracturing
作者简介: 张金成,1961 年生,高级工程师; 1990 年毕业于成都地质学院物探系,2002 年毕业于吉林大学地探学院,获工程硕士学位; 先后在有关刊物发表学术论文十余篇,电位法井间监测技术研究获大港油田集团一等奖; 多年来一直从事井间监测技术的研究工作。联系电话: 022 25925803 ( 13802162056) E mail: zjc_ 2056@sohu. com
1 研究背景
对煤层气藏的可采储量进行经济评价后,若要经济的开采煤层气,煤层中必须发育并广泛分布裂缝系统(割理面必须与井筒相联),这样才能加速煤层气的排水降压,促使煤层气解吸并流向井底。众所周知,煤层的主要特征表现在:煤层割理发育、弹性模量低,这样水力压裂在煤层中形成和支撑长裂缝是极其困难的。鉴于此,人们常把水力压裂看作是一种将井筒与割理系统连通的作业过程,但远离井筒后还仍然是与普通砂岩一样,主要以平行于最大主应力方向的弯弯曲曲的垂直裂缝和水平裂缝为主。
针对煤层固有的特点(近于非弹性体),在“九五”期间进行了地面电位法测定煤层气井压裂裂缝方位的研究与试验工作,2000年在地面电位法技术的基础上,又开展了《动态法测定压裂井压裂裂缝监测技术》的研究工作,成功的研制出DCT50型动态影像监测系统,该系统可对压裂全过程实现实时、可视化动态监测,进一步扩大了方法的应用范围。在此基础上,2008年又开展了一体化精密仪器系统DDPI—EM的研发,并申请相关发明专利两项,这套系统能提供一种高测量精度的、抗干扰的能加载伪随机编码的可控信号,其中的可控信号加载有伪随机编码,在煤层气井内深层发射,在地面测试人工电场时,能够排除干扰背景,可清晰地分辨深层低阻异常体。至此,形成了完整的具有鲜明特色的动态法测定煤层气压裂裂缝方位技术。
2 测试原理和基本公式
假设地层是一个无限大的均匀介质,若通过导线及套管以恒定电流向地层供电,在地层中则形成一人工电场,在供电电极以外任一点M(x,y,z)观测电场的电位为:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
对于平面环形测量来说,只与井深h和测量环半径r有关,上式可改写为:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
式中:ρ为地层视电阻率(Ω·m);I为供电电流强度(A);h为测试目的层深度(m);r为观测点M到点源dz之间的距离(m)。
当场源为任意形状时,计算外电场电位应在场源处划出一个面元ds,如果ds处的电流密度为j,则从ds处流出的电流为jds,它在观测点M产生的电位dUM仿上式可写为:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
积分得外电场电位:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
从(3)式看出,当观测点M相同时,由于场源的几何形状不同,所产生的电位值也不相同。
压裂施工中,如果所用的压裂液相对于地层为一个良导体,即液体电阻率与地层介质的电阻率相比差异较大时,利用被测井套管向地层供以高稳定度的电流(被伪随机码调制),这部分压裂液在地层中即可看作为一个场源,由于它的存在将使原电场(未进行压裂施工前的地面电场)的分布形态发生变化,即大部分电流集中到低阻体带,这样势必造成地面的电流密度减小,地面电流密度减小相应的地面电位也会发生较大的变化。鉴于此,若在被测压裂井周围环形布置多组测点,采用高精度的电位观测系统,实时监测压裂施工过程中地面电位变化,并通过一定的数据处理,就可达到实时解释裂缝延伸方位等有关参数的目的(图1)。
图1 压裂裂缝监测原理图
3 测量仪器系统
系统的总体研制方案(图2):整体仪器设计其主要的设计思想就是采用整体系统思维方法,不再认为发射仪和接受仪是各自独立的模块,而是相互共同工作和反馈的统一体,它们由单片机C8051F236共同管理。单片机与个人电脑进行通讯,最终实现由计算机统一管理,最终仪器系统主要性能指标如下:
·最大输出电流:20A;
·最大输出电压:500V;
·稳流精度:1%内(在负载变化±20%,输入变化±20%以内);
·频率稳定度:0.01%;
·输入阻抗:80MΩ;
·分辨率:1μV;
·电位测量精度:优于0.5%;
·动态监测范围±2V。
图2 系统总体研制方案
4 野外工作的方法技术
4.1 测点及测线布置
测点的布置是以A井为圆心环形设置内(N)、中(COM)、外(M)呈放射状对应的多环测点,测点间夹角为15°,测环半径可用经纬仪或红外测距仪测定,同时测点位置要有明显的标志,以保证两次测量没有几何误差;在测点布置完后敷设测网,在有条件的地区,测量电极、测量线及供电线预先埋设或布置,这是保证测量精度的重要方面(图3)。
图3 测点及测线布置
4.2 B井的选择
在压裂井A周围形成人工电场,还应在A周围再选一口井B使之与压裂井A形成闭合回路,AB两井之间距离一般应大于A井的压裂层段深度,而不应太小,这样做改善了AB间表层电流密度大的情况,有利于提高充电异常的分辨力,通常遵循以下原则进行选择:(1)AB之间距离D>压裂层位的深度H(m),(2)B井深度HB≥A井压裂层位的深度H(m)。
4.3 降低压裂液电阻率
压裂液电阻率与压裂层段围岩介质电阻率的差异越大,就越有利于异常显示。为了达到这个目的。压裂施工中必须在压裂液中加入有利于导电的金属盐类,通常可按3%比例在压裂液中加入食盐即能达到导电性差异的要求。
4.4 施工工序
主要施工步骤如下:①按施工设计布置测点(夹角一般为15°,测环数随地质任务而定)、测线及供电线;②选择发送与接收系统参数(如码宽度和码长),进行调试使之满足设计要求的测量精度;③注液施工,同时测试工作也开始进行,直至注液施工结束。
4.5 数据处理
在实际数据处理工作中,我们选用了“视纯异常法”进行数据处理,考虑供电电流的变化,需要对注入工作液前、后测得的电位差数据进行了归一处理。即:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
式中:US为标准视纯异常(mV/A);UQMN、UHMN分别为注入工作液前、后测得的电位差数据(mV);IQ、IH分别为注入工作液前、后时的供电电流(A)。
数据处理后,给出了视纯异常曲线图和环形图。在视纯异常曲线图中横坐标表示测点的方位角,纵坐标表示视纯异常值;在视纯异常环形图中,圆点为被测井,环外标出测试点方位角,正北方向(N)为0°并顺时针旋转,90°为正东(E)方向、180°为正南(S)方向、270°为正西(W)方向。
5 现场应用实例
5.1 吉试1井测试
吉试1井是煤层气项目经理部在山西大宁吉县地区部署的一口煤层气勘探评价井,其地理位置在山西省蒲县皮条沟村西200m,构造位置为鄂尔多斯盆地东部晋西饶褶带古驿背斜。为了确定吉试1井煤层压裂裂缝的延伸方向,煤层气项目经理部委托大港油田钻采院,对该井的8#煤的压裂裂缝方向进行测试,由图4至图6可以看出:Us视纯异常曲线在360°范围内出现了近两个周期的变化,极小值分别对应了No.16(N45°E)和No.4(S45°W),且两者的异常幅度差很大。认为压裂施工所形成的裂缝为一对称不等长裂缝,根据反演计算,NO.16(N45°E)方向的裂缝长度为89m,NO.4(S45°W)方向的裂缝长度为66m(图6)。
5.2 武试5-3井测试
图4 吉试1井8#煤80100视纯异常曲线
图5 吉试1井8#煤100120米视纯异常曲线
武试5井组的各井位置见图7所示,本次现场实施压裂裂缝测试的是武试53井,试验井组所在区块以往探井的施工资料表明该区块延伸压力梯度变化很大,部分井延伸压力梯度很高,尤其是中心井武试5井,延伸压力梯度高达0.044MPa/m,在前置液阶段甚至高达0.05MPa/m,一方面反映了区域煤层的非均质性,另一方面反应煤层裂缝非常复杂,延伸困难。总体评价是:特低孔、特低渗,目的层上下隔层有一定的应力遮挡效果;延伸压力梯度变化较大,部分井延伸压力梯度较高,煤层多裂缝发育程度高,裂缝延伸困难。
图6 吉试1井8#煤测试成果图
图7 武试5井组位置图
现场测试资料数据处理后所得到的视纯异常曲线见图8至图10,①视纯异常曲线在360°范围内出现了近两个周期的变化,认为压裂施工中,形成了两翼对称不等长裂缝,裂缝中心方位角为30°和210°方向,其中60°方向为长裂缝(图8,9);②经模拟计算,30°方向裂缝长度为79.96m,210°方向裂缝长度为60.97m(见图10)。
图8 武试5—3井视纯异常曲线
6 结论
应用地球物理方法来研究和确定油(煤)层水力压裂裂缝方位,在生产与科研中具有实际应用的意义,同时该研究成果也为电位法开辟了新的领域。它是以充电法的基本理论为依据,通过对结合实际所给数学模型的合理分析和比较系统的物理模拟试验取得的,如按所提供的一套野外工作方法与技术并采用研制的动态观测系统在所论的条件下,可较成功的用来确定埋藏深度在3000m以内压裂裂缝的主导方位和该基础上所进行的裂缝长度的预测研究,这不仅对研究压裂工艺效果,合理的经济的制定开发方案有一定的指导意义,而且对解决其他类似工程问题也有一定的参考价值,故具有广阔的应用前景。
图9 武试5—3井视纯异常环形图
图10 武试5-3井裂缝长度等值线图
参 考 文 献
傅良魁主编 . 1983. 电法勘探教程 . 地质出版社,5,( 1) 16 ~17
江汉石油学院测井教研室编 . 1981. 测井资料解释 . 石油工业出版社
张金成 . 2001. 电位法井间监测技术 . 地震地质 Vol. 23 ( 2) 292 ~300
Bartel L C,McCann R P and KecK L J. 1976. SPE 6090. Presented at the SPE 51st Annual Fall Meeting in New Orleans, Louisiana,Oct. 4 ~ 6.
McCann R P and KecK L J. 1976. SAND 76 0379,Sandia Laboratories,Aug.