A. 电子显微分析技术中,电子的波长有什么决定 作业
电子是实物粒子(静止质量不为0的微观粒子),根据德布罗意的物质波理论,实物粒子也具有波粒二象性。实物粒子的波动性可由下方程描述:
上式中:h为布朗克常数,P为粒子的动量,m为粒子的质量,v为粒子的速度。
因此,在任何情况下,电子的波长是由其速度决定的(电子本身的质量是不变的)。
在显微镜等利用电子束的设备中:利用电子枪中阴极所产生的电子在阴阳极间的高压(25-300kV)加速电场作用下被加速至很高的速度(0.3-0.7倍光速)。也即通过控制电场强度,控制电子的速度,进而控制电子的波长。
B. 电子显微分析可获得材料哪些方面的信息
电子显微技术主要包括投射电子显微技术和扫描电子显微的原理和结构,及样品的制备方法。生物电子显微技术的最新发展,以及超微切片技术实验为主的研究植物动物生理,生理生化病理学,组织学,细胞学,微生物学,遗传学等提供研究方案和实验技术的技术!
回答完毕
C. 用扫描电子显微镜进行形貌分析有哪些特点
放大倍率大。。高达几十万倍。。
分辨率高。。几个nm
景深大
成本高
样品可能需要前处理
操作较复杂
以下抄来的:
和光学显微镜及透射电镜相比,扫描电镜SEM(Scanning Electron Microscope)具有以下特点:
(一) 能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。
(二) 样品制备过程简单,不用切成薄片。
(三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。
(四) 景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。
(五) 图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。
(六) 电子束对样品的损伤与污染程度较小。
(七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。
D. 显微构造分析技术与方法有哪些
近年来显微构造学学科的迅猛发展,与相邻学科或相关学科在理论和技术上的飞跃是分不开的。因而作为现代理论(例如金属学的位错理论等)和技术(主要包括透射电子显微镜技术(TEM)、扫描电子显微镜技术(SEM)、阴极发光技术和电子计算机分析技术等)引入的结果,构造地质学在近年的研究中取得了由宏观构造分析,至小型构造分析、微型构造分析乃至超微构造分析方面的全面发展;实现了对于显微构造的研究由简单的定性描述阶段发展到定量分析阶段的飞跃;进而推动了目前对于构造岩和变质岩成因、地壳岩石圈动力学结构和流变学结构、成矿作用理论以及灾害地震孕震与发震机制的深入研究或重新认识。由于意识到现代技术方法的重要地位和作用,许多构造地质学家在深入开展构造地质学研究的同时,还正开展着现代技术方法的应用研究。这一方面促进了现代技术和方法在构造地质学科的更加广泛运用,也推动了现代构造地质学的飞速发展。具有一定能量的入射电子束轰击样品表面时,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞;会反射、折射或衍射出多种不同形式的粒子。其中,99%以上的入射电子能量转变成样品热能,而其余约1%的入射能量从样品中激发出各种信号,包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、阴极荧光、X射线等(见图7-1),借此发展了电子显微镜、阴极发光显微摄像系统及X-射线接收系统。
本文简单介绍几种目前人们在构造地质学研究中应用最为广泛的技术和方法,包括阴极发光分析技术、透射和扫描电镜技术、EBSD技术等。关于各种方法的基本原理、技术和应用范围,请参考相关教材和文献。
E. 在扫描电子显微分析中,有哪几种成像方法它们各自采用何种探测器
①背散射电子。背散射电于是指被固体样品中的原子核反弹回来的一部分入射电子。其中包括弹性背散射电子和非弹性背散射电子。背散射电子的产生范围深,由于背散射电子的产额随原子序数的增加而增加,所以,利用背散射电子作为成像信号不仅能分析形貌特征,也可用来显示原子序数衬度,定性地进行成分分析。②二次电子。二次电子是指被入射电子轰击出来的核外电子。二次电子来自表面50-500 的区域,能量为0-50 eV。它对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。③吸收电子。入射电子进入样品后,经多次非弹性散射,能量损失殆尽(假定样品有足够厚度,没有透射电子产生),最后被样品吸收。若在样品和地之间接入一个高灵敏度的电流表,就可以测得样品对地的信号。若把吸收电子信号作为调制图像的信号,则其衬度与二次电子像和背散射电子像的反差是互补的。④透射电子。如果样品厚度小于入射电子的有效穿透深度,那么就会有相当数量的入射电子能够穿过薄样品而成为透射电子。样品下方检测到的透射电子信号中,除了有能量与入射电子相当的弹性散射电子外,还有各种不同能量损失的非弹性散射电子。其中有些待征能量损失E的非弹性散射电子和分析区域的成分有关,因此,可以用特征能量损失电子配合电子能量分析器来进行微区成分分析。⑤特征X射线。特征X射线是原子的内层电子受到激发以后,在能级跃迁过程中直接释放的具有特征能量和波长的一种电磁波辐射。如果用X射线探测器测到了样品微区中存在某一特征波长,就可以判定该微区中存在的相应元素。⑥俄歇电子。如果原子内层电子能级跃迁过程中释放出来的能量E不以X射线的形式释放,而是用该能量将核外另一电子打出,脱离原子变为二次电子,这种二次电子叫做俄歇电子。俄歇电子是由试样表面极有限的几个原于层中发出的,这说明俄歇电子信号适用于表层化学成分分析。背散射电子,二次电子和透射电子,主要应用于扫描电镜和透射电镜,特征X射线可应用于能谱仪,电子探针等,俄歇电子可应用于俄歇电子能谱仪,吸收电子也可应用于扫描电镜,形成吸收电子像。
F. 电子显微镜成像原理
一、透射电子显微镜的成像原理可分为三种情况:
1、吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。
2、衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射波的振幅分布不均匀,反映出晶体缺陷的分布。
3、相位像:当样品薄至100Å以下时,电子可以穿过样品,波的振幅变化可以忽略,成像来自于相位的变化。
二、扫描电子显微镜成像原理
扫描电子显微镜通过用聚焦电子束扫描样品的表面来产生样品表面的图像。
电子与样品中的原子相互作用,产生包含关于样品的表面测绘学形貌和组成的信息的各种信号。电子束通常以光栅扫描图案扫描,并且光束的位置与检测到的信号组合以产生图像。
扫描电子显微镜可以实现分辨率优于1纳米。样品可以在高真空,低真空,湿条件(用环境扫描电子显微镜)以及宽范围的低温或高温下观察到。
最常见的扫描电子显微镜模式是检测由电子束激发的原子发射的二次电子。可以检测的二次电子的数量,取决于样品测绘学形貌,以及取决于其他因素。
通过扫描样品并使用特殊检测器收集被发射的二次电子,创建了显示表面的形貌的图像。它还可能产生样品表面的高分辨率图像,且图像呈三维,鉴定样品的表面结构。
(6)电子显微分析方法扩展阅读:
在使用透视电子显微镜观察生物样品前样品必须被预先处理。随不同研究要求的需要科学家使用不同的处理方法。
1、固定:为了尽量保存样本的原样使用戊二醛来硬化样本和使用锇酸来染色脂肪。
2、冷固定:将样本放在液态的乙烷中速冻,这样水不会结晶,而形成非晶体的冰。这样保存的样品损坏比较小,但图像的对比度非常低。
3、脱干:使用乙醇和丙酮来取代水。
4、垫入:样本被垫入后可以分割。
5、分割:将样本使用金刚石刃切成薄片。
6、染色:重的原子如铅或铀比轻的原子散射电子的能力高,因此可被用来提高对比度。
G. 显微镜的结构
目镜、镜筒、物镜、镜臂、压片夹、载物台、转换器、粗准焦螺旋、细准焦螺旋、通光筒、反光镜、镜座
H. 电子显微镜分析(TEM and SEM)是指
电子显微镜分析技术在冶金学中的成功应用(20世纪30年代末期),为30年后(20世纪70年代初期)在地质学中的应用奠定了基础,更为半个世纪后构造地质学学科的突破性进展创造了极为有利的条件。电子显微技术的运用,使得构造地质学家得以重新认识众多构造带内变质构造岩,尤其是糜棱岩的成因。从而改变了人们在许多方面的传统认识,也改变了人们在开展构造研究,尤其是变质岩区构造研究时的思维方式。
透射电子显微镜(TEM,transmission electron micros):位错理论提出(1934)20多年后,1956年,科学家首次成功地在变形矿物颗粒内直接观察到位错构造的存在。样品制备技术影响了电子显微镜技术的广泛推广与应用。直到70年代初期,离子轰击减薄技术的应用才推动了对矿物变形微结构的透射电子显微镜研究广泛开展。研究较多的矿物主要是石英、辉石和橄榄石。近来对于碳酸盐矿物、硅酸盐矿物及氧化物的研究也在不断深入。TEM技术对于确定和研究超微域内的微构造特点、研究极细粒物质的颗粒形态与颗粒边界构造特点是一种非常有用的工具。
TEM广泛应用于观察与确定变形岩石颗粒的超微构造型式,即位错构造的特点(见图1-10,1-11,1-14~1-17)。观察位错的基本类型、形态、组合与分布规律;阐述矿物颗粒的主要变形机制、岩石流变学状态与构造岩的成因;定量确定变形矿物颗粒内自由位错的密度,进而判断岩石稳态变形条件,即古差异应力条件;TEM有效地用于确定变形矿物晶体内的主要滑移系,滑移系统的Burger矢量;结合变形条件阐述矿物蠕变的基本规律。
透射电子显微镜样品制备:详见第一章位错研究方法。
扫描电子显微镜(SEM,scanning electron micros):扫描电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。扫描电子显微镜利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。
扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。它广泛应用于地质样品的微区成分、形貌和取向的综合分析,适用于构造地质学、岩石学、矿床学、矿物学和地球化学等多学科的研究工作。尤其将EBSD技术与扫描电子显微镜配置于一体,开展晶格优选组构分析,将会成为推动构造地质学新理论诞生的重要途径。
扫描电子显微镜(SEM)是显微构造分析的有效手段(照片7-002)。目前已开展研究的方面有:①扫描电子显微镜应用于成分分析:与电子探针类似,能够进行微区成分分析,分析颗粒粒径可以达数微米;②背散射电子图像反映微细矿物颗粒内部成分结构与变化规律,尤其是颗粒的三维形态特点;③二次电子图像观察细小颗粒的三维形态、颗粒表面或颗粒边界上的微观特点;④应用Kikuchi Band确定微细矿物晶体颗粒或亚晶粒的定向性(晶格方位);⑤SEM阴极发光分析使得能够更确切地分析变形结构的显微特点,探讨岩石变形的微观机制与变形过程。
扫描电子显微镜分析样品制备:扫描电子显微镜观察对于样品要求基于不同的目的,有所差异。开展样品表面结构和形貌分析,可以使用原位样品,但样品需要清洁。但对于精确的成分分析的样品,常常需要切制成光片或光薄片,保持表面平整、整洁。对于非导电样品,需要镀金或喷碳以获得更好的观察和分析效果。新型日立钨灯丝扫描电子显微镜的样品尺寸可以达到:直径200mm,高度80mm,可以用来观察大样品的表面形态和结构分析。
I. 电子元器件失效分析方法知多少
典型电子元器件失效分析方法
1、微分析法
(1)肉眼观察是微分析技术的第一步,对电子元器件进行形貌观察线系及其定位失准等,必要时还可以借助仪器,例如:扫描电镜和透射电子显微镜等进行观察;
(2)其次,我们需要了解电子元器件制作所用的材料、成分的深度分布等信息。而AES、SIMS和XPS仪器都能帮助我们更好的了解以上信息。不过,在作AES测试时,电子束的焦斑要小,才能得到更高的横向分辨率;
(3)最后,了解电子元器件衬底的晶体取向,探测薄膜是单晶还是多晶等对其结构进行分析是一个很重要的方面,这些信息主要由XRD结构探测仪来获取。
2、光学显微镜分析法
进行光辐射显微分析技术的仪器主要有立体显微镜和金相显微镜。将其两者的技术特点结合使用,便可观测到器件的外观、以及失效部位的表面形状、结构、组织、尺寸等。亦可用来检测芯片击穿和烧毁的现象。此外我们还可以借助具有可提供明场、暗场、微干涉相衬和偏振等观察手段的显微镜辅助装置,
以适应各种电子元器件失效分析的需要。
3、红外显微分析法
与金相显微镜的结构相似,不同的是红外显微镜是利用近红外光源,并采用红外变像管成像,利用此工作原理不用对芯片进行剖切也能观察到芯片内部的缺陷及焊接情况。 红外显微分析法是针对微小面积的电子元器件,在对不影响器件电学特性和工作情况下,利用红外显微技术进行高精度非接触测温方法,对电子元器件失效分析都具有重要的意义。
4、声学显微镜分析法
电子元器件主要是由金属、陶瓷和塑料等材料制成的,因此声学显微镜分析法就是基于超声波可在以上这些均质传播的特点,进行电子元器件失效分析。此外,声学显微镜分析法最大的特点就是,能观察到光学显微镜无法看到的电子元器件内部情况并且能提供高衬度的检测图像。
以上是几种比较常见的典型电子元器件失效分析方法,电子元器件失效直都是历久弥新的话题,而对电子元器件失效分析是确定其失效模式和失效机理的有效途径之一,对电子元器件的发展具有重要的意义。