导航:首页 > 研究方法 > 因子分析常用的方法

因子分析常用的方法

发布时间:2022-06-07 09:07:38

⑴ 因子分析spss步骤

1.因子分析:
因子分析模型中,假定每个原始变量由两部分组成:共同因子和唯一因子。共同因子是各个原始变量所共有的因子,解释变量之间的相关关系。唯一因子顾名思义是每个原始变量所特有的因子,表示该变量不能被共同因子解释的部分。
(帮助解读:举个例子,现在一个excel表有10个变量,因子分析可以将这10个变量通过某种算法变为3个,4个,5个等等因子,而每个因子都能表达一种涵义,从而达到了降维的效果,方便接下来的数据分析)

2.因子分析与主成分分析的区别:
主成分分析是试图寻找原有变量的一个线性组合。这个线性组合方差越大,那么该组合所携带的信息就越多。也就是说,主成分分析就是将原始数据的主要成分放大。
因子分析,它是假设原有变量的背后存在着一个个隐藏的因子,这个因子可以可以包括原有变量中的一个或者几个,因子分析并不是原有变量的线性组合。
(帮助解读:主成分分析降维凸显变量中起主导作用的变量,因子分析寻找变量背后可以概括变量特征的因子)

---------------------------算法及原理就不介绍了,比较秃头-----------------------------

二.因子分析怎么做(在spss中):
1.数据准备:
下图数据是一份某城市的空气质量数据,一共6个变量,分别是:二氧化硫、二氧化氮、可吸入颗粒物、一氧化碳、臭氧、细颗粒物。在SPSS中打开数据如下:
图1

2.操作步骤:
1)打开因子分析工具:
在这里插入图片描述

2)选择要进行因子分析的变量:
在这里插入图片描述

3)设置因子分析模型:(可以按照以下截图设置模型,一般来说足够)
a.描述:这里要说一下KMO和Bartlett的球形度检验,
KMO检验统计量是用于比较变量间简单相关系数和偏相关系数的指标。主要应用于多元统计的因子分析。KMO统计量是取值在0和1之间。Kaiser给出了常用的kmo度量标准:0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合。KMO统计量是取值在0和1之间。当所有变量间的简单相关系数平方和远远大于偏相关系数平方和时,KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析;当所有变量间的简单相关系数平方和接近0时,KMO值接近0.KMO值越接近于0,意味着变量间的相关性越弱,原有

⑵ 简述因子分析的基本过程和常用标量。

简述因子分析的基本过程和常用标量:

一、基本过程:

1、确认待分析的原始变量是否适合作因子分析;

2、构造因子变量;

3、利用旋转方法使因子变量具有可解释性;

4、计算每个样本的因子变量得分

二、常用标量:

变量是用在方程中的, 选择变量是过滤个案的

⑶ 因子分析的简介

因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反复法。
主成分分析为基础的反复法主成分分析的目的与因子分析不同,它不是抽取变量群中的共性因子,而是将变量□1,□2,…,□□进行线性组合,成为互为正交的新变量□1,□2,…,□□,以确保新变量具有最大的方差:
在求解中,正如因子分析一样,要用到相关系数矩阵或协方差矩阵。其特征值□1,□2,…,□□,正是□1,□2,…,□□的方差,对应的标准化特征向量,正是方程中的系数□,□,…,□。如果□1>□2,…,□□,则对应的□1,□2,…,□□分别称作第一主成分,第二主成分,……,直至第□主成分。如果信息无需保留100%,则可依次保留一部分主成分□1,□2,…,□□(□<□)。
当根据主成分分析,决定保留□个主成分之后,接着求□个特征向量的行平方和,作为共同性□:
□并将此值代替相关数矩阵对角线之值,形成约相关矩阵。根据约相关系数矩阵,可进一步通过反复求特征值和特征向量方法确定因子数目和因子的系数。
因子旋转为了确定因子的实际内容,还须进一步旋转因子,使每一个变量尽量只负荷于一个因子之上。这就是简单的结构准则。常用的旋转有直角旋转法和斜角旋转法。作直角旋转时,各因素仍保持相对独立。在作斜角旋转时,允许因素间存在一定关系。
Q型因子分析 上述从变量群中提取共性因子的方法,又称R型因子分析和R型主要成分分析。但如果研究个案群的共性因子,则称Q型因子分析和Q型主成分分析。这时只须把调查的□个方案,当作□个变量,其分析方法与R型因子分析完全相同。
因子分析是社会研究的一种有力工具,但不能肯定地说一项研究中含有几个因子,当研究中选择的变量变化时,因子的数量也要变化。此外对每个因子实际含意的解释也不是绝对的。

如何spss因子分析

本来想给你截图的,可是传不上来,我就简单说一下哈。
首先你得进行一次预计算,选择菜单里分析——降维——因子分析,跳出主面板,把想分析的变量选到变量框里,然后点确定。这时候输出窗口里会只有一个或两个图表。其中有一个图表是主成分的方差贡献。这个图表里你要找到两个相邻的列(应该是第三列和第四列),其中前一个列指的是单个因子对方差的贡献率,后一个是因子累计贡献率。也就是说前一个列里边数值相加等于100,后一个列里边数值递增,最后一个等于100。假如前一个列里是60,30,10,那么后一列里就是60,90,100.两个列之间有一个和的关系。找到这两个列以后,你要找使得累计贡献率达到百分之八十的那个数。这个表的第一列是1,2,3,等等,它代表第几个因子,比如3指的那行就包括第三个因子的方差贡献率,累积到第三个因子的方差贡献率这两个数据。你要找到累计到达百分之八十的那个因子是第几个因子,然后就按提取几个因子进行计算。
通过预计算知道了提取几个因子之后,就开始正式计算。再次打开因子分析的主面板,在最右边一共有五个选项,分别是描述,抽取,旋转,得分,选项。这五个在预计算里边没有用,但是现在要用了。点继续。
点击描述,在对话框里选上初始变量分析,kmo统计量及bartlett球形检验这两个选项,(注意,kmo和bartlett是一个选项,选项名就是很长)这一步是用来判断变量是否适于进行因子分析的。
点击抽取,对话框里最上边的方法就选主成分,分析里选上相关性矩阵,输出选上未旋转的因子解和碎石图两个选项,抽取里选择因子的固定数目,在要提取的因子后边填上你预计算里算出的因子数目。点继续。
旋转里边选最大方差法,输出旋转解。继续。
得分里边选保存为变量,方法为回归,显示因子得分系数矩阵也要打上勾。继续。
确定。
然后就可以分析结果了。
先看kmo和bartlett的结果,kmo统计量越接近1,变量相关性越强,因子分析效果越好。通常0.7以上为一般,0.5以下不能接受,就是不适合做因子分析。bartlett检验从检验相关矩阵出发,如果p值,就是sig,比较小的话,一般认为小于0.05,当然越小越好,就适于因子分析。
如果这两个检验都合格的话,才可以去写因子模型。
为了便于描述,假设我们有两个因子f1,f2,
旋转变换后的因子载荷矩阵会告诉你每个变量用因子表示的系数。比如变量x1=系数1*f1+系数2*f2,变量2以此类推。
因子得分系数矩阵会告诉你每个因子里各变量占得权重,比如f1=系数1*x1+系数2*x2+。。。
根据这个我们就能算出因子得分了。
因为之前选择了将因子保存为新变量,所以spss会直接保存两个因子得分为两个新变量,
然后我们不是有一个公式吗
总得分=因子1的方差贡献率*因子1的得分+因子2的方差贡献率*因子2的得分+...
根据这个公式计算一下就可以了。
用spss或者excel都可以。
希望能对你有帮助哦。
ppv课,大数据培训专家,最专业的大数据培训平台。为你提供最好的spss学习教程哦。

⑸ 怎样用spss做因子分析

可以使用在线spss平台SPSSAU进行分析,因子分析用于探索定量数据可以浓缩为几个方面(因子),每个方面(因子)和题项对应关系。因子分析步骤:

1、选择进阶方法>>因子

3、点击开始分析

因子分析通常有三个步骤:第一步是判断是否适合进行因子分析;第二步是因子与题项对应关系判断;第三步是因子命名。

⑹ 因子分析法的分析步骤

因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。
(i)因子分析常常有以下四个基本步骤:
⑴确认待分析的原变量是否适合作因子分析。
⑵构造因子变量。
⑶利用旋转方法使因子变量更具有可解释性。
⑷计算因子变量得分。
(ii)因子分析的计算过程:
⑴将原始数据标准化,以消除变量间在数量级和量纲上的不同。
⑵求标准化数据的相关矩阵;
⑶求相关矩阵的特征值和特征向量;
⑷计算方差贡献率与累积方差贡献率;
⑸确定因子:
设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;
⑹因子旋转:
若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。
⑺用原指标的线性组合来求各因子得分:
采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。
⑻综合得分
以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。
F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )
此处wi为旋转前或旋转后因子的方差贡献率。
⑼得分排序:利用综合得分可以得到得分名次。
在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:
· 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。
· 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。
· 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。
如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。

⑺ 因子分析的基本步骤

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。因子分析的前提条件

由于因子分析的主要任务之一是对原有变量进行浓缩,即将原有变量中的信息重叠部分提取和综合成因子,进而最终实现减少变量个数的目的。因此它要求原有变量之间应存在较强的相关关系。否则,如果原有变量相互独立,相关程度很低,不存在信息重叠,它们不可能有共同因子,那么也就无法将其综合和浓缩,也就无需进行因子分析。本步骤正是希望通过各种方法分析原有变量是否存在相关关系,是否适合进行因子分析。SPSS提供了四个统计量可帮助判断观测数据是否适合作因子分析:

(1)计算相关系数矩阵Correlation Matrix

在进行提取因子等分析步骤之前,应对相关矩阵进行检验,如果相关矩阵中的大部分相关系数小于0.3,则不适合作因子分析;当原始变量个数较多时,所输出的相关系数矩阵特别大,观察起来不是很方便,所以一般不会采用此方法或即使采用了此方法,也不方便在结果汇报中给出原始分析报表。

(2)计算反映象相关矩阵Anti-image correlation matrix

反映象矩阵重要包括负的协方差和负的偏相关系数。偏相关系数是在控制了其他变量对两变量影响的条件下计算出来的净相关系数。如果原有变量之间确实存在较强的相互重叠以及传递影响,也就是说,如果原有变量中确实能够提取出公共因子,那么在控制了这些影响后的偏相关系数必然很小。观察反映象相关矩阵,如果反映象相关矩阵中除主对角元素外,其他大多数元素的绝对值均小,对角线上元素的值越接近1,则说明这些变量的相关性较强,适合进行因子分析。与方法(1)中最后所述理由相同,一般少采用此方法

(3)巴特利特球度检验Bartlett test of sphericity

Bartlett球体检验的目的是检验相关矩阵是否是单位矩阵(identity matrix),如果是单位矩阵,则认为因子模型不合适。Bartlett球体检验的虚无假设为相关矩阵是单位阵,如果不能拒绝该假设的话,就表明数据不适合用于因子分析。一般说来,显着水平值越小(<0.05)表明原始变量之间越可能存在有意义的关系,如果显着性水平很大(如0.10以上)可能表明数据不适宜于因子分析。

(4)KMO(Kaiser-Meyer-OklinMeasure of Smapling Adequacy)

KMO是Kaiser-Meyer-Olkin的取样适当性量数。KMO测度的值越高(接近1.0时),表明变量间的共同因子越多,研究数据适合用因子分析。通常按以下标准解释该指标值的大小:KMO值达到0.9以上为非常好,0.8~0.9为好,0.7~0.8为一般,0.6~0.7为差,0.5~0.6为很差。如果KMO测度的值低于0.5时,表明样本偏小,需要扩大样本。

⑻ 常用的实验数据分析方法有哪些

1、聚类分析


聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。


2、因子分析


因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反复法。


3、相关分析


相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。


4、对应分析


对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。


5、回归分析


研究一个随机变量Y对另一个(X)或一组(X1,X2,„,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

⑼ 统计分析中的因子分析(factors),如何确定因子的个数

根据特征根大小,方差累计贡献率,碎石图等等

阅读全文

与因子分析常用的方法相关的资料

热点内容
米荞的食用方法是什么 浏览:647
论工作分析的基本方法 浏览:90
前列腺癌治疗新方法上海 浏览:755
怎么股癣治疗方法 浏览:97
化学消毒剂的方法有哪些 浏览:620
越南蒸鸡肉的正确方法 浏览:488
自动水管安装方法图解 浏览:74
仁和雪莲精华使用方法 浏览:76
降血糖的方法图片 浏览:569
色浆的制作方法和步骤 浏览:245
治疗失眠的好方法周教授 浏览:752
三星手机恢复出厂设置的方法 浏览:829
如何改善唇深的方法 浏览:203
地球计算方法最新2012 浏览:491
儿童游泳的正确方法图解 浏览:637
如何用卡纸做灯笼手工制作方法 浏览:346
灭蚁灵分析方法 浏览:953
接触器连接方法和图例 浏览:105
多元回归分析方法的选择 浏览:230
狐臭治疗方法手术 浏览:353