Ⅰ 几种纹理分析算法讲ȧ
如果你要做你所说的东西的话,不用去考虑图像格式的问题。因为你要做的东西,都只能在将各种格式转换为灰度图像后才能完成。
C/C++里没有直接的这些库,如果没有规定话,可以考虑用matlab,这里面关于图像处理的库非常完整,比如DCT变换,小波变换,边界处理等等都有现成的函数,用起来也比C简单且直观。
1.计量资料的统计方法
分析计量资料的统计分析方法可分为参数检验法和非参数检验法。
参数检验法主要为t检验和方差分析(ANOVN,即F检验)等,两组间均数比较时常用t检验和u检验,两组以上均数比较时常用方差分析;非参数检验法主要包括秩和检验等。t检验可分为单组设计资料的t检验、配对设计资料的t检验和成组设计资料的t检验;当两个小样本比较时要求两总体分布为正态分布且方差齐性,若不能满足以上要求,宜用t 检验或非参数方法(秩和检验)。方差分析可用于两个以上样本均数的比较,应用该方法时,要求各个样本是相互独立的随机样本,各样本来自正态总体且各处理组总体方差齐性。根据设计类型不同,方差分析中又包含了多种不同的方法。对于定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和单因素方差分析。
2.计数资料的统计方法
计数资料的统计方法主要针对四格表和R×C表利用检验进行分析。 四格表资料:组间比较用
检验或u检验,若不能满足 检验:当计数资料呈配对设计时,获得的四格表为配对四格表,其用到的检验公式和校正公式可参考书籍。 R×C表可以分为双向无序,单向有序、双向有序属性相同和双向有序属性不同四类,不同类的行列表根据其研究目的,其选择的方法也不一样。
3.等级资料的统计方法
等级资料(有序变量)是对性质和类别的等级进行分组,再清点每组观察单位个数所得到的资料。在临床医学资料中,常遇到一些定性指标,如临床疗效的评价、疾病的临床分期、病症严重程度的临床分级等,对这些指标常采用分成若干个等级然后分类计数的办法来解决它的量化问题,这样的资料统计上称为等级资料。
Ⅲ 纹理分析的定义
纹理是一种普遍存在的视觉现象,当前对于纹理的精确定义还未形成统一认识,多根据应用需要做出不同定义.
定义1 按一定规则对元素(elements)或基元(primitives)进行排列所形成的重复模式.
定义2 如果图像函数的一组局部属性是恒定的,或者是缓变的,或者是近似周期性的,则图象中的对应区域具有恒定的纹理.
Ⅳ 什么是纹理图像
纹理图像一般指图像纹理,图像纹理是一种反映图像中同质现象的视觉特征,它体现了物体表面的具有缓慢变化或者周期性变化的表面结构组织排列属性。
纹理具有三大标志:某种局部序列性不断重复、非随机排列、纹理区域内大致为均匀的统一体。纹理不同于灰度、颜色等图像特征,它通过像素及其周围空间邻域的灰度分布来表现,即:局部纹理信息。局部纹理信息不同程度的重复性,即全局纹理信息。
不同于灰度、颜色等图像特征,纹理通过像素及其周围空间邻域的灰度分布来表现,即局部纹理信息。另外,局部纹理信息不同程度上的重复性,就是全局纹理信息。
纹理特征体现全局特征的性质的同时,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。
与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。
在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。
例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。
(4)纹理分析方法扩展阅读:
纹理图像分类
1、统计型纹理特征。基于像元及其邻域内的灰度属性,研究纹理区域中的统计特征,或者像元及其邻域内灰度的一阶、二阶或者高阶统计特征。
统计型纹理特征中以GLCM(灰度共生矩阵)为主,它是建立在估计图像的二阶组合条件概率密度基础上的一种方法。GLCM主要描述在theta方向上,相隔d个像元距离的一对像元分别具有灰度值i和j的出现的概率。
尽管GLCM提取的纹理特征具有较好的鉴别能力,但是这个方法在计算上是昂贵的,尤其是对于像素级的纹理分类更具有局限性。并且,GLCM的计算较为耗时,好在不断有研究人员对其提出改进。
2、模型型纹理特征。假设纹理是以某种参数控制的分布模型方式形成的,从纹理图像的实现来估计计算模型参数,以参数为特征或采用某种策略进行图像分割,因此,模型参数的估计是这种方法的核心问题。
模型型纹理特征提取方法以随机场方法和分形方法为主。
3、信号处理型纹理特征。建立在时域、频域分析与多尺度分析基础之上,对纹理图像中某个区域内实行某种变换之后,再提取保持相对平稳的特征值,以此特征值作为特征表示区域内的一致性以及区域间的相异性。
信号处理类的纹理特征主要是利用某种线性变换、滤波器或者滤波器组将纹理转换到变换域,然后应用某种能量准则提取纹理特征。因此,基于信号处理的方法也称之为滤波方法。大多数信号处理方法的提出,都基于这样一个假设:频域的能量分布能够鉴别纹理。
4、结构型纹理特征。基于“纹理基元”分析纹理特征,着力找到纹理基元,认为纹理由许多纹理基元构成,不同类型的纹理基元、不同的方向及数目,决定了纹理的表现形式。
Ⅳ 关于灰度共生矩阵对纹理图像进行分割的问题
基于灰度共生矩阵的图像分割方法研究
时间:2009-12-16 11:13:13 来源:电子科技 作者:宁顺刚,白万民,喻 钧 西安工业大学计算机科学与工
程学院
所谓图像分割就是指把图像分成各具特性的区域,并提取出感兴趣目标的技术和过程。它是数字图像处理中的关键技术之一,是进一步进行图像识别、分析和理解的基础。目前图像分割方面现有的算法非常多,将它们进行分类的方法也提出了不少。一般分为3类:(1)阈值分割;(2)边缘检测;(3)区域提取。但还没有一种方法能普遍适用于各种图像。因此,对于图像分割的研究还在不断深人之中,也是目前图像处理中研究的热点之一。随着科技的发展进步,图像处理在军事中的运用也越来越广泛,这主要集中在迷彩设计这方面。而现在军事上的伪装迷彩是现代高技术战争中隐藏武器装备、保存自我的重要手段,也是消灭敌人的需要。因此对于迷彩的设计研究也一直都是各国的热门话题。文中主要以某山地航拍图为研究对像,对其进行背景分析然后再实现图像分割,为后期迷彩设计做准备。由于该山地背景纹理特征明显,故利用纹理分析对其进行背景分析,而灰度共生矩阵是纹理分析方法中最常用的一种方法。文中采用灰度共生矩阵方法对该图像进行分割研究。
1 灰度共生矩阵
灰度共生矩阵(Gray Level Co-occurrence Ma-trix,GLCM)是图像纹理分析方法中的一种,它反映不同像素相对位置的空间信息,在一定程度上反映了纹理图像中各灰度级在空间上的分布特性,是纹理分析领域中最经常采用的特征之一。灰度共生矩阵是图像灰度变化的二阶统计度量,也是描述纹理结构性质特征的基本函数,它统计了两个像素点位置的联合概率分布。设S为目标区域R中具有特定空间联系的像素对的集合,则共生矩阵P可定义为
式(1)等号右边的分子是具有某种空间关系、灰度值分别为i,j的像素对的个数,分母为像素对的总和个数(#代表数量),这样得到的P是归一化的。
对于一幅图像Gf(i,j),大小N×N,包含像素(动态范围为G)的灰度级为{0,1,…,G-1},它的灰度共生矩阵是一个二维矩阵C(i,J),每个矩阵元素表示在某一距离d和角度θ强度i和j联合出现的概率。因此,根据不同的d和θ值,这里可能存在多个共生矩阵。但在实际应用中,往往适当的选取d,而θ一般取O°,45°,90°,135,如图1所示。
Ⅵ 遥感图像处理的分析分类
在遥感图像的实际使用中,常常需要从大量图像数据中提取特定用途的信息,这称为特征提取,常常还需要进行分类和类聚处理,以识别地物类型。 根据像元在波谱空间的位置来分类,但不考虑地物在图像上的形状。纹理分析法是根据周围各像元的分布作为确定这个像元类别的一种方法。它也是一种较实用的分类方法。遥感图像的一个像元中,往往包含多种地物,不同的地物也可能有相近的波谱特性。加上各种噪声,使计算机分类的准确度受到一定的限制。除研制和改进遥感器和分类方法外,使用多时相和多种遥感数据并与有关的数据库配合,可有效地提高分类的准确度。
Ⅶ 纹理分析的作用分析
对这种表面纹理的研究称为纹理分析.它在计算机视觉领域有着重要的应用.
在机械工程中对机械零件加工表面的这种凹凸不平性开展研究同样具有重要的实践意义。 统计纹理分析寻找刻划纹理的数字特征,用这些特征或同时结合其他非纹理特征对图像中的区域(而不是单个像素)进行分类。图像局部区域的自相关函数、灰度共生矩阵、灰度游程以及灰度分布的各种统计量,是常用的数字纹理特征。如灰度共生矩阵用灰度的空间分布表征纹理。由于粗纹理的灰度分布随距离的变化比细纹理缓慢得多,因此二者有完全不同的灰度共生矩阵。
结构纹理分析研究组成纹理的基元和它们的排列规则。基元可以是一个像素的灰度、也可以是具有特定性质的连通的像素集合。基元的排列规则常用树文法来描述。
Ⅷ 图像纹理特征
所谓图像的纹理特征是由图像上地物重复排列造成的灰度值有规则的分布,这样的特征就是图像的纹理特征。
Ⅸ Image J软件如何进行纹理分析(GLCM灰度共生矩阵参数),跪求大神简单介绍一下大致操作
matlab提供了现成的函数
graycomatrix生成共生矩阵
graycoprops计算其特征值
具体用法:
glcm = graycomatrix(I)
从图像I创建灰度共生矩阵glcm。通过计算具有灰度级i和灰度级j的像素对在水平方向相邻出现的频繁程度。glcm中的每个元素说明了水平方向相邻像素对出现的次数。如果灰度级为L则glcm的维数为L*L。
2.glcms = graycomatrix(I,param1,val1,param2,val2,...)
根据参数对的设定,返回一个或多个灰度共生矩阵。
参数说明:
'GrayLimits':灰度界限,为二元向量[low high]。灰度值小于等于low 时对应1,大于等于high时对应于灰度级。如果参数设为[],则共生矩阵使用图像的最小和最大灰度值作为界限,即[min(I(:)) max(I(:))]。
'NumLevels':整数,说明I中进行灰度缩放的灰度级数目。例如,如果NumLevel设为8,则共生矩阵缩放I中的灰度值使它们为1到8之间的整数。灰度级的数目决定了共生矩阵glcm的尺寸。缺省情况:数字图像:8;二进制图像:2。
'Offset':p行2列整型矩阵,说明感兴趣像素与其相邻像素之间的距离。每行是一个说明像素对之间偏移关系的二元向量[row_offset, col_offset]。行偏移row_offset是感兴趣像素和其相邻像素之间的间隔行数。列偏移同理。偏移常表达为一个角度,常用的角度如下:(其中D为像素距离)
角度 0 45 90 135
Offset [0,D] [-D D] [-D 0] [-D -D]
3.[glcms,SI] = graycomatrix(...)
返回缩放图像SI,SI是用来计算灰度共生矩阵的。SI中的元素值介于1和灰度级数目之间。
graycoprops:得到灰度共生矩阵得到各种属性
stats = graycoprops(glcm, properties):从灰度共生矩阵glcm计算静态属性。glcm是m*n*p的有效灰度共生矩阵。如果glcm是一个灰度共生矩阵的矩阵,则stats是包括每个灰度共生矩阵静态属性的矩阵。
graycoprops正规化了灰度共生矩阵,因此元素之和为1。正规化的GLCM中的元素(r,c)是具有灰度级r和c的定义的空间关系的像素对的联合概率。Graycoprops使用正规化的GLCM来计算属性。
属性参数如下:
1. 'Contrast' : 对比度。返回整幅图像中像素和它相邻像素之间的亮度反差。取值范围:[0,(GLCM行数-1)^2]。灰度一致的图像,对比度为0。
2. 'Correlation' : 相关。返回整幅图像中像素与其相邻像素是如何相关的度量值。取值范围:[-1,1]。灰度一致的图像,相关性为NaN。
3. 'Energy' : 能量。返回GLCM中元素的平方和。取值范围:[0 1]。灰度一致的图像能量为1。
4. 'Homogemeity' : 同质性。返回度量GLCM中元素的分布到对角线紧密程度。取值范围:[0 1]。对角矩阵的同质性为1。