❶ 如何比较两组数据之间的差异性
1、如下图,比较两组数据之间的差异性。
(1)差异性研究方法扩展阅读
相关分析研究的是两个变量的相关性,但你研究的两个变量必须是有关联的,如果你把历年人口总量和你历年的身高做相关性分析,分析结果会呈现显着地相关,但它没有实际的意义,因为人口总量和你的身高都是逐步增加的,从数据上来说是有一致性,但他们没有现实意义。
当数据之间具有了显着性差异,就说明参与比对的数据不是来自于同一总体(Population),而是来自于具有差异的两个不同总体,这种差异可能因参与比对的数据是来自不同实验对象的,比如一些一般能力测验中,大学学历被试组的成绩与小学学历被试组会有显着性差异。也可能来自于实验处理对实验对象造成了根本性状改变,因而前测后测的数据会有显着性差异。
❷ 对于R×C表资料的差异性检验,其相应的检验方法是什么,如何进行
医学论文中常用统计分析方法的合理选择
目前,不少医学论文中的统计分析存在较多的问题。有报道,经两位专家审稿认为可以发表的稿件中,其统计学误用率为90%-95%。为帮助广大医务工作者提高统计分析水平,本文将介绍医学论文中常用统计分析方法的选择原则及应用过程中的注意事项。 1.t 检验
t检验是英国统计学家W.S.Gosset 1908年根据t分布原理建立起来的一种假设检验方法,常用于计量资料中两个小样本均数的比较。理论上,t检验的应用条件是要求样本来自正态分布的总体,两样本均数比较时,还要求两总体方差相等。但在实际工作中,与上述条件略有偏离,只要其分布为单峰且近似正态分布,也可应用[2]。
常用的t检验有如下三类:①单个样本t检验:用于推断样本均数代表的总体均数和已知总体均数有无显着性差别。当样本例数较少(n<60)且总体标准差未知时,选用t检验;反之当样本例数较多或样本例数较少、总体标准差已知时,则可选用u检验 [3]。②配对样本t检验:适用于配对设计的两样本均数的比较,在选用时应注意两样本是否为配对设计资料。常用的配对设计资料主要有如下三种情况:两种同质受试对象分别接受两种不同的处理;同一受试对象或同一样本的两个部分,分别接受不同的处理;同一受试对象处理前后的结果比较。③两独立样本t检验:又称成组t检验,适用于完全随机设计的两样本均数的比较。与配对t检验不同的是,在进行两独立样本t检验之前,还必须对两组资料进行方差齐性检验。若为小样本且方差齐,则选用t检验;反之若方差不齐,则选用校正t检验(t’检验),或采用数据变换的方法(如取对数、开方、倒数等)使两组资料具有方差齐性后再进行t检验,或采用非参数检验[4]。此外,当两组样本例数较多(n1、n2均>50)时,这时应用t检验的计算比较繁琐,可选用u检验[5]。 2.方差分析
方差分析适用于两组以上计量资料均数的比较,其应用条件是各组资料取自正态分布的总体且各组资料具有方差齐性。因此,在应用方差分析之前,同样和成组t检验一样需要对各组资料进行正态性检验、方差齐性检验。
常用的方差分析有如下几类:①完全随机设计的方差分析:主要用于推断完全随机设计的多个样本均数所代表的总体均数之间有无显着性差别。完全随机设计是将观察对象随机分为两组或多组,每组接受一种处理,形成两个或多个样本。②随机区组设计的方差分析:
随机区组设计首先是将全部受试对象按某种或某些特性分为若干区组,然后区组内的每个研究对象接受不同的处理,通过这种设计,既可以推断处理因素又可以推断区组因素是否对试验效应产生作用。此外,由于这种设计还使每个区组内研究对象的水平尽可能地相近,减少了个体间差异对研究结果的影响,比成组设计更容易检验出处理因素间的差别。③析因设计的方差分析:将两个或两个以上处理因素的各种浓度水平进行排列组合、交叉分组的试验设计。它不仅可以检验每个因素各水平之间是否有差异,还可以检验各因素之间是否有交互作用,同时还可以找到处理因素的各种浓度水平之间的最佳组合。此外,还有正交设计、拉丁方设计等多种方差分析法,实验者在应用时可以参考相关的统计学着作。
目前,某些医学论文中有这样的情况,就是用t 检验代替方差分析对实验数据进行统计学处理,这是不可取的。t 检验只适用于推断两个小样本均数之间有无显着性差别,而采用t 检验对多组均数进行两两比较,会增加犯I 型错误的概率,即可能把本来无差别的两个总体均数判为有差别,使结论的可信度降低[6]。对多个样本均数进行比较时,正确的方法是先进行方差分析,若检验统计量有显着性意义时,再进行多个样本均数的两两(多重)比较。
3.卡方检验(χ2检验)
χ2检验是一种用途比较广泛的假设检验方法,但是在医学论文中常用于分类计数资料的假设检验,即用于两个样本率、多个样本率、样本内部构成情况的比较,样本率与总体率的比较,某现象的实际分布与其理论分布的比较。但是当样本满足正态近似条件时,如样本例数n与样本率p满足条件np与n(1— p)均大于5,则可以计算假设检验统计量u值来进行判断。
常用的χ2
检验分为如下几类:①2×2表χ2
检验:适用于两个样本率或构成比的比较,在应用时,当整个试验的样本例数n≥40且某个理论频数1≤T<5时,需对χ2
值进行连续性校正。因为T值太小,会导致χ2
值增大,易出现假阳性结论。此外,若样本例数n<40,或有某个T值<1,此时即使采用校正公式计算的χ2
值也有偏差,需要用2×2表χ2
检验的确切概率检验法(Fisher确切检验法)。②配对资料χ2检验:适用于配对设计的两个样本率或构成比的比较,即通过单一样本的数据推断两种处理结果有无显着性差别。在应用时,如果甲处理结果为阳性而乙处理结果为阴性的样本例数n1与甲处理结果为阴性而乙处理结果为阳性的样本例数n2之和<40,需要对计算的χ2
值进行校正。③R×C表χ2
检验:适用于多个样本率或构成比的比较。在R×C表χ2检验中,若检验统计量有显着性意义时,还需要对多个样本率或构成比进行两两比较,即分割R×C表,使之成为非独立的四格表,并对每两个率之间有无显着性差别作出结论。
2×2表资料在应用时可分为如下几种类型:横断面研究设计的2×2表资料、队列研究设计的2×2表资料、病例-对照研究设计的2×2表资料、配对研究设计的2×2表资料。研究者应注意不同类型的2×2表资料的统计分析方法略有差别,比如在分析队列研究设计的2×2表资料时,如果用χ2公式计算得到P<0.05,研究者则应再计算相对危险度(RR)并检验总体RR与1之间的差异是否具有统计学意义。
此外,在进行R×C表χ2检验时,还有如下两个主要的注意事项:首先,T值最好不要<5,若有1/5的T值<5,χ2检验结论是不可靠的,解决的办法有三种:增大样本量;删去T值太小的行和列;将T值太小的行或列与性质相近的邻行或邻列的实际频数合并。
其次,不同类型的R×C表资料选择的统计分析方法是不一样。①双向无序的R×C表资料:可以选用一般的χ2公式计算。②单向有序的R×C表资料:如果是原因变量为有序变量的单向有序R×C表资料,可以将其视为双向无序的R×C表资料而选用一般的χ2检验公式计算,但如果是结果变量为有序变量的单向有序R×C表资料,选用的统计分析方法有秩和检验、Radit分析和有序变量的logistic回归分析等。③双向有序且属性不同的R×C表资料:对于这类资料采用的统计分析方法不能一概而论,应根据研究者的分析目而合理选择。如果研究者只关心原因变量与结果变量之间的差异是否具有统计学意义时,此时,原因变量的有序性就显得无关紧要了,可将其视为结果变量为有序变量的单向有序R×C表资料进行分析。如果研究者希望考察原因变量与结果变量之间是否存在线性相关关系,此时需要选用处理定性资料的相关分析方法如Spearman秩相关分析方法等。如果两个有序变量之间的相关关系具有统计学意义,研究者希望进一步了解这两个有序变量之间的线性关系,此时宜选用线性趋势检验。如果研究者希望考察列联表中各行上的频数分布是否相同,此时宜选用一般的χ
因此,对于适用参数检验的资料,最好还是用参数检验。
秩和检验是最常用的非参数检验,它包括如下几类:①配对资料的符号秩和检验
(Wilcoxon配对法):是配对设计的非参数检验。当n≤25时,可通过秩和检验对实验资料进行分析;当n>25时,样本例数超出T界值表的范围,可按近似正态分布用u检验对实验资料进行分析。②两样本比较的秩和检验(Wilcoxon Mann-Whitney检验):适用于比较两样本分别代表的总体分布位置有无差异。如果样本甲的例数为n1,样本乙的例数为n2,且n1<n2;当n1≤10、n2—n1≤10时,可通过两样本比较的秩和检验对实验资料进行分析;当n1、n2超出T界值表的范围时,同样可按近似正态分布用u检验对实验资料进行分析。③多个样本比较的秩和检验(Wilcoxon Kruskal-Wallis检验):适用于比较各样本分别代表的总体的位置有无差别,它相当于单因素方差分析的非参数检验,计算方法主要有直接法和频数表法等。此外,在进行上述3类秩和检验(前两类秩和检验实际上已经被u检验替代)时,如果相同秩次较多,则需要对计算的检验统计量进行校正。
公式计算。④双向有序且属性相同的R×C表资料:这类资料实际上就是配对设计2×2表资料的延伸,在分析这类资料时,实验者的目的主要是研究两种处理方法检测结果之间是否具有一致性,因此常用的统计分析方法为一致性检验或Kappa检验。
4. 非参数检验
非参数检验可不考虑总体的参数、分布而对总体的分布或分布位置进行检验。它通常适用于下述资料[2]:①总体分布为偏态或分布形式未知的计量资料(尤其样本例数n<30时);②等级资料;③个别数据偏大或数据的某一端无确定的数值;④各组离散程度相差悬殊,即各总体方差不齐。该方法具有适应性强等优点,但同时也损失了部分信息,使得检验效率降低。即当资料服从正态分布时,选用非参数检验法代替参数检验法会增大犯Ⅱ类错误的概率。
❸ 认知心理学的传统研究方法和认知神经科学研究方法之间有何共同性与差异性
认知神经科学,是心理学研究者无不关注两个蓬勃发展的边沿交叉学科的研究,即认知神经科学和认知行为遗传学。这两个学科吸收了认知科学和行为发展科学的理论与神经科学和遗传学的新技术,共同向智能的本质和意识的起源这一基本的重大理论问题发起冲击,将心理学的研究推向了一个新的发展水平,已经并且势必继续对心理学的研究产生重大影响。
认知神经科学的研究旨在阐明认知活动的脑机制,即人类大脑如何调用其各层次上的组件,包括分子、细胞、脑组织区和全脑去实现各种认知活动。传统神经科学的某些分支,例如神经心理学、心理生理学、生理心理学、神经生物学和行为药理学等,吸收了认知科学的理论和神经科学的新技术,逐渐形成了认知神经心理学、认知心理生理学、认知生理心理学、认知神经生物学和计算神经科学等认知神经科学的各个分支。自八十年代后期发端以来,认知神经科学的研究在短短时间内取得了令人注目的进展,对传统认知心理学和发展心理学的理论建构和各内容领域的研究有着巨大影响。认知发展研究自然也不例外,由于认知发展心理学和发展神经科学科学对许多共同问题感兴趣,由此衍生出来的发展认知神经科学正得到越来越多人的关注,成为当前最热门的交叉研究领域之一。
虽然认知科学和神经科学的兴起只有20多年的短暂历史,由于其高度跨学科性与高新技术发展的密切相关,两者又结合在一起,形成了新的交叉领域———认知神经科学。在世纪之交,可以预见这一领域的发展将会带动整个科学的发展,并能顺应发展教育事业的理论需求。下列研究已经形成或正在形成国际前沿。
在认知神经科学的基本理论和方法学上,都取得了不少进展,同时也存在不少问题。在理论方面,智能的本质和意识的起源是认知神经科学的基本重大理论问题。认知科学理论发展的历程,经历了三个不同的阶段,出现了四种大的理论体系:物理符号论、联结理论、模块理论和生态现实理论。这四个理论分别与认知神经科学中的检测器与功能柱理论、群编码理论、多功能系统理论和基于环境的脑认知功能理论相对应。认知神经科学的这些理论,有些可以分别用于分析不同层次机制中,它们之间并无根本对立或排他性;但有些理论观点则很难相容,例如,神经元理论中特化细胞与群编码观点就各自有自己的实验事实依据。
在方法学上,认知神经科学包括两大类互补的研究方法:一类是无创性脑功能(认知)成像技术,另一类清醒动物认知生理心理学研究方法。前一类方法中又分为脑代谢功能成像和生理功能成像两种;后一类方法中包括单细胞记录、多细胞记录、多维(阵列)电极记录法和其他生理心理学方法(手术法、冷却法、药物法等)。尽管这些方法为人类科学增添了许多光彩,但远未满足认知神经科学研究的要求。例如,脑认知成像技术可以为我们对认知过程的脑功能形成直观的图像,然而这种图像仅可提供结构或区域性功能关系,对于细胞水平的机制显得过分粗糙。由上述可见,作为当代心理学研究热点的认知神经科学,是否能够继续闪现光辉,有待于进一步的历史验证。
❹ 三组数据两两比较差异性用什么检验
如下:
比较性别(分类变量,定性数据)使用卡方检验,比较年龄(连续型变量,定量数据)使用单因素方差分析。
分析→描述性统计→交叉表,然后将性别选入行变量框,分组选入列变量框(行、列变量反过来选没有影响),点击统计按钮,勾选卡方选项即可。
分析→比较平均值→单因素 ANOVA,将年龄选入因变量框,分组选入因子框,点击选项按钮,勾选描述性,方差同质性检验(也就是方差齐性检验)即可。
1.对数据进行统计分析前,务必了解清楚分析方法使用的前提假设条件。
2. 经 ANOVA(或 Kruskal-Wallis test)检验差异有统计学意义(alpha = 0.05),需要对每两个均数进行比较,需要采用上图所述“两两比较方法”,而不能直接对每两组数据进行t-test(或 Mann-Whitney U-test),因为会增加犯 I 类错误 的概率:
例如三组数据资料,ANOVA结果显示p< 0.05;然后每两组均数t-test比较一次,则需比较3次,那么比较3次至少有一次犯 I 类错误 的概率就是 alpha' = 1-0.95^3 = 0.1426 > 0.05。
3.第一型及第二型错误(英语:Type I error & Type II error)或型一错误及型二错误。
4.对于双样本t-test讨论:
z-test:大样本;>30;z分布。
t-test:小样本;<30;t分布。
但是,对于 > 30 的样本,Z-test检验要求知道总体参数的标准差,在理论上成立,事实上总体参数的标准差未知,实际应用中一般使用t-test。
5. 小知识:如何选取两两比较的方法?
5-1、SNK 法最为常用,但当两两比较的次数极多时,该方法的假阳性很高,最终可以达到 100%。因此比较次数 较多时,不推荐使用。
5-2、若存在明显的对照组,要进行的是“验证性研究”,即计划好的某两个或几个组间的比较,宜用 LSD 法。
5-3、若设计了对照组,要进行 k-1 个组与某个对照组之间的比较,宜用 Dunnett 法。
5-4、若需进行多个均数间的两两比较(探索性研究),且各组人数相等,宜用 Tukey法。
5-5、根据对所研究领域内相关研究的文献检索,参照所研究领域内的惯例选择适当的方法。
❺ 对问卷数据进行差异性分析可以做吗
差异研究通常包括以下几类分析方法,分别是方差分析、t检验和卡方检验。这三个分析方法的异同点如下:
其实核心的区别在于:数据类型不一样。如果是定类和定类,此时应该使用卡方分析;如果是定类和定量,此时应该使用方差或者t检验。
方差和t检验的区别在于,对于t检验的X来讲,其只能为2个类别比如男和女。如果X为3个类别比如本科以下,本科,本科以上;此时只能使用方差分析。
❻ 统计学怎样用方差分析方法检验有无显着差异性
什么是方差分析
方差分析(ANOVA)又称“变异数分析”或“F检验”,是R.A.Fister发明的,用于两个及两个以上样本均数差别的显着性检验。
由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
一个复杂的事物,其中往往有许多因素互相制约又互相依存。方差分析的目的是通过数据分析找出对该事物有显着影响的因素,各因素之间的交互作用,以及显着影响因素的最佳水平等。方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。对变差的度量,采用离差平方和。方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。
经过方差分析若拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。若要得到各组均数间更详细的信息,应在方差分析的基础上进行多个样本均数的两两比较。
1、多个样本均数间两两比较
多个样本均数间两两比较常用q检验的方法,即Newman-kueuls法,其基本步骤为:建立检验假设-->样本均数排序-->计算q值-->查q界值表判断结果。
2、多个实验组与一个对照组均数间两两比较
多个实验组与一个对照组均数间两两比较,若目的是减小第II类错误,最好选用最小显着差法(LSD法);若目的是减小第I类错误,最好选用新复极差法,前者查t界值表,后者查q'界值表。
方差分析的基本思想
基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
下面我们用一个简单的例子来说明方差分析的基本思想:
如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下:
患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11
健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
问该地克山病患者与健康人的血磷值是否不同?
从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均数的变异情况,则总变异有以下两个来源:
组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;
组间变异,即由于克山病的影响使得患者与健康人组的血磷值均数大小不等。
而且:SS总=SS组间+SS组内 v总=v组间+v组内
如果用均方(即自由度v去除离均差平方和的商)代替离均差平方和以消除各组样本数不同的影响,则方差分析就是用组内均方去除组间均方的商(即F值)与1相比较,若F值接近1,则说明各组均数间的差异没有统计学意义,若F值远大于1,则说明各组均数间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。
方差分析的应用条件
应用方差分析对资料进行统计推断之前应注意其使用条件,包括:
1、可比性。若资料中各组均数本身不具可比性则不适用方差分析。
2、正态性。即偏态分布资料不适用方差分析。对偏态分布的资料应考虑用对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变为正态或接近正态后再进行方差分析。
3、方差齐性。即若组间方差不齐则不适用方差分析。多个方差的齐性检验可用Bartlett法,它用卡方值作为检验统计量,结果判断需查阅卡方界值表。
方差分析主要用于:
1、均数差别的显着性检验;
2、分离各有关因素并估计其对总变异的作用;
3、分析因素间的交互作用;
4、方差齐性检验。
方差分析的主要内容
根据资料设计类型的不同,有以下两种方差分析的方法:
1、对成组设计的多个样本均数比较,应采用完全随机设计的方差分析,即单因素方差分析。
2、对随机区组设计的多个样本均数比较,应采用配伍组设计的方差分析,即两因素方差分析。
两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。整个方差分析的基本步骤如下:
1、建立检验假设;
H0:多个样本总体均数相等;
H1:多个样本总体均数不相等或不全等。
检验水准为0.05。
2、计算检验统计量F值;
3、确定P值并作出推断结果。
❼ 差异统计分析 怎样做
差异分析过程与方法如下:
1、均值描述—Means过程
定义:Means过程是SPSS计算各种基本描述 统计量的过程。Means过程其实就是按照用户指 定条件,对样本进行分组计算均数和标准差,如 按性别计算各组的均数和标准差。
2、t检验
t检验就是检验统计量为t的假设检验。 用于检验两个变量之间的差异。
假设检验的一般步骤: • 根据实际问题提出原假设H0与备择假设 H1。 • 选择统计量t作为检验统计量,并在H0成立的条件下确定t的 分布。 • 选择显着性水平 ,并根据统计量t的分布查表确定临界值及 H0的拒绝域。 • 根据样本值计算统计量的值,并将其与临界值作比较。 • 下结论:若统计量的值落入拒绝域内,就拒绝H0;否则,不 拒绝H0。
3、方差分析
方差分析基本概念
方差分析是R.A.Fister发明的,用于两个及两个以上样 本均数差别的显着性检验。方差分析方法在不同领域的各个 分析研究中都得到了广泛的应用。从方差入手的研究方法有 助于找到事物的内在规律性。
❽ 分析数据的差异性用什么方法
很多,t检验,方差分析等,有需要数据分析+q
❾ 学前儿童在区角活动中的表现差异的研究是观察法还是调查法
观察法。
观察学前儿童的差异存在在哪。自然观察法是指调查员在一个自然环境中(包括超市、展示地点、服务中心等)观察被调查对象的行为和举止。
例如在借鉴国内外学者关于差异性教学与区域活动研究的基础上,采用文献分析法、观察法、问卷法、案例分析法对五所幼儿园区域活动中的差异性教学进行了研究。
观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。常见的观察方法有:核对清单法;级别量表法;记叙性描述。观察一般利用眼睛、耳朵等感觉器官去感知观察对象。由于人的感觉器官具有一定的局限性,观察者往往要借助各种现代化的仪器和手段,如照相机、录音机、显微录像机等来辅助观察。
调查法是通过各种途径,间接了解被试心理活动的一种研究方法。调查法总体上易于进行,但在调查的过程中往往会因为被调查者记忆不够准确等原因使调查结果的可靠性受到影响。调查的可能方法与途径是多种多样的,在教育心理学的研究中,最常用的调查方法主要有问卷法、访谈法、个案法与教育经验总结法等。
❿ 怎么用spss分析三组数据的差异是否显着
、首先我们对上表数据进行细化,找到每组内受访者的具体满意度打分数值,而不是这个汇总后的得分值。
2、SPSS方差分析:
image
分析:比较均值,单因素方差分析
因变量列表:品类满意度
因子:收入
选项:方差同质性检验
3、数据是否适合做方差分析
image
方差分析之前,需要进行可行性检验,原假设,各分组方差无差异。根据同质性检验可知,sig值0.453,为大概率,原假设成立,即不同分组之间同质,没有显着差异,可进行方差分析。
4、方差分析结果
image
原假设,各分组之间无差异。方差分析sig值0.194,大于小概率值0.05,为大概率,原假设成立,即不同收入水平分组之间在品类满意度上并不没有不同。不存在显着差异。
5、用可视化图来揭示原因
image
我们可以看到,每类收入者的满意度得分都围绕平均值上下波动,这表明不同收入者对品类的态度存在明显差异,例如,同是高收入者,有的非常满意,有的却十分的不满意。同组内的差异甚至高出不同收入者之间的差异,这一点可以通过方差分析中方差得以判断。
因此说,收入水平并不是导致用户对A卖场品类满意度的关键因素。
可见,数据的表象往往迷惑人,尤其是综合汇总后的平均值,通过对底层数据进行分组及方差分析则可以让我们拨开云雾,看到数据的本质。
同时,这个案例也告诉我们,在常规的报表分析当中,经常性的工作是对底层数据进行汇总分析,然后拿汇总数据用于决策,此时,非常容易就数字大小的对比而做出判断,报表工作人员需要注意,需要养成用统计的理念和逻辑上报数据的结果。
打开CSDN,阅读体验更佳
Stata:多个变量组间均值\中位数差异检验
作者:韩少真(西北大学) || 刘婉青(西北大学) Stata 连享会: 知乎 | 简书 | 码云 | CSDN 2019暑期Stata现场班,7.17-26日,北京,连玉君+刘瑞明 主讲 Stata连享会 精品专题 || 精彩推文 文章目录1. 问题背景1.1 期刊论文示例一1.2 期刊论文示例二1.3 期刊论文示例三2. Stata实现组间均值或中位数差异检验的常见...
浏览器打开
均值已知检验方差_SPSS篇—方差分析
昨天跟大家分享了如何用SPSS进行回归分析,知道了回归分析的用途以及使用的场景。今天跟大家分享的就是之前文章里面出现很多次的一个分析—方差分析。方差分析又被称作“F检验”或者“变异数分析”,主要是用于两个及两个以上样本均值差异的显着性检验。方差分析和回归分析一样,也有很多个分支。对于方差分析,一般我们是用来研究不同来源的变异对总变异的贡献大小,从而确定可控因素对因变量的影响大小。我们今天通过一个例...
浏览器打开
相关推荐
双因素方差分析_科研常用显着性分析方法汇总及选择(T检验,Mann-Whitney U test检验,方差分析等)...
科研常见的差异性分析方法汇总根据数据是否符合正态分布,分为:参数检验非参数检验非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。 参数检验(parameter test)全称参数假设检验,是指对参数平均值、方差进行的统计检验。先由测得的样本数据计算检验统计量,若计算的统计量值落...
浏览器打开
如何判断组之间是否有显着性差异?
怎么知道组之间是否有显着性差异? 方法:单因素方差分析;双尾检验;K-S检验;x²检验;蒙特卡罗检验 1 K-S检验法介绍: 有人首先想到单因素方差分析或双尾检验(2 tailed TEST)。其实这些是不准确的,最好采用Kolmogorov-Smirnov test(柯尔莫诺夫-斯米尔诺夫检验)来分析变量是否符合某种分布或比较两组之间有无显着性差异。(https://www.cnblog...
浏览器打开
均值已知检验方差_方差分析与R
1.什么是方差分析?假设有多个总体(三个及以上),都是服从正态分布且方差相同。方差分析就是检验多个总体均值是否相等的统计方法。比如用三种鸡饲料喂小鸡,三个月后小鸡的重量是随机的,假设服从正态分布。我们自然就问,这三种鸡饲料喂的小鸡三个月以后重量的均值是否相同?从这个例子中我们可以看出,在假设其它条件相同的情况下,造成小鸡三个月后平均重量不同的因素就是鸡饲料。若三种鸡饲料对小鸡重量的影响效果相同,那...
浏览器打开
均值已知检验方差_方差分析不显着就一定无差异吗?
方差分析的零假设是:各组均值相等。这个“各组均值相等”如何理解?正确理解是:各组和所有组总均值相等,并不是真的“各组均值相等”。方差分析认为:各组和总均值无差异,那么各组均值等于总均值,意味着各组均值相等。单因素方差分析大家应该都理解的比较好,我们可以看看单因素方差分析F检验统计量的分子核心部分:(各组均值-总均值)的平方。看到没,减的是“总均值”。一般来说,如果各组和总均值无差异,