导航:首页 > 研究方法 > 多元线性分析方法文献

多元线性分析方法文献

发布时间:2022-05-23 03:19:33

Ⅰ 多元线性回归中自变量筛选常用的方法有哪些

筛选变量法, 岭回归分析法, 主成分回归法和偏最小二乘回归法。关键词: 回归、SASSTAT、共线性、筛选变量、岭回归、主成分回归、偏最小二乘回归。中图分类号: 0212; C8 文献标识码: A 回归分析方法是处理多变量间相依关系的统计方法。它是数理统计中应用最为广泛的方法之一。在长期的大量的实际应用中人们也发现: 建立回归方程后, 因为自变量存在相关性, 将会增加参数估计的方差, 使得回归方程变得不稳定; 有些自变量对因变量(指标) 影响的显着性被隐蔽起来; 某些回归系数的符号与实际意义不符合等等不正常的现象。这些问题的出现原因就在于自变量的共线性。本文通过例子来介绍自变量共线性的诊断方法以及使用SA SSTA T 软件6. 12 版本中REG 等过程的增强功能处理回归变量共线性的一些方法。一、共线性诊断共线性问题是指拟合多元线性回归时, 自变量之间存在线性关系或近似线性关系。共线性诊断的方法是基于对自变量的观测数据构成的矩阵X′X 进行分析, 使用各种反映自变量间相关性的指标。共线性诊断常用统计量有方差膨胀因子V IF (或容限TOL )、条件指数和方差比例等。方差膨胀因子V IF 是指回归系数的估计量由于自变量共线性使得其方差增加的一个相对度量。对第i 个回归系数, 它的方差膨胀因子定义为 V I F i = 第i 个回归系数的方差自变量不相关时第i 个回归系数的方差 = 1 1 - R 2 i = 1 TOL i 其中R 2 i 是自变量xi 对模型中其余自变量线性回归模型的R 平方。V IFi 的倒数TOL i 也称为容限( To lerance )。一般建议, 若V IF> 10, 表明模型中有很强的共线性问题。若矩阵X′X 的特征值为d 2 1 ≥d 2 2 ≥…≥d 2 k, 则X 的条件数 d1 dk 就是刻划它的奇性的一个指标。故称 d1 dj (j= 1, …, k) 为条件指数。一般认为, 若条件指数值在10 与30 间为弱相关; 在30 与100 间为中等相关; 大于100 表明有强相关。对于大的条件指数, 还需要找出哪些变量间存在强的线性关系。因为每个条件指数对应一 9 4 处理多元线性回归中自变量共线- 性的几种方法个特征向量, 而大的条件指数相应的特征值较小, 故构成这一特征向量的变量间有近似的线性关系。在统计中用方差比例来说明各个自变量在构成这个特征向量中的贡献。一般建议, 在大的条件指数中由方差比例超过0. 5 的自变量构成的变量子集就认为是相关变量集。

Ⅱ 谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢

选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。
需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。

Ⅲ 用Excel 多元线性回归的方法分析数据

1.理清各个数据之间的逻辑关系,搞清楚哪个是自变量,哪个又是因变量。如附图所示,这里要对人均gdp和城市化水平进行分析,建立符合两者之间的模型,假定人均gdp为自变量,城市化水平是因变量。
2.由于不知道两者之间的具体关系如何,所以利用数据生成一个散点图判断其可能符合的模型。如附图1所示为生成的散点图,一般横坐标为自变量,纵坐标为因变量,所以需要将x轴,y轴的坐标对调一下,这里采用最简单的方法,将因变量移动到自变量的右边一列即可,如附图2所示。
3.由步骤2的散点图,可以判断自变量和因变量之间可能呈线性关系,可以添加线性趋势线进一步加以判断。如附图1所示。也可以添加指数,移动平均等趋势线进行判断。很明显数据可能符合线性关系,所以下面我们对数据进行回归分析。
4.选择菜单栏的“数据分析”-->“回归”。具体操作如附图所示。
5.步骤4进行的回归分析输出结果如附图所示。回归模型是否有效,可以参见p指,如果p<0.001则极端显着,如果0.001<p<0.01非常显着,0.01<p<0.05则一般显着,p>0.05则不显着。本例的p值均小于0.001,所以属于极端显着,故回归模型是有效的。根据回归模型的结果可知。
y
=
5E-06x
+
0.5876R²
=
0.9439
如附图2所示。

Ⅳ 多元线性回归多重共线性检验及避免方法,简单点的

多重共线性指自变量问存在线性相关关系,即一个自变量可以用其他一个或几个自变量的线性表达式进行表示。若存在多重共线性,计算自变量的偏回归系数β时,矩阵不可逆,导致β存在无穷多个解或无解。
而在使用多元线性回归构建模型过程中,变量之间存在多重共线性问题也是比较常见的。那么当发现多重线性回归模型中存在多重共线性时我们该如何处理呢?
可通过以下方法予以解决:
(1)逐步回归
使用逐步回归可以在一定程度上筛选存在多重共线性的自变量组合中对反应变量变异解释较大的变量,而将解释较小的变量排除在模型之外。
但这种方法缺点是当共线性较为严重时,变量自动筛选的方法并不能完全解决问题。
(2) 岭回归
岭回归为有偏估计,但能有效地控制回归系数的标准误大小。
(3) 主成分回归
可以使用主成分分析的方法对存在多重共线性的自变量组合提取主成分,然后以特征值较大的(如大于1)几个主成分与其他自变量一起进行多重线性回归。得出的主成分回归系数再根据主成分表达式反推出原始自变量的参数估计。
该方法在提取主成分时丢失了一部分信息,几个自变量间的多重共线性越强,提取主成分时丢失的信息越少。
(4) 路径分析
如果对自变量间的联系规律有比较清楚的了解,则可以考虑建立路径分析模型,以进行更深入的研究。

Ⅳ 多元分析的分析方法

包括3类:①多元方差分析、多元回归分析和协方差分析,称为线性模型方法,用以研究确定的自变量与因变量之间的关系;②判别函数分析和聚类分析,用以研究对事物的分类;③主成分分析、典型相关和因素分析,研究如何用较少的综合因素代替为数较多的原始变量。 是把总变异按照其来源(或实验设计)分为多个部分,从而检验各个因素对因变量的影响以及各因素间交互作用的统计方法。例如,在分析2×2析因设计资料时,总变异可分为分属两个因素的两个组间变异、两因素间的交互作用及误差(即组内变异)等四部分,然后对组间变异和交互作用的显着性进行F检验。
优点
是可以在一次研究中同时检验具有多个水平的多个因素各自对因变量的影响以及各因素间的交互作用。其应用的限制条件是,各个因素每一水平的样本必须是独立的随机样本,其重复观测的数据服从正态分布,且各总体方差相等。 用以评估和分析一个因变量与多个自变量之间线性函数关系的统计方法。一个因变量y与自变量x1、x2、…xm有线性回归关系是指:
其中α、β1…βm是待估参数,ε是表示误差的随机变量。通过实验可获得x1、x2…xm的若干组数据以及对应的y值,利用这些数据和最小二乘法就能对方程中的参数作出估计,记为╋、勮…叧,它们称为偏回归系数。
优点
是可以定量地描述某一现象和某些因素间的线性函数关系。将各变量的已知值代入回归方程便可求得因变量的估计值(预测值),从而可以有效地预测某种现象的发生和发展。它既可以用于连续变量,也可用于二分变量(0,1回归)。多元回归的应用有严格的限制。首先要用方差分析法检验因变量y与m个自变量之间的线性回归关系有无显着性,其次,如果y与m个自变量总的来说有线性关系,也并不意味着所有自变量都与因变量有线性关系,还需对每个自变量的偏回归系数进行t检验,以剔除在方程中不起作用的自变量。也可以用逐步回归的方法建立回归方程,逐步选取自变量,从而保证引入方程的自变量都是重要的。 把线性回归与方差分析结合起来检验多个修正均数间有无差别的统计方法。例如,一个实验包含两个多元自变量,一个是离散变量(具有多个水平),一个是连续变量,实验目的是分析离散变量的各个水平的优劣,此变量是方差变量;而连续变量是由于无法加以控制而进入实验的,称为协变量。在运用协方差分析时,可先求出该连续变量与因变量的线性回归函数,然后根据这个函数扣除该变量的影响,即求出该连续变量取等值情况时因变量的修正均数,最后用方差分析检验各修正均数间的差异显着性,即检验离散变量对因变量的影响。
优点
可以在考虑连续变量影响的条件下检验离散变量对因变量的影响,有助于排除非实验因素的干扰作用。其限制条件是,理论上要求各组资料(样本)都来自方差相同的正态总体,各组的总体直线回归系数相等且都不为0。因此应用协方差分析前应先进行方差齐性检验和回归系数的假设检验,若符合或经变换后符合上述条件,方可作协方差分析。 判定个体所属类别的统计方法。其基本原理是:根据两个或多个已知类别的样本观测资料确定一个或几个线性判别函数和判别指标,然后用该判别函数依据判别指标来判定另一个个体属于哪一类。
判别分析不仅用于连续变量,而且借助于数量化理论亦可用于定性资料。它有助于客观地确定归类标准。然而,判别分析仅可用于类别已确定的情况。当类别本身未定时,预用聚类分析先分出类别,然后再进行判别分析。 解决分类问题的一种统计方法。若给定n个观测对象,每个观察对象有p个特征(变量),如何将它们聚成若干可定义的类?若对观测对象进行聚类,称为Q型分析;若对变量进行聚类,称为R型分析。聚类的基本原则是,使同类的内部差别较小,而类别间的差别较大。最常用的聚类方案有两种。一种是系统聚类方法。例如,要将n个对象分为k类,先将n个对象各自分成一类,共n类。然后计算两两之间的某种“距离”,找出距离最近的两个类、合并为一个新类。然后逐步重复这一过程,直到并为k类为止。另一种为逐步聚类或称动态聚类方法。当样本数很大时,先将n个样本大致分为k类,然后按照某种最优原则逐步修改,直到分类比较合理为止。
聚类分析是依据个体或变量的数量关系来分类,客观性较强,但各种聚类方法都只能在某种条件下达到局部最优,聚类的最终结果是否成立,尚需专家的鉴定。必要时可以比较几种不同的方法,选择一种比较符合专业要求的分类结果。 把原来多个指标化为少数几个互不相关的综合指标的一种统计方法。例如,用p个指标观测样本,如何从这p个指标的数据出发分析样本或总体的主要性质呢?如果p个指标互不相关,则可把问题化为p个单指标来处理。但大多时候p个指标之间存在着相关。此时可运用主成分分析寻求这些指标的互不相关的线性函数,使原有的多个指标的变化能由这些线性函数的变化来解释。这些线性函数称为原有指标的主成分,或称主分量。
主成分分析有助于分辨出影响因变量的主要因素,也可应用于其他多元分析方法,例如在分辨出主成分之后再对这些主成分进行回归分析、判别分析和典型相关分析。主成分分析还可以作为因素分析的第一步,向前推进就是因素分析。其缺点是只涉及一组变量之间的相互依赖关系,若要讨论两组变量之间的相互关系则须运用典型相关。 先将较多变量转化为少数几个典型变量,再通过其间的典型相关系数来综合描述两组多元随机变量之间关系的统计方法。设x是p元随机变量,y是q元随机变量,如何描述它们之间的相关程度?当然可逐一计算x的p个分量和y的q个分量之间的相关系数(p×q个), 但这样既繁琐又不能反映事物的本质。如果运用典型相关分析,其基本程序是,从两组变量各自的线性函数中各抽取一个组成一对,它们应是相关系数达到最大值的一对,称为第1对典型变量,类似地还可以求出第2对、第3对、……,这些成对变量之间互不相关,各对典型变量的相关系数称为典型相关系数。所得到的典型相关系数的数目不超过原两组变量中任何一组变量的数目。
典型相关分析有助于综合地描述两组变量之间的典型的相关关系。其条件是,两组变量都是连续变量,其资料都必须服从多元正态分布。
以上几种多元分析方法各有优点和局限性。每一种方法都有它特定的假设、条件和数据要求,例如正态性、线性和同方差等。因此在应用多元分析方法时,应在研究计划阶段确定理论框架,以决定收集何种数据、怎样收集和如何分析数据资料。

Ⅵ 多元线性回归分析步骤

一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。
当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元线性回归。设y为因变量,x_1,x_2,cdotsx_k为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:y=b_0+b_1x_1+b_2x_2+cdots+b_kx_k+e其中,b0为常数项,b_1,b_2,cdotsb_k为回归系数。
b1为x_2,x_3cdotsx_k固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数;同理b2为x1,xk固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线性相关时,可用二元线性回归模型描述为:y=b0+b1x1+b2x2+e。

阅读全文

与多元线性分析方法文献相关的资料

热点内容
正确的供奉方法图片 浏览:393
练微笑的方法视频教程 浏览:153
茅台vip用酒查真伪鉴别方法 浏览:141
手臂刮汗毛用什么方法 浏览:737
调理肌酐最好的方法如何降 浏览:936
狗风疙瘩最快治疗方法 浏览:801
大蒜治疗金鱼肠炎土方法怎么治疗 浏览:769
江苏高质量考核发展指数计算方法 浏览:917
虫牙土方法怎么治 浏览:293
水胶体敷料使用方法 浏览:829
粉丝的训练方法 浏览:778
铝盖发霉怎么处理方法 浏览:317
做生意都有哪些赚钱的方法 浏览:441
黄金三角手臂锻炼方法 浏览:12
根号15在数轴上的表示方法图片 浏览:913
语音提示器安装方法 浏览:204
c32漏电保护空开连接方法 浏览:367
附件炎有哪些治疗方法 浏览:335
36x198的简便计算方法 浏览:258
高阻计使用方法 浏览:951