① 除有限单元法外,岩土工程常用到哪些数值方法,并对比其优缺点
岩土工程常用的数值方法包括:有限差分法、边界元法、离散元法、颗粒元法、不连续变形分析法、流形元法、模糊数学方法、概率论与可靠度分析方法、灰色系统理论、人工智能与专家系统、神经网络方法、时间序列分析法。
有限单元法的优缺点:有限单元法的理论基础是虚功原理和基于最小势能的变分原理,它将研究域离散化,对位移场和应力场的连续性进行物理近似。有限单元法适用性广泛,从理论上讲对任何问题都适用,但计算速度相对较慢。即,物理概念清晰、灵活、通用、计算速度叫慢。
有限差分法:该方法适合求解非线性大变形问题,在岩土力学计算中有广泛的应用。有限差分法和有限单元法都产生一组待解方程组。尽管这些方程是通过不同方式推导出来的,但两者产生的方程是一致。另外,有限单元程序通常要将单元矩阵组合成大型整体刚度矩阵,而有限差分则无需如此,因为它相对高效地在每个计算步重新生成有限差分方程。在有限单元法中,常采用隐式、矩阵解算方法,而有限差分法则通常采用“显式”、时间递步法解算代数方程。
边界元法:该方法的理论基础是Betti功互等定理和Kelvin基本解,它只要离散求解域的边界,因而得到离散代数方程组中的未知量也只是边界上的量。边界元法化微分方程为边界积分方程,离散划分少,可以考虑远场应力,有降低维数的优点,可以用较少的内存解决较大的问题,便于提高计算速度。
离散元法:离散元法的理论基础是牛顿第二定律并结合不同的本构关系,适用对非连续体如岩体问题求解。该方法利用岩体的断裂面进行网格划分,每个单元就是被断裂面切割的岩块,视岩块的运动主要受控于岩体节理系统。它采用显式求解的方法,按照块体运动、弱面产生变形,变形是接触区的滑动和转动,由牛顿定律、运动学方程求解,无需形成大型矩阵而直接按时步迭代求解,在求解过程中允许块体间开裂、错动,并可以脱离母体而下落。离散元法对破碎岩石工程,动态和准动态问题能给出较好解答。
颗粒元法:颗粒元方法是通过离散单元方法来模拟圆形颗粒介质的运动及其相互作用,它采用数值方法将物体分为有代表性的多个颗粒单元,通过颗粒间的相互作用来表达整个宏观物体的应力响应,从而利用局部的模拟结果来计算颗粒群群体的运动与应力场特征。 不连续变形分析方法:该方法是并行于有限单元法的一种方法,其不同之处是可以计算不连续面的错位、滑移、开裂和旋转等大位移的静力和动力问题。此方法在岩石力学中的应用备受关注。
流形元法;该方法是运用现代数学“流形”的有限覆盖技术所建立起来的一种新的数值方法。有限覆盖是由物理覆盖和数学覆盖所组成的,它可以处理连续和非连续的问题,在统一解决有限单元法、不连续变形分析法和其他数值方法的耦合计算方面,有重要的应用前景。
无单元法:该方法是一种不划分单元的数值计算方法,它采用滑动最小二乘法所产生的光滑函数去近似场函数,而且又保留了有限单元法的一些特点。它只要求结点处的信息,而不需要也没有单元的信息。无单元法可以求解具有复杂边界条件的边值问题,如开裂问题,只要加密离散点就可以跟踪裂缝的传播。它在解决岩石力学非线性、非连续问题等方面具有重要价值和发展前景。
混合法:对于复杂工程问题,可采用混合法,即有限单元法、边界元法、离散元法等两两耦合来求解。
模糊数学方法:模糊理论用隶属函数代替确定论中的特征函数描述边界不清的过渡性问题,模糊模式识别和综合评判理论对多因素问题分析适用。 概率论与可靠度分析方法:运用概率论方法分析事件发生的概率,进行安全和可靠度评价。对岩土力学而言,包括岩石(土)的稳定性判断、强度预测预报、工程可靠度分析、顶板稳定性分析、地震研究、基础工程稳定性研究等。
灰色系统理论:以“灰色、灰关系、灰数”为特征,研究介于“黑色”和“白色”之间事件的特征,在社会科学及自然科学领域应用广泛。岩土力学中,用灰色系统理论进行岩体分类、滑坡发生时间预测、岩爆分析与预测、基础工程稳定性、工程结构分析,用灰色关联度分析岩土体稳定性因素主次关系等。
人工智能与专家系统:应用专家的知识进行知识处理、知识运用、搜索、不确定性推理分析复杂问题并给出合理的建议和决策。岩石力学中,可进行如岩土(石)分类、稳定性分析、支护设计、加固方案优化等研究。 神经网络方法:试图模拟人脑神经系统的组织方式来构成新型的信息处理系统,通过神经网络的学习、记忆和推理过程进行信息处理。岩石力学中,用于各种岩土力学参数分析、地应力处理、地压预测、岩土分类、稳定性评价与预测等。
时间序列分析法:通过对系统行为的涨落规律统计,用时间序列函数研究系统的动态力学行为。岩石力学中,用于矿压显现规律研究、岩石蠕变、岩石工程的位移、边坡和硐室稳定性等、基础工程中降水、开挖、沉降变形等与时间相关的问题。
② 计算物理学中常用的数学方法有哪些
计算物理学是一门新兴的边缘学科。利用现代电子计算机的大存储量和快速计算的有利条件,将物理学、力学、天文学和工程中复杂的多因素相互作用过程,通过计算机来模拟。如原子弹的爆炸、火箭的发射,以及代替风洞进行高速飞行的模拟试验等。
理论物理是从一系列的基本物理原理出发,列出数学方程,再用传统的数学分析方法求出解析解,通过这些解析解所得到的结论和实验观测结果进行对比分析,从而解释已知的实验现象并预测未来的发展。
随着计算机技术的飞速发展和计算方法的不断完善,计算物理学在物理学进一步发展中扮演着越来越重要的不可替代的角色,计算物理学越来越经常地与理论物理学和实验物理学一起被并称为现代物理学的三大支柱。很难想象一个21世纪的物理系毕业生,不具备计算物理学的基本知识,不掌握计算物理学的基本方法。
它主要包括在传统物理课题中常用的数值计算方法(如偏微分方程的数值求解方法、计算机模拟方法中的随机模拟方法-蒙特卡罗方法和确定性模拟--分子动力学方法以及神经元网络方法)以及计算机符号处理等内容。
③ 什么是有限元法和有限差分法
有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。
有限差分方法(finite difference method)一种求偏微分(或常微分)方程和方程组定解问题的数值解的方法,简称差分方法。
(3)常用的数值计算方法对比扩展阅读:
有限差分法(FDM)的起源,讨论其在静电场求解中的应用。以铝电解槽物理模型为例,采用FDM对其场域进行离散,使用MATLAB和C求解了各节点的电位。由此,绘制了整个场域的等位线和电场强度矢量分布。同时,讨论了加速收敛因子对超松弛迭代算法迭代速度的影响,以及具有正弦边界条件下的电场分布。
有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
④ 数值计算方法的主要研究对象有哪些其常用基本算法主要包括哪三个方面
数值计算方法的主要研究对象:研究各种数学问题的数值方法设计、分析、有关的数学理论和具体实现。其常用基本算法在数值分析中用到迭代法的情形会比直接法要多。例如像牛顿法、二分法、雅可比法、广义最小残量方法及共轭梯度法等等。在计算矩阵代数中,大型的问题一般会需要用迭代法来求解。
许多时候需要将连续模型的问题转换为一个离散形式的问题,而离散形式的解可以近似原来的连续模型的解,此转换过程称为离散化。
例如求一个函数的积分是一个连续模型的问题,也就是求一曲线以下的面积若将其离散化变成数值积分,就变成将上述面积用许多较简单的形状(如长方形、梯形)近似,因此只要求出这些形状的面积再相加即可。
(4)常用的数值计算方法对比扩展阅读
数值分析也会用近似的方式计算微分方程的解,包括常微分方程及偏微分方程。
常微分方程往往会使用迭代法,已知曲线的一点,设法算出其斜率,找到下一点,再推出下一点的资料。欧拉方法是其中最简单的方式,较常使用的是龙格-库塔法。
偏微分方程的数值分析解法一般都会先将问题离散化,转换成有限元素的次空间。可以透过有限元素法、有限差分法及有限体积法,这些方法可将偏微分方程转换为代数方程,但其理论论证往往和泛函分析的定理有关。另一种偏微分方程的数值分析解法则是利用离散傅立叶变换或快速傅立叶变换。
⑤ 结构动力响应的数值计算方法主要有哪些
数值计算导数的方法很多,
常用的有插值型求导公式用于求某点上导数,样条求导公式用于求利用插值的结果拟合出的结果。一般有3点公式或者5点公式。
一般可以根据需要自己构造求导的算法,这些求导算法都可以用来算梯度。
Matlab中可以直接用del命令计算高度矩阵的表面梯度。
对应不同的情况,可以有各种各样的方法。
⑥ 有限元法和数值分析法有什么区别
有限元法是数值分析法中的一种,是一套求微分方程的系统化数值计算方法,是解决力学问题比较有效的数值计算方法,是将数值计算转换为矩阵计算,有利于计算机运算。数值分析法就是构造一个比较简单的函数关系,来求解方程的近似值。
⑦ 数值方程与数值模拟
常用的数值计算方法有有限差分法和有限单元法。由于有限单元法中的集中储量有限元方法较通常的有限元法具有更多的优点,而且在边界条件的处理上,集中储量有限元法比有限差分法更符合实际,它考虑了边界节点的均衡单元的储水量变化(吴金全,1989)。
图1.4.3 均衡区域示意图
(一)集中贮量有限元公式推导
取单位水平面积、高度为计算层厚度的土柱进行研究(图1.4.3),将土柱(计算区域)垂直向上剖分为n个单元,空间步长为Δz,节点编号为0,1,2,…,n-1,n,在Δt时段内(Δt=tj+1>-tj),对任一内节点i所代表的均衡区zi-1/2到zi+1/2(图1.4.3)之间的土体列水量均衡方程(暂先不考虑极系吸水项)。
1.内节点(i=1,2,…,n-1)
由达西定律
(1)通过zi-1/2断面的水流通量(流入量)为:
土壤水盐运移数值模拟
(2)通过zi+1/2断面的水流通量(流出量)为:
土壤水盐运移数值模拟
(3)均衡区域Δz内储水量的变化量(增量)为:
土壤水盐运移数值模拟
根据质量守恒原理(流入量-流出量=储存量的变化量)得:
Δqi=qi-1/2-qi+1/2 (1.4.19)
将式(1.4.16)、式(1.4.17)、式(1.4.18)、式(1.4.19)代入得:
土壤水盐运移数值模拟
式(1.4.20)中,负压h及参数C和K在时间上取时段末j+1时刻的值,并整理得:
土壤水盐运移数值模拟
与有限差分方程比较,集中储量有限元推导出的有限元方程式(1.4.21)与隐式差分方程(h方程)是完全一致的。因此,具有无条件稳定和收敛的优良特性,故选用隐式差分格式对数学模型进行数值离散。若在时间上取时段中间j+1/2时刻的负压h及参数C、K,则可得出与Crank-Nicolsen差分格式完全一致的方程。
若考虑源汇项根系吸水项S,则式(1.4.22)变为:
土壤水盐运移数值模拟
令:
土壤水盐运移数值模拟
式中:i=1,2,…,n-1。
令
土壤水盐运移数值模拟
将式(1.4.24)代入式(1.4.23)得:
土壤水盐运移数值模拟
2.边界节点的处理
(1)上边界节点i=0处的方程为:
土壤水盐运移数值模拟
式中:
令(1.4.26)式中:
土壤水盐运移数值模拟
则(1.4.27)式变为:
土壤水盐运移数值模拟
(2)下边界节点i=n为第一类边界节点,hn已知,故不需列方程计算,这样第n-1个方程可简化为:
土壤水盐运移数值模拟
式中:
土壤水盐运移数值模拟
3.方程组
综合内节点和边界节点方程,从而得如下代数方程组:
土壤水盐运移数值模拟
方程组式(1.4.31)中:b0、c0、f0按式(1.4.27)式计算,fn-1按式(1.4.30)式计算,其余αi、bi、ci按式(1.4.24)计算。
方程组式(1.4.31)用矩阵表示可简化为:
[A][H]j+1=[F] (1.4.32)
式中:[ A]为系数矩阵;[ F]为常数项列阵;[ H]j+1为求解未知量的列阵。
这样,通过数值方法将描述土壤水分运动的偏微分方程转化为求解代数方程组的问题。方程组式(1.4.31)系数矩阵元素满足αij=0(当|i-j|>1 时),为三对角方程组,所以,可用“追赶法”求解。
(二)方程的线性化与土壤水分运动参数的取值
系数矩阵[A]中的各元素由时段末(j+1)时刻的土壤水分运动参数给出,常数项列阵[F]中的元素除含有已知时段初j时刻的负压h外,还含有时段末(j+1)时刻的土壤水分运动参数。然而土壤水分运动参数本身又是负压h的函数,因而求解方程组原则上说是非线性的。在利用数值方法求解土壤水分运动方程时,必须将方程线性化,使求解方程组成为线性代数方程组。
因迭代法计算的误差可以控制,求得的结果较逼近实际,而且一般可允许选用较大的时间步长(雷志栋等,1988),故选用迭代法进行线性化。
首先取时段初的参数如
土壤水盐运移数值模拟
式中:e迭代误差为任意给定得正的小数,一般取e=0.01。
参数的取值,一般的说,用三点式或几何平均的方法效果较好(雷志栋等,1988),计算也不复杂,这里选用几何平均的方法:
土壤水盐运移数值模拟
同理,根据达西定律(
(三)数值模拟
1.模型验证
进行数值模拟,首先进行模型验证。模型验证时,上边界条件表达式中的θ10由实际观测资料给出。根据有作物生长条件下土壤水分运动的基本方程和差分方程,在已知初始条件和边界条件时,模型验证可以通过以下步骤进行:①根据实测初始负压剖面的分布,用三次样条插值给出各节点上的初始值;②计算蒸发量E;③计算根系吸水层厚度Lr及吸水率S;④根据差分方程计算时段末负压值h。
模型验证时,以计算起始时刻的实测负压剖面(或含水率剖面)作为初始剖面,空间步长选用1cm,根据最底部负压计测点和中子仪测点,剖面深度为120cm(含水率剖面为130cm),时间步长选用1h,迭代相对误差e≤0.01。计算中输入的大量信息,如各节点的初始负压值、降雨量、降雨日期、水面蒸发强度、根层土壤含水率等均以数据文件的形式提供。由于大田盖200kg/亩和盖600kg/亩只进行了含水率观测,计算时先将含水率θ转化为负压h,计算结束后再将负压h转化为θ。大田盖400kg/亩有负压资料,可直接用负压h计算。上边界条件由E/E0-θ关系给出。数值模拟按覆盖量(200、400、600kg/亩),分生育阶段(400kg/亩)进行,模拟计算在PC机上完成。主要模拟的试验处理有;拟合曲线见图1.4.4。
(1)I-2盖200kg/亩,模拟时间为7月31日至8月30日,共31天。
(2)I-3盖400kg/亩,模拟时间为苗期:6月25日至7月30日,共26天;拔节:7月21日至8月10,共21天;灌浆-成熟:8月11日至9月17日,共38天。
(3)I-4盖600kg/亩,模拟时间为7月31日至8月30日,共31天。
2.模型验证结果及讨论
根据描述土壤水分运动的定解问题,通过数值模拟可以得到土壤水分运动的动态过程,并用实测结果对模型进行验证。如果数学模型能够描述实际的物理过程,排除随机因素外,模拟得到的土壤水分动态过程(模拟值)与实际观测得到的土壤水分动态过程(实测值)应该完全吻合。比较图1.4.4,从图中可以看出,模拟值与实测值吻合较好,表明本文提出的考虑秸秆覆盖有作物生长条件下的模型是可靠的,以上讨论的数值方法是可行的。不同覆盖量、不同生育阶段,可以用不同的E/E0-θ经验公式来反映覆盖对水分运移的影响。因此,本文提出的模型和数值方法可以用来模拟秸秆覆盖条件下田间土壤水分的运动,可对田间土壤水分动态作中短期预报。
图1.4.4 实测值与模拟值对比图
3.模型的应用——预报
数值模拟的目的之一就是进行预报,根据气象部门提供的降雨量及水面蒸发强度等气象资料,使用验证过的模型进行田间土壤水分动态预报。本文使用实际发生过的降雨量及水面蒸发强度系列资料进行预报,用实测负压资料检验预报结果。程序的运行见图1.4.5。检验的实测资料选用大田覆盖400kg/亩的资料,分生育阶段(苗期、拔节、灌浆-成熟)进行。从图1.4.6可以看出,预报值和实测值吻合较好。
图1.4.5 双层结构有根系吸水项垂向一维土壤水数值模拟框图
图1.4.6 预报值与实测值对比图(大田盖400kg/亩)
⑧ 计算方法这门课主要学什么
计算方法这门课主要学现代科学计算中常用的数值计算方法及其原理。
计算方法是信息与计算科学专业的一门主要专业基础课程。使学生学习并掌握现代科学计算中常用的数值计算方法及其原理。
包括线性方程组的数值解、非线性方程(组)的数值解法、插值法、函数的最佳一致逼近与最佳平方逼近、曲线拟合、数值积分与数值微分、常微分方程的数值解法以及数值求解矩阵的特征值与特征向量等。
并通过上机实习熟练数值方法与一些数学软件的结合运用,达到理论与实践的和谐统一。为解决科学与工程中的实际问题打好基础,同时为后继课程的学习提供必要的知识。
课程性质:
计算方法是数学学科的一个分支,是一门与计算机使用密切结合的实用性很强的数学课程,也是科学计算的基础。地位十分重要。授课对象为信息与计算机科学专业第三学期学生,课程总学时60学时。
计算方法是以各类数学问题的数值解法作为研究对象,并结合现代计算机科学与技术为解决科学与工程中遇到的各类数学问题提供基本的算法。
⑨ 数值分析,方程求根时,牛顿法,迭代法,二分法的计算量比较
计算量从大到小依次是:二分法,迭代法,牛顿法.
⑩ 有限元法,有限差分法和有限体积法的区别
有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。
有限差分方法(finite difference method)一种求偏微分(或常微分)方程和方程组定解问题的数值解的方法,简称差分方法。
有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积法的基本方法。