当压电材料的体积变化的时候,会引起电压的改变,反之当电压的改变会引起材料的改变,如果通一交流点的话会引起压电材料的振动,超声电机就是用压电材料做的新型电机。
Ⅱ 压电换能器的压电陶瓷怎么选择,要考虑哪些参数,怎么确定陶瓷片数量
根据换能器的功能,大体上按照发射型,接收型,收发型来选用陶瓷,分别对应pzt8,pzt5,pzt4,参数主要包括:d33,Fr,Fp,D,Cp0。陶瓷片的用量根据功率极限来算,一般为0.3W/kHz/cm^3,厚度要根据响应或者灵明度来选取,计算起来就比较麻烦了,这里也说不清楚,要看看书了。有了体积和厚度,片数也就差不多知道了。
Ⅲ 压电材料PZT-5的系数 是多少 d31 和 相对介电常数
如图,希望有帮到你
Ⅳ 压电陶瓷的参数相关介绍
说到陶瓷呢,大家都很清楚,从古代到现代,陶瓷无时无刻不存在我们身边,我们在家里摆的观赏瓷器,建造高楼用的瓷砖,包括我们平常吃饭用的瓷碗,我们的生活中充满了陶瓷制品,当然,今天小编说压电陶瓷,相当一部分人就会问,什么是压电陶瓷,它是干什么用的?好的今天,小编就给大家说说什么是压电陶瓷的参数。
压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料-压电效应,压电陶瓷除具有压电性外,还具有介电性、弹性等,已被广泛应用于医学成像、声传感器、声换能器、超声马达等。压电陶瓷利用其材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷即压电效应而制作,具有敏感的特性,压电陶瓷主要用于制造超声换能器、水声换能器、电声换能器、陶瓷滤波器、陶瓷变压器、陶瓷鉴频器、高压发生器、红外探测器、声表面波器件、电光器件、引燃引爆装置和压电陀螺等,除了用于高科技领域,它更多的是在日常生活中为人们服务,为人们创造更美好的生活而努力。
自由介电常数εT33
电介质在应变为零(或常数)时的介电常数,其单位为法拉/米。
相对介电常数εTr3(relativepermittivity)
介电常数εT33与真空介电常数ε0之比值,εTr3=εT33/ε0,它是一个无因次的物理量。
介质损耗(dielectricloss)
电介质在电场作用下,由于电极化弛豫过程和漏导等原因在电介质内所损耗的能量。
损耗角正切tgδ
理想电介质在正弦交变电场作用下流过的电流比电压相位超前900,但是在压电陶瓷试样中因有能量损耗,电流超前的相位角ψ小于900,它的余角δ(δ+ψ=900)称为损耗角,它是一个无因次的物理量,人们通常用损耗角正切tgδ来表示介质损耗的大小,它表示了电介质的有功功率(损失功率)P与无功功率Q之比。即:电学品质因数Qe
电学品质因数的值等于试样的损耗角正切值的倒数,用Qe表示,它是一个无因次的物理量。若用并联等效电路表示交变电场中的压电陶瓷的试样,则Qe=1/tgδ=ωCR
好了,以上呢,就是关于压电陶瓷参数的全部内容了,一般来说呢像压电陶瓷这类的工件需要专业的人士亲自指导完成,其余的呢大家可以偶尔摸索一下,不过我们老一辈人俗话说的好嘛,我们应该活到老学到老,人的一生就是在学习中进步的,小编建议呢,想学学压电陶瓷参数的朋友可以经常的钻研一下哦。
Ⅳ 压电式传感器的主要参数
(1)压电常数是衡量材料压电效应强弱的参数, 它直接关系到压电输出的灵敏度。
(2)压电材料的弹性常数、 刚度决定着压电器件的固有频率和动态特性。
(3)对于一定形状、 尺寸的压电元件, 其固有电容与介电常数有关; 而固有电容又影响着压电传感器的频率下限。
(4)在压电效应中,机械耦合系数等于转换输出能量(如电能)与输入的能量(如机械能)之比的平方根; 它是衡量压电材料机电能量转换效率的一个重要参数。
(5)压电材料的绝缘电阻将减少电荷泄漏, 从而改善压电传感器的低频特性。
(6)压电材料开始丧失压电特性的温度称为居里点温度。
Ⅵ 我想用一种压电陶瓷即做发射也做接收,但是是分开工作,陶瓷的参数有哪些要求呢
一般陶瓷片都是可以做发射,也可以做接收。如果你不追求性能的极致,那一般用同一种陶瓷片就可以。如果要追求性能的极致,那么发射要选择发射型(P4材料),接收要用P5材料,是接收型。发射陶瓷片的串联谐振频率要等于接收的并联谐振频率。
Ⅶ 压电材料的材料参数
压电系数d33
压电系数是压电体把机械能转变成电能或把电能转变成机械能的转变系数,反应压电材料弹性性能与介电性能之间的耦合关系 自由介电常数εT33(free permittivity)
电介质在应变为零(或常数)时的介电常数,其单位为法拉/米。
相对介电常数εTr3(relative permittivity)
介电常数εT33与真空介电常数ε0之比值,εTr3=εT33/ε0,它是一个无因次的物理量。
介质损耗(dielectric loss)
电介质在电场作用下,由于电极化弛豫过程和漏导等原因在电介质内所损耗的能量。
损耗角正切tgδ(tangent of loss angle)
理想电介质在正弦交变电场作用下流过的电流比电压相位超前90 0,但是在压电陶瓷试样中因有能量损耗,电流超前的相位角ψ小于900,它的余角δ(δ+ψ=900)称为损耗角,它是一个无因次的物理量,人们通常用损耗角正切tgδ来表示介质损耗的大小,它表示了电介质的有功功率(损失功率)P与无功功率Q之比。即: 电学品质因数Qe(electrical quality factor)
电学品质因数的值等于试样的损耗角正切值的倒数,用Qe表示,它是一个无因次的物理量。若用并联等效电路表示交变电场中的压电陶瓷的试样,则 Qe=1/ tgδ=ωCR
机械品质因数Qm(mechanical quanlity factor)
压电振子在谐振时储存的机械能与在一个周期内损耗的机械能之比称为机械品质因数。它与振子参数的关系式为:
泊松比(poissons ratio)
泊松比系指固体在应力作用下的横向相对收缩与纵向相对伸长之比,是一个无因次的物理量,用δ表示: δ= - S 12 /S11
串联谐振频率fs(series resonance frequency)
压电振子等效电路中串联支路的谐振频率称为串联谐振频率,用f s 表示,即
并联谐振频率fp(parallel resonance frequency)
压电振子等效电路中并联支路的谐振频率称为并联谐振频率,用f p 表示,即f p = 谐振频率fr(resonance frequency)
使压电振子的电纳为零的一对频率中较低的一个频率称为谐振频率,用f r 表示。
反谐振频率fa(antiresonance frequency)
使压电振子的电纳为零的一对频率中较高的一个频率称为反谐振频率,用f a 表示。
最大导纳频率fm(maximum admittance frequency)
压电振子导纳最大时的频率称为最大导纳频率,这时振子的阻抗最小,故又称为最小阻抗频率,用f m表示。
最小导纳频率fn(minimum admittance frequency)
压电振子导纳最小时的频率称为最小导纳频率,这时振子的阻抗最大,故又称为最大阻抗频率,用f n表示。
基频(fundamental frequency)
给定的一种振动模式中最低的谐振频率称为基音频率,通常成为基频。
泛音频率(fundamental frequency)
给定的一种振动模式中基频以外的谐振频率称为泛音频率。
温度稳定性(temperature stability)
温度稳定性系指压电陶瓷的性能随温度而变化的特性。
在某一温度下,温度变化1℃时,某频率的数值变化与该温度下频率的数值之比,称为频率的温度系数TKf。
另外,通常还用最大相对漂移来表征某一参数的温度稳定性。
正温最大相对频移=△f s (正温最大)/ f s(25℃)
负温最大相对频移=△f s (负温最大)/ f s(25℃)
机电耦合系数(ELECTRO MECHANICAL COUPLING COEFFICIENT)
机电耦合系数K是弹性一介电相互作用能量密度平方V122与贮存的弹性能密度V1与介电能密度V2乘积之比的平方根。
压电陶瓷常用以下五个基本耦合系数
A、平面机电耦合系数KP(反映薄圆片沿厚度方向极化和电激励,作径向伸缩振动时机电耦合效应的参数。)
B、横向机电耦合系数K31(反映细长条沿厚度方向极化和电激励,作长度伸缩振动的机电耦合效应的参数。)
C、纵向机电耦合系数K33(反映细棒沿长度方向极化和电激励,作长度伸缩振动的机电耦合效应的参数。)
D、厚度伸缩机电耦合系数KT(反映薄片沿厚度方向极化和电激励,作厚度方向伸缩振动的机电效应的参数。)
E、厚度切变机电耦合系数K15(反映矩形板沿长度方向极化,激励电场的方向垂直于极化方向,作厚度切变振动时机电耦合效应的参数。)
压电应变常数D(PIEZOELECTRIC STRAIN CONSTANT)
压电应变常数是在应力T和电场分量EM(M≠I)都为常数的条件下,电场分量E变化所引起的应变分量SI的变化与EI变化之比。
压电电压常数G(PIEZOELECTRIC VOLTAGE CONSTANT)
该常数是在电位移D和应力分量TN(N≠I)都为常数的条件下,应力分量TI的变化所引起的电场强度分量EI的变化与TI的变化之比。
居里温度TC(CURIE TEMPERATURE)
压电陶瓷只在某一温度范围内具有压电效应,它有一临界温度TC,当温度高于TC时,压电陶瓷发生结构相转变,这个临界温度TC称为居里温度。
温度稳定性(TEMPERATURE STABILITY)
指压电陶瓷的性能随着温度变化的特性,一般描述温度稳定性有温度系数或最大相对漂移二种方法。
十倍时间老化率(AGEING RATE PER DECADE) Y表示某一参数
频率常数(FREQUENCY CONSTANT)
对于径向和横向长度伸缩振动模式,其频率常数为串联谐振频率与决定此频率的振子尺寸(直径或长度)的乘积。对于纵向长度厚度和伸缩切变振动模式,其频率常数为并联谐振频率与决定此频率的振子尺寸(长度或厚度)的乘积,其单位:HZ.M
Ⅷ 压电材料PZT
压电常数(Piezoelectric Constant)是压电体把机械能转变为电能或把电能转变为机械能的转换系数。它反映压电材料弹性(机械)性能与介电性能之间的耦合关系。选择不同的自变量(或者说测量时选用不同的边界条件),可以得到四组压电常数d、g、e、h,其中较常用的是压电常数d。
其中压电常数d33是表征压电材料性能的最常用的重要参数之一,一般陶瓷的压电常数越高,压电性能越好。下标中的第一个数字指的是电场方向,第二个数字指的是应力或应变的方向,“33”表示极化方向与测量时的施力方向相同。
当沿极化方向(Z轴)施加压应力T3时,在电极面A3上产生的电荷密度σ3 = d33T3。在MKSQ制中,电位移D3 =σ3,则
D3 = d33T3
同理,沿X轴和Y轴分别施加机械应力T1和T2,在电极面A3上所产生的电位移为:D3 = d31T1,D3 = d32T2。若晶体同时受到T1,T2和T3的作用,电位移和应力关系为:
D3 = d31T1+d32T2+d33T3
对于用来产生运动式振动的材料来说,希望具有大的压电常数d。
希望对你有用~~
Ⅸ 怎样测量压电常数
摘要: 提出了由一种实用元件——压电双晶片测量压电材料的压电常数d31的方法。这种测量方法不同于通常的由标准样品测量压电材料参数的方法。文中给出了测量原理、测量装置等。理论和实验结果表明:这种新的测量方法是可行的。设备简单、价廉,操作容易,精度较高。
Ⅹ 压电材料的主要特性参数有哪些
压电材料的主要特性参数有:(1)压电常数:压电常数是衡量材料压电效应强弱的参数,它直接关系到压电输出的灵敏度。(2)弹性常数:压电材料的弹性常数、 刚度决定着压电器件的固有频率和动态特性。(3)介电常数:对于一定形状、尺寸的压电元件,其固有电容与介电常数有关;而固有电容又影响着压电传感器的频率下限。(4) 机械耦合系数:在压电效应中,其值等于转换输出能量(如电能)与输入的能量(如机械能)之比的平方根; 它是衡量压电材料机电能量转换效率的一个重要参数。(5)电阻压电材料的绝缘电阻:将减少电荷泄漏,从而改善压电传感器的低频特性。(6)居里点:压电材料开始丧失压电特性的温度称为居里点。 标签:直线位移传感器 拉绳位移传感器 磁致伸缩位移传感器 润滑油泵 角度位移传感器