‘壹’ 抗滑桩的设计
(一)抗滑桩设计的步骤
1.抗滑桩设计的条件
使用抗滑桩的基本条件是:①滑坡具有明显的滑动面,滑动面以上为非流塑性主体,能被桩稳定。②滑动面以下为较完整的岩石或密实土层,可提供足够的锚固力。此外,应具有经济上较为合理,施工也较为方便的条件。
2.抗滑桩设计的步骤
(1)地质调查
通过地质调查,掌握滑坡的成因、性质、范围及厚度,分析其所处状态及发展趋势。
(2)计算滑坡推力及在桩身的分布形式
将滑坡范围内滑动方向和滑动速度基本一致的滑体部分视为一个计算单元,并在其中选择一个或几个顺主滑方向的地质纵断面为代表计算下滑力,每根桩所受的力为桩距范围内的滑坡推力。具体计算时可采用各种条分法,如传递系数法等。
滑坡推力在桩身的分布形式较为复杂,与滑坡类型、地层情况等因素有关。在设计计算时,如滑体土层是粘性土、土夹石等黏聚力较大的地层,则可简化为矩形分布形式;若为砂、砾等非粘性土,则可采用三角形分布;介于二者之间的,可设定为梯形分布。
(3)根据地形、地质情况及施工条件等确定桩的位置和布置范围
抗滑桩一般宜布置在滑坡的下部,这是因为下部滑动面较缓,下滑力较小。桩一般布置一排,布置方向与滑动方向垂直或近于垂直;对于大型、复杂或纵向较长、下滑力较大的滑坡,可布置两排或三排;当下滑力特别大时,可采用梅花形交错布置。
(4)桩参数的确定
根据滑坡推力的大小、地形及地层性质,拟定桩长、锚固深度、桩截面尺寸及桩间距。合适的桩间距应保证土体不从桩间挤出。因此,当滑体完整、密实或下滑力较小时,桩间距可取大些,反之则取小些,常用的桩间距为6~10m。此外,也可按桩身抗剪强度来确定。
桩截面多为矩形和圆形,采用矩形时一般使正面一边较短,侧面一边较长,边长一般为2~4m。
桩的锚固深度应保证能够提供足够的抵抗力。实际设计时,要求抗滑桩传递到滑动面以下地层的侧壁压力不大于地层的侧向容许抗压强度,但锚固长度过大,锚固力也不再显着增加。
(二)抗滑桩的类型
抗滑桩的类型主要包括如下几种。
1)按桩身材质分为:木桩、钢管桩、钢筋混凝土桩等;
2)按桩身截面形状分为:圆形桩、管桩、方形桩、矩形桩等;
3)按成桩工艺分为:钻孔桩、挖孔桩;
4)按桩的受力状态分为:全埋式桩、悬臂桩和埋入式桩;
5)按桩身刚度分为:刚性桩和弹性桩;
6)按桩体组合形式分为:单桩、排架桩、刚架桩等;
7)按桩头约束条件分为:普通桩和锚索桩等。
常用的抗滑桩的基本形式如图2-21所示。全埋入式桩(图2-21a)和悬臂桩(图2-21b)使用较为普遍;埋入式桩(图2-21c)一般在滑坡体厚度较大的情况下使用,可节省造价;承台式桩(图2-21d)是将两排桩在桩头用承台连接,可使桩和桩间土共同受力;刚性桩(图2-21e、f、g)能有效发挥两桩的共同作用,可减小桩的埋深;锚索桩(图2-21h)即在桩头或桩的上部加若干束锚索固于滑动面以下稳定地层中,可增加横向支点和抗力,减小桩的弯矩和剪力,从而减小截面和埋深。
图2-21 常用抗滑桩的基本形式
实际工作中应根据滑坡的类型、规模和地质条件以及滑床的岩土状况、施工条件和工期等要求选择具体的桩型。
(三)抗滑桩的计算宽度
参考桥梁桩基设计,当抗滑桩的截面设计宽度为B或直径为d且和大于0.6m时,计算宽度(Bp):
地质灾害防治技术
(四)确定桩的长度
抗滑桩的长度由滑动面上、下两部分组成,滑动面以上的长度以保证滑体不会从桩顶滑出为原则,应进行越顶验算。在进行越顶验算时,应把因做桩后地下水排泄断面减小而可能抬高桩后地下水位这一因素考虑进去。实际工程中,有许多桩的长度大于实际需要而造成浪费,这就导致埋入式抗滑桩的出现。越顶和桩长过长均表明桩长设计欠合理。埋于滑动面以下的长度,除满足不超过土体允许的弹性抗力外,还应考虑滑动面是否向下发展的可能,以确保桩的稳定,悬臂桩桩身在滑面以下的埋置深度一般为桩长的1/3~1/2,视锚固条件而异。
(五)抗滑桩的计算模型
1.悬臂桩法与地基系数法模型
现有的计算方法一般将土层视为弹性地基,并符合Winkler假定,将抗滑桩作为弹性地基梁进行计算。根据对滑面以上桩前土体作用处理方法的不同,抗滑桩的计算方法可分为两种:一是悬臂桩法,计算时将滑面以上桩身所受滑坡推力及桩前土体的剩余抗滑力(即桩前土体处于稳定状态时所能提供的最大阻力)作为设计荷载,若剩余抗滑力大于被动土压力,则以被动土压力代替剩余抗滑力,计算出锚固段桩侧压力、位移及内力,其计算模型相当于下部锚固的悬臂结构,见图2-21b所示。该法计算简单,在实际工作中广为采用。二是地基系数法,计算时将滑面以上桩身所受的滑坡推力作为已知荷载,而将整个桩作为弹性地基梁计算,见图2-21c所示。采用该法时,要求所求得的桩前抗力不大于剩余抗滑力及被动土压力,否则应采用剩余抗滑力及被动土压力。
2.桩侧土的弹性抗力计算模型
假定地表以下y处地层对桩的抗力为
地质灾害防治技术
式中:σy为地表以下y处地层对桩的抗力(kPa);xy为地表以下y处桩的水平位移(m);K为地基系数,或称弹性抗力系数;Bp为桩的计算宽度(m)。
地基系数与深度有关,其计算公式为
地质灾害防治技术
式中:y为嵌固段距滑带的深度(m);y0为与岩土类别有关的常数(m);n为随岩土变化的常数;m为地基系数随深度变化的比例系数;其他符号意义同前。
当n=0时,K为常数,不随深度变化,其相应的计算方法称为“K”法,适用于硬质岩层及未扰动的硬粘土等;当n=1且y0=0时,K=my,表明K沿深度呈三角形分布,相应的方法称为“M”法,适用于硬塑—半坚硬的砂粘土等。
3.刚性桩与弹性桩的计算模型
当桩的刚度远大于土体对桩的约束时,在计算桩身内力时,可忽略桩的变形,而将桩视为刚体,即刚性桩,这种简化对计算结果影响不大。反之,则需考虑桩身变形的影响,即将桩视为弹性桩。
刚性桩桩截面较大,长度较短,其刚性相对于桩周岩土为无穷大;弹性桩截面小,长度大,相对刚度较小。一般大截面的挖孔桩多为刚性桩。
当桩在滑面下埋深 时,按刚性桩设计;当 时,按弹性桩设计。
K法:
地质灾害防治技术
M法:
地质灾害防治技术
式(2-59)和式(2-60)中:α为桩的变形系数(1/m);m为地基系数随深度变化的比例系数(kPa/m2);Bp为桩的计算宽度(m);EW为混凝土的弹性模量(kPa);I为桩截面惯性矩, ,d为矩形桩沿滑坡推力方向的边长(m);C为桩底侧向地基系数(kPa/m)。
4.柱底支承条件的计算模型
抗滑桩的顶端一般为自由支承,而底端则按约束程度的不同分为自由支承、绞支承及固定支承,如图2-22所示。
图2-22 悬臂桩与地基系数法的计算模型
(1)自由支承
滑面以下AB段,地层为土体或松软破碎岩石时,桩底端有明显的移动和转动,可认为是自由支承。
(2)绞支承
桩底岩层完整,但桩嵌入此层不深时,可以认为是绞支承。
(3)固定支承
桩底岩层坚硬完整,桩嵌入较深时,可以按固定端处理。
对悬臂桩法,桩在滑面以上所受的荷载是已知的,桩在这一段的变形及内力容易求得,桩侧土的反力计算可采用“M”法。
(六)抗滑桩的内力计算
抗滑桩的内力计算,分刚性桩和弹性桩两种情况,它们又各分为悬臂桩和全埋式两种情况。滑动面以上的下滑力和桩前剩余下滑力均视为外力,按一般的力学方法可以很容易由桩顶向下分别计算出桩侧应力和桩身内力。而对于滑动面以下岩土体的弹性抗力,刚性桩可以采用角变位法或无量纲法求解;弹性桩可以采用“M”法或无量纲法求解。
(七)抗滑桩的抗剪和抗弯验算
桩的控制效果主要取决于桩本身强度,根据桩的施工位置,可将其分为抗剪应力桩和抗弯应力桩。一般情况下,将桩所具有的容许应力作为桩所具有的控制效果界限值。为了获得设计安全系数,单位宽度桩所需的抗滑力(PR)可根据下式求得:
地质灾害防治技术
式中:Fs为抗弯稳定性安全系数;N为单位宽度滑体重量法向分量(kN/m);μ为单位宽度孔隙水压力(kN/m);C为滑带土的内聚力(kPa);L为滑面的长度(m);PR为单位宽度桩所需要的抗滑力(kN/m);T为单位宽度滑体的下滑力(kN/m);其他符号意义同前。
由于抗滑桩位置与岩土性质等不同,桩受力状态也不同。一般来说,在距滑动面2/3深处的桩受到最大荷载,即称抗弯桩,此桩应满足下式:
地质灾害防治技术
式中:σmax为钢管弯曲的容许应力强度(t/m2);V为产生于桩的轴向力(t);Mmax为产生于桩的最大弯矩(t·m);AP为桩钢材断面面积(包括补强材料)(m2);ZP为桩钢材断面系数(包括补强材料)。
当岩土强度高,所研究桩为刚性体时,在滑动面上的桩受到剪切力作用,常以剪切桩设计,应满足下式:
地质灾害防治技术
式中:Smax为产生于桩上的最大剪力(t);τp为钢管的容许剪应力强度(t/m2);Ap为钢管断面面积(m2);τs为补强材料的容许剪应力强度(t/m2);As为补强材料的断面面积(m2)。
‘贰’ 抗滑桩设计桩顶位移过大怎样调整
抗滑桩设计与计算:
1、作用于抗滑桩的外力有滑坡推力、桩前滑体抗力和锚固段地层的抗力。桩侧摩阻力和粘聚力以及桩身重力和桩底反力可不计算。滑坡推力按规定采用传递系数法计算确定。
2、桩前抗力可按桩前滑体处于极限平衡时的滑坡推力或桩前被动土压力确定,取小值。
3、抗滑桩上滑坡推力可采用矩形分布或梯形分布,当滑体为极松散的土体,可采用三角形分布。
4、桩底支承选用自由端,嵌入岩石较深可选用自由端或铰支。
5、抗滑桩的锚固段长度应满足桩侧最大压应力不大于地基的横向容许承载力的要求。
6、滑动面以上的桩身内力,应根据滑坡推力和桩前滑体抗力计算。滑动面以下的桩身变位和内力,应根据滑动面处的弯矩和剪力,采用地基系数法进行计算,根据岩土条件可选用“K法”或“m法”。地基系数K、m可根据试验资料和地区经验、工程类比综合确定。
7、抗滑桩的混凝土结构应按现行国家标准《混凝土结构设计规范》(GB50010)进行计算,结构重要性系数1.0,永久荷载的分项系数为1.35。抗滑桩桩身按受弯构件设计,当无特殊要求时,可不做变形、抗裂、挠度等项验算。
在路基坡脚2m、10m分别打入1m左右的木桩,木桩上钉上钉子。观测钉子的坐标就可以了。
‘肆’ 关于理正抗滑桩的中的“计算方法”选项“M法、C法、K法”这三个选项中每个选项的值该如何算或者如何选
计算土反力时,需要确定弹性抗力系数K=my+A、K=Cy0.5+A、K=K+A(分别对应m法、C法、K法),其中A表示嵌固面处(y=0)。
桩侧岩土体的弹性抗力系数简称为地基反力系数,是地基承受的侧压力与桩在该位置处产生的侧向位移的比值。也即单位土体或岩体在弹性限度内产生单位压缩变形时所需施加于其单位面积上的力。常采用的有三种假设:
1、假设地基系数不随深度而变化,即地基系数为常数的K法。
2、假定地基系数随深度而呈直线变化的m法。
3、地基反力系数沿深度按凸抛物线增大的C法。
(4)抗滑桩位移测量方法扩展阅读:
注意事项:
1、抗滑桩可用于稳定滑坡、加固山体及其他特殊路基。
2、抗滑桩应按工点设计图施工。开挖中应核对滑面情况,当实际位置与设计出入较大时,应通过变更设计处理。
3、抗滑桩应分节开挖,每节高度宜为0.6~2.0m,挖一节立即支护一节。护壁混凝土模板的支撑可于浇筑后24小时拆除。爆破应采用减震措施,弃砟不得堆在滑坡范围内,开挖桩群应从两端向滑坡主轴间隔开挖,灌桩1d后才可开挖邻桩。
‘伍’ 三峡库区万州—巫山段地质灾害监测预警研究
欧阳祖熙张宗润陈明金师洁珊陈征韩文心
(中国地震局地壳应力研究所,北京,100085)
【摘要】为了较好地解决滑坡监测中高度的不确定性问题,需要配合使用多种类型的监测系统。本文系统介绍了三峡库区万州、奉节、巫山等地开展的地质灾害监测预警研究工作,包括基于3S技术和地面变形监测台网建立的研究区典型地段滑坡监测网、研制的新型滑坡无线遥测台网,以及流动倾斜仪、激光测距仪等专用设备。通过近年来获得的一些典型监测结果剖析了不同技术和方法在地质灾害监测预警相关方面应用的有效性。
【关键词】三峡库区滑坡监测预警系统3S技术
1引言
自1998年以来,中国地震局地壳应力研究所(以下简称地壳所)三峡库区地质灾害项目组依托国务院三峡建设委员会移民局“三峡工程万州库区GPS滑坡监测示范研究”,科技部“十五”攻关项目“示范区新型、高效地质灾害遥测台网技术系统研究”,重庆市政府和移民局下达的“奉节、巫山高边坡与高挡墙稳定性监测”,以及地壳所与德国地球科学研究中心和英国伦敦大学学院关于“应用PSInSAR遥感技术监测三峡库区滑坡及库岸变形”等项目的支持,在万州、巫山、奉节三地移民局和国土局的配合下,广泛深入地开展了库区地质灾害监测预警系统的研究。监测的对象由滑坡、危岩与库岸变形,扩展到高挡墙、高边坡和移民楼房基础的稳定性,监测技术体现了多学科的融合。
几年来,在进行地质调查的基础上,项目组运用3S技术,建立地质灾害地理信息系统(GIS);开展全球卫星定位(GPS)滑坡变形监测及多手段仪器监测;并整合现今成熟的、先进的传感器与测量技术、计算机信息处理技术与通讯技术,以 GSM/GPRS为通讯平台的无线遥测台网,可以选择连接不同的传感器来监测崩、滑体地表变形、深部位移、地下水动态、声发射、裂缝变化、雨量,以及库岸及抗滑桩等工程构筑物内部应力及所受的推力等;在遥感(RS)技术应用方面,将国际上新近提出的角反射器技术用以辅助进行InSAR信号处理,建立了试验台网。迄今,项目组在库区库岸与滑坡变形监测及灾害预警系统的工作中已获得了多项阶段性成果,一些典型地区的监测成果为政府减灾决策提供了重要依据。
2库区地质灾害监测网设计的指导思想
库区崩塌、滑坡监测的主要目的是:全面了解和掌握崩、滑体的演变过程,及时捕捉崩、滑体灾变的特征信息,为崩塌、滑坡灾害的正确评价分析、预测预报及治理工程等提供可靠的资料和科学依据。同时,监测结果也是检验崩塌、滑坡分析评价及滑坡工程治理效果的尺度。
为了达到上述目的,库区地质灾害监测系统总体设计思想为:
(1)针对不同崩、滑体的地质构造与变形阶段特征,应采用不同的方案、手段进行监测;
(2)鉴于崩、滑体变形破坏过程的高度不确定性,同一崩滑体上宜采用多种手段监测,形成点、线、面、地表与地下相结合的立体监测网,使其互相补充、检核;
(3)在群测群防工作的基础上,发展常规人工仪器观测与无线自动遥测的技术、建立静态和动态监测相结合的监测预警网络,分别服务于地质灾害的长期、中期预测和短期预警。
3地质灾害监测方法与技术
依据崩、滑体变形监测的物理量,兼顾变形测量对精度的要求和监测工作的效率,结合当前国内外监测技术和方法的发展水平,在实际应用中采用GPS、InSAR、激光测距、流动倾斜、裂缝监测技术测量地表形变,一些地段也采用了传统方法如全站仪和水准测量;钻孔测斜仪监测深部位移;孔隙水压力计监测地下水动态变化;钢筋应力计与锚索(杆)应力计,分别用于监测抗滑桩内部钢筋和锚索、锚杆的受力变化;同时,采用遥测台网技术采集包括地表变形、深部位移、地下水、钢筋计、危岩声发射等在内的各种动态监测数据。下面简要评述这些方法的特点与适用领域。
3.1GPS(全球卫星定位系统)大地测量网
全球卫星定位系统(GPS)是美国国防部研制的导航定位授时系统,由24颗等间隔分布在6个轨道面上、大约20000km高度的卫星组成。在地球上任何地点、任何时刻,在高度角15。以上天空至少能同时观测到4颗以上的卫星。用户在地面用接收机接收这些卫星发射来的信号,测定接收机天线到卫星的距离,就可以计算出接收点的三维坐标。近年来,我国开发和应用GPS定位技术的发展速度很快,如在长江三峡工程坝区已建立了GPS监测网,实践证实,高性能配置的GPS水平定位精度可达毫米级,完全可用于崩塌、滑坡的位移监测。
相对于传统的大地测量方法,GPS测量技术应用于滑坡监测有以下优点:①观测点之间无需通视,选点方便;②不受天气条件限制,可以进行全天候的观测;③观测点的三维坐标可以同时测定;④新一代 GPS接收机具有操作简便、体积小,耗电少的特点。所以,这种方法已广泛运用于滑坡变形监测、施工安全监测以及滑坡工程治理效果监测之中。但是,由于监测站建设和获取数据周期较长,在灾害的短期预警中该方法用得较少。
3.2专用仪器监测网
在此类测量方法中,有多种传统的测量仪器目前仍在广泛使用,如经纬仪、全站仪、水准仪和钻孔测斜仪等,它们主要用于各种工程治理项目的施工安全监测中。除了前述的仪器外,我们还从三峡库区的具体环境条件出发,结合地质灾害其他方面监测工作的需要,开发了便携式倾斜仪、流动激光测距仪等设备,弥补GPS观测受房屋、山坡遮挡而不便施测的不足,以便对位于河谷斜坡地形上的库区移民新城镇的滑坡地表变形、房屋及地基基础变形进行全面监测。在一些经过工程治理的重点滑坡、变形体上,结合治理效果监测,还大量运用了钢筋计和锚杆(索)计以监测抗滑桩内部应力及滑坡的推力。
在地表开展各种流动仪器观测具有监测参量多,灵敏度高,测量范围较大,效率高,成本低,操作简单等特点,因此这类测量方法适用于滑坡治理施工安全监测和效果监测,与前一种GPS流动站观测法相同,也大量应用于多种地质灾害的中、长期监测预报中。
3.3地质灾害无线遥测台网
目前,国外崩塌、滑坡监测预警技术已发展到一个较高的水平。首先是较普遍采用了全自动、多参数监测的遥测台网;其次,在地质灾害模型预报和预警系统方面,已运用3S(GPS、GIS和RS)技术进行地质灾害空间分析、模型预报和预警系统研究。国内在上述方面尽管还存在较大的差距,但近年来,铁道部、交通部等个别研究所及少数矿区已尝试采用小型遥测台网进行滑坡灾害的监测预报;2002年,中国地震局地壳所在三峡库区又率先建立了用于地质灾害监测预警的多参数无线遥测台网。
“RDA型地质灾害无线遥测台网”系地壳所开发的基于GSM/GPRS技术的新型无线遥测台网。该系统主要由监测子站群、监测预警数据中心和GPRS数据通讯公网等三部分组成(系统构成见图1)。GPRS是在GSM基础上发展起来的一种无线分组交换的数据承载业务。相对于GSM/SMS的电路交换数据传送方式,GSM/GPRS采用分组交换数据传送方式,提高了传输速率,有效利用无线网络信道资源,全面实现了移动Internet功能,对于每个用户永远在线等方面具有非常明显的优势。
图1GPRS滑坡无线遥测系统构成
根据单体滑坡监测的需要,可以确定所需遥测子站的个数,各遥测子站可以选择连接不同的传感器来监测滑坡地表位移、深部位移,或者地表倾斜、裂缝变化、雨量,以及监测护岸、抗滑桩等工程构筑物内部应力和所受的推力等。监测预警数据中心系统软件功能包括接收各地质灾害点遥测子站的数据、数据入库、显示变形趋势曲线和超限自动报警等功能。同时,数据中心站可对各遥测子站发出指令,改变其工作参数,如数据采样间隔(5分钟、1小时、24小时等)。系统可接入地区监测预警中心微机局域网,支持运行基于GIS的减灾决策支持系统。市、县级地质灾害监测指挥中心的计算机屏幕上可以准实时地密切监视滑坡加速变形趋势,支持对库岸和滑坡破坏事件进行短期及临滑预报,也可以对发生的地质灾害事件进行现场监测和救助指挥。从2002年我们在万州WJW滑坡建成第一个遥测台网以来,在万州和巫山运用“RDA型地质灾害无线遥测台网”监测的崩、滑体已有近20处,积累了丰富的数据。该地质灾害无线遥测系统主要具有以下特点:
(1)监测参量多,精度高
系统集成了包括:滑坡地表变形(位移、沉降)、倾斜变形测量仪、裂缝测量仪、崩滑体微破裂声发射信号记录仪、钻内地层滑移变形测斜仪、孔隙水压测量仪、钢筋测力计、锚索(杆)拉力计等8种滑坡监测仪器。这些测量仪器均具有较高的测量精度和较大的动态范围。
(2)自动遥测,无人值守
遥测仪器均内置微处理器和无线数据传输模块,动态范围大,全自动监测,无线传输,可用交流电源或太阳能电池供电。
(3)无障碍设计
所研制的仪器在测量、数据传输等方面均符合无障碍设计要求,因而有安装方便,环境适应性好等优点。
(4)依托先进的通讯技术
本遥测台网综合运用了最新发展的GSM/GPRS通讯技术,既适应三峡库区的地形条件,便于安装和维护,又具有高容量、覆盖范围广以及成本较低等特点。
3.4崩塌滑坡应急监测系统
以往,无论在三峡库区还是我国其他地方,发现有崩塌滑坡迹象时,常因缺乏应急监测手段,未能详细积累数据,错失研究的机会且不论,有时终因措施不力造成人民生命的损失。我们在RDA型遥测台网的基础上,将通讯改为GSM/SMS,即短信息方式,目的是使系统对通信公网的适应能力更强,架设更简便可靠。在监测环境偏远以及应急监测的场合,这一点显得尤为重要。
应急监测系统优选了地表倾斜、激光测距、裂缝测量仪等手段。一旦有群众报告或者通过仪器监测发现某地滑坡有加速变形迹象,便能急速赶赴现场,及时安装台网,实施24小时连续监测。既能有效避免不测事件的发生,还可积累研究滑坡变形破坏阶段的宝贵资料。2003年,应万州地方政府的要求对公路、桥梁开展的应急监测便收到了良好的效果。
3.5合成孔径干涉雷达InSAR测量技术
合成孔径雷达干涉(InSAR InSAR—Interferometry Synthetic Aperture Radar的缩写。
干涉雷达优点较多:具全天候工作能力,发射的微波对地物有一定穿透能力,能提供光学遥感所不能提供的信息,且为主动式工作方式。对于欧洲雷达卫星 ERS-1/2和加拿大雷达卫星RADRSAT-1,采用干涉技术来产生 DEM,监测地面位移变化,精度可以达到毫米量级。因此,该技术手段特别适用于大面积的滑坡、崩塌、泥石流以及地裂缝、地面沉降等地质灾害的监测预报,是一项快速、经济的空间探测高新技术。
三峡地区植被茂盛,雨水充沛,地貌差异较大,不利于干涉雷达信号的处理,曾有人在该地区做过尝试未获成功。为此,地壳应力研究所与德国地球科学研究中心(GFZ)合作,采用了国际上新推出的角反射器技术以辅助进行 InSAR信号处理。角反射器是用三块角形金属板制作的一种装置,它对照射其内的雷达波可按原方向反射回去,反射信号相对于周围环境有显着的增强。通过在工作区范围内均匀布设人工角反射器,并确定一些稳定的点作为天然反射点,便于图像的配准和精确计算角反射器的位移。对于三峡库区如此大的范围,仅仅利用有限的点位进行 GPS或其他仪器设备测量滑坡体形变是有局限的,因此,探索利用InSAR技术开展三峡库区滑坡监测,具有重要的意义。2003年,我们已经在万州和巫山两地安装了14个角反射器,进行试验监测和研究,同时还联合进行 GPS变形监测作为对比。
4用于地质灾害监测预警的GIS系统
地质灾害监测地理信息系统是一个能够有效管理各种四维空间(含地理坐标和时间变化)数据的信息系统。它以崩滑体等监测对象为基础,把地形、城市规划、监测点分布等空间数据,按其空间位置存入计算机;通过数据库模块、曲线显示模块与数据分析模块,实现监测数据的存储、更新、查询、趋势分析、绘图显示及图、表输出等功能。
系统主要由四部分组成:地理信息子系统、地质基础资料文献管理子系统、地质灾害监测数据库子系统和监测数据分析子系统。
地壳所自1998年在重庆市万州区开展地质灾害的监测与研究工作以来,首先致力于建立基于GIS的地质灾害数据和资料管理平台,在2000年研制成功“万州库区移民工作地理信息系统”。之后,又逐步完善相关的数据库管理系统,充实数据分析模块,增加自动报警功能,实现了含数据管理、分析于一体的滑坡监测预警GIS系统,并相继推广到巫山、奉节两县。
系统采用面向对象的编程语言Visual C++6.0为开发工具,以MapInfo为基本开发平台;地质灾害监测数据库利用Microsoft SQL Server 2000创建,通过ADO技术进行数据库连接、访问。地质灾害监测预警GIS系统以大比例尺电子地图作为工作用图,可以任意缩放、漫游、能够自动查找地图目标,并与数据库相关联。该系统为管理各种工程地质、水文地质资料,为管理上述几类地质灾害监测网和监测数据,为数据的分析与结果显示,包括为群测群防工作的管理均提供了一个有效的平台,进而为滑坡稳定性的研究打下了很好的基础(系统总体结构如图2)。
图2地质灾害监测预警GIS系统总体结构框图
根据前述功能的要求,该系统可以输出多种表达数据处理及空间分析结果的图形、图表与三维模拟图等可视化形式。图3显示了巫山县GIS系统的一个界面,显示出滑坡、道路及四类监测站的分布,即为一例。
图3巫山GIS系统显示的GPS和倾斜监测站分布图
1.GPS静态监测站;2.GPS动态监测站;3.流动倾斜监测站;4.GPS坐标控制点
数据分析流程基本上有如下的3个方面:
(1)整个监测系统获得的数据,包括自动传输与流动观测的,经过校核确认无误后,即可存入当地地质环境监测站基础数据库。
(2)基于地理信息系统的地质灾害趋势分析及预警技术研究,包括进行监测结果的统计分析、时间序列分析、地表位移矢量图分析、滑坡的深度—位移曲线分析、位移—降雨量分析等,并进而确定在不同的地质环境下滑坡预警的阈值。
(3)所获得的滑坡变形时间变化曲线及其二维平面分布图像的结果,可用于做进一步的滑坡稳定性分析研究。
5各类监测技术的应用与典型监测结果
5.1GPS技术用于滑坡变形监测
自1999年底万州库区建成含120余个流动站的GPS滑坡变形监测网,到2002年底,共完成了8期测量。结果显示,多数滑坡近期变形速率较低,在5mm/a以下;但半边石坝与实验小学等少数滑坡年变形速率分别达84mm和49mm;关塘口、青草背等滑坡也有明显变形。图4显示了万州城区滑坡现今变形的分区特点:变形大的地区多为陡坡,有的是古滑坡分布地区;近期的变形主要和人类工程活动以及强降雨等因素有关。
图4万州城区滑坡变形分布示意图
1.GPS滑坡监测点;2.滑坡;3.滑移矢量;4.变形较小的稳定地区
上述结果对于库区城镇的建设规划有指导意义。据了解,有的基础设施项目选在上述变形区域内,自2002年初开工,场平屡屡受阻,历时3年无法开展基本建设,付出了沉重的代价。对这几处稳定性差的滑坡体,加强了跟踪监测和研究。例如万州 SMB滑坡2003年继续发生变形垮塌,其北部区域5月以来曾发生严重变形。图5给出了3条有代表性的基线变化情况,纵坐标表示日降雨量以及GPS基线长度变化,单位为mm。由图中可以看到,2003年一季度该区变形速率不高,4月18日(即图中第108日)降大雨84mm后,滑坡变形明显加速。G123-134是接近主滑方向的测量基线,到6月累计变形量达到400m左右。除了该区是因人类工程活动触发滑坡变形因素外,强降雨的影响不可低估。
又如奉节新县城地区有大小崩塌、滑坡50余处,其中以三马山、宝塔坪、白衣庵、南竹园等大型滑坡对新建县城的影响最大。由于新县城地处复杂的地质构造部位,岩层较为破碎,冲沟发育,高阶地较窄,且连续性差。新建移民区大多分布在地势较陡的沟、谷坡上,人工开挖的高陡边坡随处可见,并以高度大、连续分布长为特点,边坡高度可达30~40m,长度数百米。高边坡的稳定性问题是奉节县城最大的潜在地质灾害问题之一。
2002年我们在奉节建立了含290个监测桩的GPS和地表倾斜变形监测网。到2003年中,整个县城近8km2范围的变形分布如图6所示,发生最大变形的地区是西部朱衣河谷坡一带的高边坡。这些地带大多是高阶地、陡坡,表现的主要地质灾害问题是建筑载荷导致的自然高、陡边坡、古滑坡失稳;因平整建筑场地而切削边坡,填平坡脚、沟谷,产生的高边坡与回填边坡的失稳等。
图5SMB滑坡地表变形 GPS测量成果
图62003年奉节新县城变形等值线图
5.2在滑坡工程治理安全施工阶段运用的监测技术
本阶段的监测工作主要用于评价滑坡(危岩)治理施工过程中滑坡的稳定程度,及时反馈、跟踪和控制施工进程,对原有的设计与施工组织的改进提供最直接的依据,对可能出现的险情及时发出报警信号,以便调整有关施工工艺和步骤,避免恶性事故的发生。做到信息化施工,以期取得最佳的经济效益。目前,在安全监测中使用了大量的专用仪器布设监测网,这已为广大工程技术人员所熟悉,这里仅举一例说明“RDA型地质灾害无线遥测台网”的应用成果。从2002年5月起在万州 WJW滑坡建立了无线遥测台网。该滑坡为三峡库区二期地质灾害工程治理计划项目,从2002年11月开始施工,2003年2月完成。图7所示为沿滑坡主滑方向激光测距遥测仪获得的结果。尽管施工包括59个抗滑桩的开挖与浇注,但由于设计与施工合理,整个施工期间滑坡体位移仅几个毫米,可见通过遥测台网连续监测,可以及时准确掌握滑坡变形动态,确保施工安全。
5.3 工程治理效果监测
仍以万州WJW滑坡为例。该滑坡治理工程采取以预应力锚拉抗滑桩为主,地表排水及生物工程为辅的综合治理方案。治理效果监测网采用了GPS、深部位移、孔隙水压力测量和钢筋应力计等仪器监测方法,在关键部位还设置了遥测台网进行连续监测。
图7万州 WJW滑坡工程治理施工安全监测位移曲线
图8 为A2号抗滑桩上3002遥测子站2003年8月到12月观测结果的日变化曲线。由图可见:锚拉抗滑桩内力(钢筋计、锚杆计观测)和滑坡深部位移的变化与地下水孔隙压力(渗压计观测)的变化呈明显的相关关系;根据气象资料,滑坡孔隙水压力的变化与降雨亦有直接关系。但是从总趋势看,抗滑桩内力、深部位移变化不大,说明 WJW滑坡经过治理后基本上处于稳定状态,这与其他监测点仪器巡测的结果基本一致。
图83002遥测子站观测结果曲线显示
图9 为巫山GIS系统上分析、显示的WZB边坡倾斜变形矢量图,是使用仪器监测网进行工程治理效果监测的实例。如矢量图所示,4个测点的倾向均与坡向大体一致,2003年累计角变量≤0.02°,说明经过治理后的边坡稳定性良好。
5.4滑坡变形应急监测
巫山县残联滑坡位于巫山新县城中心地带,滑坡区内高程在278~492m之间,为河流谷坡地形,坡角在10°~30°之间。滑坡体为第四纪坡积物,含碎石、粉质粘土,厚度0~12m,总体积约15万m3。由于本区域为斜坡区,公路及房屋等建设须对原始边坡不同程度的开挖、切坡,2001年已发现有变形发生。地勘资料表明残联滑坡周界明显,滑面渐趋形成,属推移式滑坡。2002年虽经两度治理,其西区在2003年仍有明显变形,危及其下的公路和移民楼房的安全。
图9巫山县 WZB边坡倾斜变形矢量图
图10巫山残联滑坡激光测距曲线(2003年9月~2004年2月)
应巫山县国土局要求,2003年9月安装了遥测台网。残联滑坡遥测台网安装在最能反映滑体变形特征的部位,四台遥测子站沿主滑方向形成一条测线。
激光测距的监测数据随时间的变化如图10所示。上条曲线为测距结果,测线长51.3m,滑坡向下滑移对应测线缩短,单位为mm;下条为环境温度曲线,单位为℃,横坐标为测量时间,按-年-月-日时:分格式显示。
从2003年9月12日至2004年2月3日,可大体分为两个阶段:
第一阶段:9月12日到9月27日为滑坡体中部抗滑桩完工之前,由于开挖引起边坡内部应力调整。受滑坡体上部载荷的影响,土体向前挤压。滑坡体中、下部向临空面的蠕滑变形明显,下滑速率大致均匀,约2mm/d,16天总计变化量达30mm。
第二阶段:在滑体中部的部分抗滑桩竣工后,位移速率变缓,降至0.5~1mm/d;到2004年2月上旬,变化量仅0.1mm/d。这说明抗滑治理工程对滑体变形起到了遏制作用,达到了抢险治理的目的。
6结论
(1)基于3S技术和地面变形监测台网,基本建立了研究区典型地段滑坡监测系统。运用GPS等空间技术可以获得滑坡变形区域分布状况,不但有利于确定需要重点监测的滑坡,而且对库区城镇改造规划有指导意义。遥测台网可快速测定变形速率,是掌握滑坡动态变形趋势与开展应急监测的有效工具。
(2)为了较好地解决滑坡监测中高度的不确定性问题,需要配合使用多种类型的仪器。作者等为此研制的新型滑坡无线遥测台网和流动倾斜仪、激光测距仪,精度高,性能稳定,有较大的推广价值。
(3)由于滑坡、高边坡所处地质环境差异以及影响因素的不同,其破坏机理和危险性程度也不尽相同。正确认识、区分滑坡与高边坡的地质环景,合理布置稳定性监测点位,对其稳定性监测、分析及评价具有十分重要的意义。
在此,对参加过此项工作的杨旭东、陈诚、范国胜、李涛等同志表示感谢。
参考文献
[1]卓宝熙.“三 S”地质灾害信息立体防治系统的建立及其实用意义[J].中国地质灾害与防治学报,1998,9(4):252~257
[2]崔政权,李宁.边坡工程——理论与实践最新发展[M].北京:中国水利水电出版社,1999
[3]欧阳祖熙,张宗润,张路等.重庆市万州区三峡工程移民地理信息系统.见:地壳构造与地壳应力文集(12).北京:地震出版社,1999:140~146
[4]欧阳祖熙,张勇,张宗润等.全球卫星定位技术在三峡库区滑坡监测中的应用.见:地壳构造与地壳应力文集(13).北京:地震出版社,2000:185~191
[5]欧阳祖熙,丁凯,师洁珊等.一种新型地质灾害无线遥测台网.中国地质灾害与防治学报,2003,14(1):90~94
[6]欧阳祖熙,王明全,张宗润等.用 GPS技术研究三峡工程万州库区滑坡的稳定性.中国地质灾害与防治学报,2003,14(2):76~81
[7]欧阳祖熙,师洁珊,王明全等.RDA型滑坡变形无线遥测台网.见:中国土木工程学会第九届全国土力学及岩土工程学术会议论文集.北京:清华大学出版社,2003:1261~1266
[8]陈明金,欧阳祖熙,师洁珊等.基于GPRS技术的地质灾害无线遥测系统.自然灾害学报,2004,13(3):65~69
[9]陈明金,欧阳祖熙.预应力锚索抗滑桩内力反演计算.见:地壳构造与地壳应力文集(17).北京:地震出版社,2004:139~145
[10]欧阳祖熙,张宗润,丁凯等.基于3S技术和地面变形观测的三峡库区典型地段滑坡监测系统.岩石力学与工程学报,2005(待刊)
‘陆’ 抗滑桩如何放线
工艺流程:地表截排水施工→测量放线定桩位→桩井口开挖→锁口施工→桩身开挖→设置必要的支挡防护→桩中护壁施工→开挖中地下水处理→开挖至设计深度→桩身钢筋骨架安装→无损检测管安装→分层浇筑C30混凝土→桩顶空桩回填及桩身露空部分修整→桩间重力式挡土墙施工→桩身保护。
‘柒’ 位移测量的方法有哪些啊
要看你的应用了,常用的有激光位移传感器ZLDS10X系列,和电涡流传感器,如KD2306系列,具体应用具体对待,
‘捌’ 水平位移测量分几种方法哪几种
以在距基坑较远,且稳定的地方设置基准点,与施工控制网联测,精确测定其坐标.然后利用基准点观测基坑周围的测量点.算出测量点坐标,与原来坐标对比算出水平位移(基准点的数量根据实际设定,够用就行),其实就是导线法观测.
也可以用前方交会的方法,在定向的时候应选择较远且稳固的点作为定向点定向.测站点与定向点的距离一般应该不小于交汇边的长度.采用1秒仪器,用测回法观测.测量点位移值的计算通常不采用计算测量点的坐标,用比较不同观测周期的坐标求位移值的方法,而采用观测值的变化值直接计算位移值
‘玖’ 抗滑桩的处治要点及适用范围有哪些
抗滑桩的处治要点及适用范围主要包括如下:
第一条 :抗滑桩一般布置于滑坡体厚度较薄、推力较小,且嵌岩段地基强度较高地段。采用抗滑桩对滑坡进行分段阻滑时,每段宜以单排布置为主,若弯矩过大,应采用预应力锚拉桩。
第二条: 抗滑桩桩长宜小于35m。对于滑带埋深大于25m的滑坡,采用抗滑桩阻滑时,应充分论证其可行性。
第三条:抗滑桩间距(中对中)宜为5~10m。抗滑桩嵌固段须嵌入滑床中,约为桩长的1/3~2/5。为了防止滑体从桩间挤出,应在桩间设钢筋砼或浆砌块石拱形挡板。在重要建筑区,抗滑桩之间应用钢筋砼联系梁联接,以增强整体稳定性。
第四条: 抗滑桩截面形状以矩形为主,截面宽度一般为1.5~2.5m,截面长度一般为2.0~3.5m。当滑坡推力方向难以确定时,应采用圆形桩。
第五条 :结合移民安置的实际需要,对滑坡进行“开发性”治理,应尽可能利用抗滑桩形成平台,为移民迁建提供建筑场地。
第六条 抗:滑桩按受弯构件设计。对于利用抗滑桩作为建筑物桩基的工程,即“承重阻滑桩”,应按《建筑桩基技术规范》(JGJ94-94)进行桩基竖向承载力、桩基沉降、水平位移和挠度验算,并须考虑地面附加荷载对桩的影响。
‘拾’ 如何测量基坑的位移和沉降
建筑基坑沉降、位移监测的内容及方法
深基坑监测的内容及方法
深基坑施工,必须要有一定的围护结构用以挡土、挡水。
围护设施必须安 全有效。浅基坑的围护结构以前常用的是钢板桩或混凝土板桩;深基坑则大多 采用现场浇灌的地下连续墙结构或排桩式灌注桩结构,并配以混凝土搅拌桩或 树根桩止水。
开挖时,坑内必须抽去地下水,7~15m 深的基坑,中间必须配二 到三道水平支撑,水平支撑采用钢管式结构或钢筋混凝土结构。围护结构必须 安全可靠,并能确保施工环境稳定。从经济角度来讲,好的围护设计应把安全 指标取在临界点附近,再靠现场监测提供的动态信息反馈来调整施工方案。
1、以下内容是基坑监测目前能够做到的也是应该做到的项目:
(1)地下管线、地下设施、地面道路和建筑物的沉降、位移。
(2)围护桩地下桩体的侧向位移(桩体测斜)、围护桩顶的沉降和水平位 移。
(3)围护桩、水平支撑的应力变化。
(4)基坑外侧的土体侧向位移(土体测斜)。
(5)坑外地下土层的分层沉降。
(6)基坑内、外的地下水位监测。
(7)地下土体中的土压力和孔隙水压力。
(8)基坑内坑底回弹监测。
2、观测点的布设
测点布设合理方能经济有效。监测项目的选择必须根据工程的需要和基地 的实际情况而定。在确定测点的布设前,必须知道基地的地质情况和基坑的围 护设计方案,再根据以往的经验和理论的预测来考虑测点的布设范围和密度。
原则上,能埋的测点应在工程开工前埋设完成,并应保证有一定的稳定期, 在工程正式开工前,各项静态初始值应测取完毕。沉降、位移的测点应直接安 装在被监测的物体上,只有道路地下管线若无条件开挖样洞设点,则可在人行 道上埋设水泥桩作为模拟监测点,此时的模拟桩的深度应稍大于管线深度,且 地表应设井盖保护,不止于影响行人安全;如果马路上有管线设备(如管线井、 阀门等)的话,则可在设备上直接设点观测。 测斜管(测地下土体、围护桩体的侧向位移)的安装:测斜管应根据地质 情况,埋设在那些比较容易引起塌方的部位,一般按平行于基坑围护结构以 20~30m 的间距布设;围护桩体测斜管应在围护桩体浇灌混凝土时放入;地下土 体测斜管的埋设须用钻机钻孔,放入管子后再用黄砂填实孔壁,用混凝土封固 地表管口,并在管口加帽或设井框保护。测斜管的埋设要注意十字槽须与基坑 边垂直。 基坑在开挖前必须要降低地下水位,但在降低地下水位后有可能引起坑外 地下水位向坑内渗漏,地下水的流动是引起塌方的主要因素,所以地下水位的 监测是保证基坑安全的重要内容;水位监测管的埋设应根据地下水文资料,在 含水量大和渗水性强的地方,在紧靠基坑的外边,以20~30 m 的间距平行于基 坑边埋设,埋设方法与地下土体测斜管的埋设相同。
分层沉降管的埋设也与测斜管的埋设方法相同。埋设时须注意波纹管外的 铜环不要被破坏;一般情况下,铜环每1m 放一个比较适宜。基坑内也可用分层 沉降管来监测基坑底部的回弹,当然基坑的回弹也可用精密水准测量法解决。 土压力计和孔隙水压力计,是监测地下土体应力和水压力变化的手段。对 环境要求比较高的工程,都须安装。孔隙水压力计的安装,也须用到钻机钻孔, 在孔中可根据需要按不同深度放入多个压力计,再用干燥粘土球填实,待粘土 球吸足水后,便将钻孔封堵好了。土压力计要随基坑围护结构施工时一起安装, 注意它的压力面须向外;并根据力学原理,压力计应安装在基坑的隐患处的围 护桩的侧向受力点。这两种压力计的安装,都须注意引出线的编号和保护。 应力计是用于监测基坑围护桩体和水平支撑受力变化的仪器。它的安装也 须在围护结构施工时请施工单位配合安装,一般选方便的部位,选几个断面, 每个断面装二只压力计,以取平均值;应力计必须用电缆线引出,并编好号。
3、数据观测
根据经验知道,基坑施工对环境的影响范围为坑深的3~4 倍,因此,沉降 观测所选的后视点应选在施工的影响范围之外;后视点不应少于二点。
沉降观 测的仪器应选用精密水准仪,按二等精密水准观测方法测二测回,测回校差应 小于±lmm.地下管线、地下设施、地面建筑都应在基坑开工前测取初始值。在 开工期问,应根据需要不断测取数据,从几天观测一次到一天观测几次都可以; 每次的观测值与初始值比较即为累计量,与前次的观测数据相比较即为日变量。
根据公认的数据,日变量大于3mm,累计变量大于10mm 即应向有关方面报警。 位移监测点的观测一般最常用的方法是偏角法。同样,测站点应选在基坑 的施工影响范围之外。外方向的选用应不少于3 点,每次观测都必须定向,为 防止测站点被破坏,应在安全地段再设一点作为保护点,以便在必要时作恢复 测站点之用。初次观测时,须同时测取测站至各测点的距离,有了距离就可算 出各测点的秒差,以后各次的观测只要测出每个测点的角度变化就可推算出各 测点的位移量。观测次数和报警值与沉降监测相同。当然也可用坐标法来测取 位移量。
地下水位、分层沉降的观测,首次必须测取水位管管口和分层沉降管管口 的标高。从而可测得地下水位和地下各土层的初始标高。在以后的工程进展中, 可按需要的周期和频率,测得地下水位和地下各土层标高的每次变化量和累计 变化量。地下水位和分层沉降的报警值,应由设计人员根据地质水文条件来确 定。
测斜管的管口必须每次用经纬仪测取位移量,再用测斜仪测取地下土体的 侧向位移量,再与管口位移量比较即可得出地下土体的绝对位移量。位移方向 一般应取直接的或经换算过的垂直基坑边方向上的分量。应力、水压力、土压 力的变量的报警值同样由设计人员确定。 监测数据必须填写在为该项目专门设计的表格上。
所有监测的内容都须写 明:初始值、本次变化量、累计变化量。工程结束后,应对监测数据,尤其是 对报警值的出现,进行分析,绘制曲线图,并编写工作报告。因此,记录好工 程施工中的重大事件是监测人员必不可少的工作。
深基坑监测的意义
随着城市建设的发展,基坑施工的开挖深度越来越深,从最初的5~7m 发 展到目前最深已达 20m 多。由于地下土体性质、荷载条件、施工环境的复杂性, 对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已 成了工程建设必不可少的重要环节。 对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得 到借鉴,也难以从理论上找到定量分析、预测的方法,这就必定要依赖于施工 过程中的现场监测。
首先,靠现场监测据来了解基坑的设计强度,为今后降低 工程成本指标提供设计依据。
第二,可及时了解施工环境——地下土层、地下 管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。
第三,可及 时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施充当耳 目。