㈠ 關於有限元分析的材料參數的問題
查手冊,或者做實驗
㈡ 有限元分析需要材料的那些力學指標數據
常用的力學分析需要:彈性模量、泊松比,岩土分析時有粘聚力、內摩擦角等;考慮重力場時需要材料的重度及重力加速度等。
㈢ ANSYS12.0有限元分析完全手冊的目 錄
第1章 有限單元法和ANSYS簡介 15
本章主要介紹有限單元法的基本思想、有限單元法的基本模型,以及使用有限單元法進行產品分析的基本步驟。ANSYS作為應用最廣泛的有限元分析軟體之一,已經發展到12.0版本。本章介紹了ANSYS 12.0新功能和特點、ANSYS 12.0的安裝和配置、ANSYS 12.0主菜單、ANSYS 12.0幫助系統等內容。
1.1 有限單元法簡介 15
1.1.1 有限單元法的基本思想 15
1.1.2 有限單元法的基本模型 17
1.1.3 有限單元法的分析步驟 18
1.2 ANSYS功能和特點 19
1.2.1 ANSYS的發展歷程 19
1.2.2 ANSYS的主要功能 20
1.2.3 ANSYS 12.0版本的新特點 22
1.3 ANSYS 12.0的安裝和配置 25
1.3.1 ANSYS 12.0的安裝 26
1.3.2 ANSYS 12.0的啟動 32
1.3.3 ANSYS 12.0的運行環境配置 33
1.4 ANSYS程序結構 33
1.4.1 ANSYS文件格式 33
1.4.2 處理器 34
1.4.3 圖形輸入 34
1.4.4 分析文件類型 34
1.5 ANSYS 12.0用戶界面基本組成 34
1.5.1 啟動ANSYS 12.0用戶界面 34
1.5.2 對話框及其控制項 35
1.6 ANSYS 12.0通用菜單 37
1.7 輸入窗口 38
1.8 ANSYS 12.0主菜單簡介 38
1.9 工具條 39
1.10 輸出窗口(OUTPUT WINDOW) 40
1.11 圖形窗口(GRAPHICS WINDOW) 40
1.12 個性化界面 42
1.13 ANSYS 12.0幫助系統 43
1.14 小結 44
第2章 ANSYS分析基本過程 45
本章主要介紹包括分析問題、創建有限元模型、施載入荷進行求解和查看結果的典型ANSYS分析過程,以及在分析過程中經常會使用到的一些命令。最後通過一個工字鋼懸臂梁的分析實例演示了ANSYS的分析流程。
2.1 分析問題 45
2.2 建立有限元模型 46
2.2.1 建立和修改工作文件名或標題 47
2.2.2 定義單元類型 47
2.2.3 定義材料特性數據 49
2.2.4 創建實體模型 49
2.2.5 對實體模型進行網格劃分 49
2.3 施載入荷 50
2.3.1 定義分析類型和設置分析選項 50
2.3.2 施載入荷 51
2.4 進行求解 52
2.4.1 求解器的類別 52
2.4.2 求解檢查 53
2.4.3 求解的實施 53
2.4.4 求解會碰到的問題 54
2.5 後處理 54
2.6 分析過程中常用到的命令 55
2.6.1 起始層命令 55
2.6.2 前處理命令 55
2.6.3 求解命令 56
2.6.4 一般後處理命令 57
2.7 工字鋼懸臂梁分析實例 58
2.7.1 分析問題 58
2.7.2 建立有限元模型 59
2.7.3 施載入荷 62
2.7.4 進行求解 63
2.7.5 後處理 64
2.8 小結 66
第3章 建立實體模型 67
本章主要介紹如何通過IGES、SAT、STEP和PARASOLID等中間文件格式或者圖形轉換界面,將CAD模型直接導入至ANSYS中。
3.1 實體建模概述 67
3.2 導入CAD軟體創建的實體模型 68
3.2.1 圖形交換數據格式 68
3.2.2 IGES格式實體的導入 68
3.2.3 SAT格式實體的導入 70
3.2.4 Parasolid格式實體的導入 71
3.2.5 STEP格式的導入 71
3.2.6 導入SolidWorks中創建的葉片模型 72
3.2.7 導入UG繪制的軸承模型 73
3.2.8 導入SolidEdge中繪制的聯軸器模型 74
3.3 對輸入模型的修改 75
3.4 ANSYS環境內直接建模方法 75
3.4.1 自上而下創建幾何模型 75
3.4.2 自下而上建模幾何模型 76
3.5 坐標系簡介 76
3.5.1 總體和局部坐標系 76
3.5.2 顯示坐標系 79
3.5.3 節點坐標系 82
3.5.4 單元坐標系 83
3.5.5 結果坐標系 84
3.6 工作平面的使用 84
3.6.1 定義一個新的工作平面 85
3.6.2 控制工作平面的顯示和樣式 85
3.6.3 移動工作平面 85
3.6.4 旋轉工作平面 86
3.6.5 還原一個已定義的工作平面 86
3.6.6 工作平面的高級用途 87
3.7 自底向上創建幾何模型 90
3.7.1 關鍵點 90
3.7.2 硬點 92
3.7.3 幾何元素——線 95
3.7.4 幾何元素——面 102
3.7.5 幾何元素——體 107
3.8 自頂向下創建幾何模型 114
3.8.1 創建面體素 114
3.8.2 創建實體體素 116
3.9 使用布爾操作來構建復雜幾何模型 119
3.9.1 布爾運算的設置 119
3.9.2 布爾運算之後的圖元編號 120
3.9.3 交運算 120
3.9.4 兩個實體相交操作 122
3.9.5 兩個實體相加操作 122
3.9.6 兩個實體相減操作 124
3.10 小結 125
第4章 有限元網格劃分與模型建立 126
本章將講解自由網格和映射網格的基本概念、有限元網格劃分的主要指導思想、有限元網格劃分的基本方法、有限元單元屬性的設定方法、有限元網格劃分過程和有限元網格劃分的控制方法等內容,最後給出了軸承座零件劃分網格的實例。
4.1 網格類型和應用場合 126
4.2 有限元網格劃分的主要指導思想 128
4.3 有限元網格劃分的基本方法 129
4.4 有限元單元屬性的設定 130
4.4.1 選擇單元類型 130
4.4.2 單元設置 132
4.4.3 材料屬性設定 132
4.4.4 單元坐標系設定 133
4.5 有限元網格劃分的控制方法 133
4.5.1 有限元網格劃分工具 134
4.5.2 選擇自由或映射網格劃分 134
4.5.3 單元屬性分配設置 135
4.5.4 單元尺寸控制 136
4.5.5 局部網格劃分控制 137
4.5.6 內部網格劃分控制 138
4.5.7 細化網格控制 139
4.5.8 網格質量控制 140
4.5.9 細小結構的網格劃分 140
4.6 實體模型的網格劃分 140
4.6.1 映射網格劃分方法 141
4.6.2 劃分實體模型 141
4.6.3 有限元模型的修改 142
4.7 直接生成有限元模型 144
4.7.1 節點 144
4.7.2 單元 150
4.7.3 通過節點和單元生成有限元模型 152
4.8 生成有限元模型實例 157
4.9 小結 168
第5章 施載入荷 169
本章在實體建立和網格劃分的基礎上,主要介紹了載荷的基本概念、載荷步、子步和迭代的概念、載荷的分類、載入方法、載入控制、如何針對不同的分析類型完成載荷的載入過程。
5.1 概述 169
5.1.1 載荷的定義 169
5.1.2 載荷施加的對象 170
5.1.3 載荷步、子步和平衡迭代 171
5.1.4 時間參數 171
5.2 載荷的初始設置 172
5.2.1 均布溫度和參考溫度 172
5.2.2 面載荷梯度 173
5.2.3 重復載入方式 173
5.2.4 設定載荷步選項 174
5.3 載荷的分類 175
5.3.1 自由度約束 175
5.3.2 集中力載荷 177
5.3.3 面載荷 178
5.3.4 體載荷 180
5.3.5 階躍載荷 181
5.3.6 坡道載荷 182
5.3.7 其他載荷 182
5.4 載荷的施加和操作 183
5.4.1 利用表格來施載入荷 183
5.4.2 利用函數來施載入荷 183
5.4.3 修改載荷 184
5.4.4 刪除載荷 184
5.4.5 其他操作 185
5.5 實例 186
5.5.1 單載荷步的施加 186
5.5.2 多載荷步的施加 188
5.6 小結 192
第6章 求解 193
本章主要介紹ANSYS的求解類型、求解控制和求解過程,並給出了求解實例。
6.1 求解設置 193
6.1.1 新分析 194
6.1.2 求解控制 194
6.2 求解過程處理 196
6.2.1 求解概述 196
6.2.2 求解當前載荷步 196
6.2.3 根據載荷步文件求解 197
6.2.4 多載荷步求解 197
6.2.5 重新啟動分析 199
6.2.6 預測求解時間 201
6.3 實例 203
6.3.1 恢復文件 203
6.3.2 求解 203
6.4 小結 204
第7章 通用後處理器 205
本章主要對後處理的基本概念、後處理可以處理的數據類型、圖形顯示分析計算結果及列表顯示計算結果的方法進行了介紹,最後給出了一個綜合實例。
7.1 概述 205
7.1.1 通用後處理器 206
7.1.2 時間-歷程後處理器 206
7.1.3 結果文件讀入通用後處理器 207
7.1.4 查看結果數據集 208
7.1.5 設置結果輸出方式 208
7.1.6 設置圖形顯示方式 209
7.2 圖形顯示計算結果 209
7.2.1 結果查看器 210
7.2.2 查看和分析變形圖 210
7.2.3 查看和分析等值線圖 211
7.2.4 查看和分析矢量圖 213
7.2.5 基於單元表的結果圖形 214
7.2.6 載荷組合及其運算結果顯示 216
7.3 列表顯示計算結果 218
7.3.1 結果數據集匯總列表(Detailed Summary) 219
7.3.2 迭代匯總信息 (Iteration Summary) 219
7.3.3 排序列表(Sorted Listing) 220
7.4 綜合實例 220
7.4.1 單載荷步求解結果查看 221
7.4.2 多載荷步求解結果查看 224
7.5 小結 227
第8章 時間-歷程後處理器 228
本章主要介紹時間-歷程後處理器的概況和使用方法,最後給出使用實例。
8.1 概述 228
8.1.1 時間-歷程後處理器的作用 228
8.1.2 使用時間-歷程後處理器的基本步驟 230
8.2 進入時間-歷程後處理器 230
8.2.1 交互方式 230
8.2.2 批處理方式 232
8.3 時間-歷程變數觀察器 233
8.4 繪制時間-變數曲線 235
8.5 數據的輸入和輸出 236
8.5.1 數據的輸入 237
8.5.2 數據的輸出 237
8.6 綜合實例 238
8.6.1 恢復文件 238
8.6.2 查看結果 239
8.7 小結 241
第9章 靜力學分析 242
本章將系統地介紹結構靜力學分析的內容,包括線性靜力學問題中各種類型的工程實例,如平面應力、應變問題,軸對稱問題,以及梁、桁架、殼等模型的分析問題,通過這些實例進行具體的分析求解,讓讀者能熟悉靜力學中各種模型的分析思路和求解方法,並掌握ANSYS分析靜力學問題的基本步驟。
9.1 靜力學分析簡介 242
9.1.1 靜力學分析類型 242
9.1.2 靜力學分析步驟 243
9.2 平面應力問題分析 244
9.2.1 問題描述 245
9.2.2 問題分析 245
9.2.3 求解過程和分析結果 246
9.3 平面應變問題分析 256
9.3.1 問題描述 257
9.3.2 問題分析 257
9.3.3 求解過程和分析結果 257
9.4 軸對稱問題分析 266
9.4.1 問題描述 266
9.4.2 問題分析 266
9.4.3 求解過程和分析結果 267
9.5 梁分析 275
9.5.1 問題描述 275
9.5.2 問題分析 276
9.5.3 求解過程和分析結果 276
9.6 桁架分析 282
9.6.1 問題描述 283
9.6.2 問題分析 283
9.6.3 求解過程和分析結果 283
9.7 殼分析 292
9.7.1 問題描述 293
9.7.2 問題分析 293
9.7.3 求解過程和分析結果 294
9.8 接觸分析 302
9.8.1 問題描述 302
9.8.2 問題分析 302
9.8.3 求解過程和分析結果 303
9.9 小結 325
第10章 結構動力學分析 326
本章主要介紹結構動力學分析基本過程、運用ANSYS 軟體對模態分析、諧響應分析、瞬態動力學分析和譜分析等各種動力學的實際問題進行分析的過程、步驟、技巧與方法。
10.1 結構動力學分析基本過程 326
10.1.1 模態分析 327
10.1.2 諧響應分析 330
10.1.3 瞬態動力學分析 333
10.1.4 譜分析 336
10.2 模態分析實例 340
10.2.1 問題描述 340
10.2.2 問題分析 340
10.2.3 求解過程和分析結果 340
10.3 諧響應分析 353
10.3.1 問題描述 353
10.3.2 問題分析 354
10.3.3 求解過程和分析結果 354
10.4 響應譜分析 364
10.4.1 問題描述 364
10.4.2 問題分析 365
10.4.3 求解過程和分析結果 365
10.5 瞬態動力學分析 374
10.5.1 問題描述 375
10.5.2 問題分析 375
10.5.3 求解過程和分析結果 375
10.6 小結 385
第11章 非線性分析 386
本章將介紹非線性分析基本過程,包括結構非線性分析、幾何非線性分析、材料非線性分析、狀態非線性分析等幾種典型的非線性分析的基本概念,針對每種分析類型結合實例詳細介紹了ANSYS中的非線性分析過程。
11.1 非線性分析基本過程 386
11.1.1 結構非線性分析 387
11.1.2 幾何非線性分析 387
11.1.3 材料非線性分析 388
11.1.4 狀態非線性分析 388
11.1.5 非線性分析步驟 388
11.2 幾何非線性分析 396
11.2.1 問題描述 397
11.2.2 問題分析 397
11.2.3 建立模型 398
11.2.4 定義邊界條件並求解 404
11.2.5 查看結果 406
11.3 材料非線性分析 410
11.3.1 問題描述 411
11.3.2 問題分析 411
11.3.3 建立模型 411
11.3.4 定義邊界條件並求解 416
11.3.5 查看結果 419
11.4 狀態非線性分析 422
11.4.1 問題描述 423
11.4.2 問題分析 423
11.4.3 建立模型 423
11.4.4 定義邊界條件並求解 430
11.4.5 查看結果 432
11.5 小結 437
第12章 熱分析 438
本章主要介紹熱分析的基本概念、傳熱學經典理論、三種基本熱傳遞方式等熱分析基礎知識、熱分析的基本過程;熱—結構耦合分析、熱—應力耦合分析內容和實例。
12.1 熱分析基礎知識 438
12.1.1 熱分析符號與單位 438
12.1.2 傳熱學經典理論 439
12.1.3 三種基本熱傳遞方式 439
12.1.4 熱分析材料基本屬性 441
12.1.5 邊界條件與初始條件 442
12.1.6 熱載荷 443
12.1.7 穩態與瞬態熱分析 444
12.1.8 線性與非線性熱分析 445
12.2 熱分析介紹 445
12.2.1 熱分析簡介 445
12.2.2 熱分析的類型 445
12.2.3 熱分析的基本過程 446
12.3 熱—結構耦合分析 447
12.3.1 問題描述 447
12.3.2 問題分析 448
12.3.3 建立模型 448
12.3.4 定義邊界條件並求解 456
12.3.5 查看結果 460
12.4 熱—應力耦合分析實例 464
12.4.1 問題描述 464
12.4.2 問題分析 464
12.4.3 建立模型 465
12.4.4 定義邊界條件並求解 471
12.4.5 查看結果 478
12.5 小結 480
第13章 ANSYS新界面WORKBENCH環境 481
本章主要介紹ANSYS新界面Workbench集成環境的基本情況,如何基於ANSYS 12.0版本的「項目視圖(Project Schematic View)」功能,將整個模擬流程的建立模型,劃分網格,求解和查看結果更加緊密的組合在一起,通過簡單的拖拽操作即可完成復雜的多物理場分析流程。
13.1 ANSYS WORKBENCH概述 481
13.1.1 ANSYS Workbench產品設計流程 482
13.1.2 ANSYS Workbench文件格式 484
13.2 ANSYS WORKBENCH安裝和啟動配置 485
13.2.1 ANSYS 12.0 Workbench 啟動 485
13.2.2 ANSYS 12.0 Workbench 配置 486
13.2.3 ANSYS 12.0 Workbench幫助資源 488
13.3 靜力學分析實例 489
13.3.1 問題描述 489
13.3.2 問題分析 489
13.3.3 建立模型 489
13.3.4 定義邊界條件並求解 495
13.3.5 查看結果 498
13.4 結構動力學分析實例 500
13.4.1 問題描述 501
13.4.2 問題分析 501
13.4.3 建立模型 501
13.4.4 定義邊界條件並求解 506
13.4.5 查看結果 508
13.5 熱力學分析實例 508
13.5.1 問題描述 508
13.5.2 問題分析 509
13.5.3 建立模型 509
13.5.4 定義邊界條件並求解 512
13.5.5 查看結果 513
13.6 小結 515
附錄A ANSYS使用常見問題 516
㈣ 有限元作振動模態分析需要哪些參數
材料的密度、楊氏模量
結構的尺寸參數
邊界的約束
㈤ 在那裡找到有限元方法中需要的材料屬性,如聚四氟乙烯
聚四氟乙烯具有優良的耐腐蝕性、耐酸鹼和高溫性,不老化,在已知固體材料中它具有最佳的磨擦系數,可在-180攝氏度使用,廣泛應用於化工、制葯、生物等行業,還可用於電器絕緣等零件。
㈥ 什麼是有限元方法
中文名稱:有限元法
英文名稱:finite element method
定義:一種將連續體離散化為若干個有限大小的單元體的集合,以求解連續體力學問題的數值方法。 應用學科:水利科技(一級學科);工程力學、工程結構、建築材料(二級學科);工程力學(水利)(三級學科)
有限元法(finite element method)是一種高效能、常用的計算方法。有限元法在早期是以變分原理為基礎發展起來的,所以它廣泛地應用於以拉普拉斯方程和泊松方程所描述的各類物理場中(這類場與泛函的極值問題有著緊密的聯系)。自從1969年以來,某些學者在流體力學中應用加權余數法中的迦遼金法(Galerkin)或最小二乘法等同樣獲得了有限元方程,因而有限元法可應用於以任何微分方程所描述的各類物理場中,而不再要求這類物理場和泛函的極值問題有所聯系。基本思想:由解給定的泊松方程化為求解泛函的極值問題。
原理:
將連續的求解域離散為一組單元的組合體,用在每個單元內假設的近似函數來分片的表示求解域上待求的未知場函數,近似函數通常由未知場函數及其導數在單元各節點的數值插值函數來表達。從而使一個連續的無限自由度問題變成離散的有限自由度問題。
㈦ 有沒有高手在用有限元做hyperfoam的材料呢,請教一下怎麼定義的材料參數,mu1和nu1和alpha是什麼
一般用use test data來定義,輸入工程應力應變
㈧ 如何學習有限元分析
ANSYS功能強大,也很吸引人,但真正是使其成為手中一把利劍的人少之又少。也許文章比較長,感謝你們有耐心把它讀完。
ANSYS,公認的難學、難用,但並非如我們想像的那樣難於上手,就像學習一門語言,與門之後在興趣的驅使下,還是能夠征服它的。
研究生階段,使用ANSYS完成了863項目子課題-尿素合成塔數值模擬系統的開發工作(開發平台-ANSYS),有了這種經歷,自己也有膽出來把經驗分享出來了。
一:如何入門?
ANSYS難學,是因為入門難,目前國內有大量的ANSYS書籍,而且都有一個很挺的名字,但一個又一個的初學者發現,在學完這些擁有靚麗名字的ANSYS書籍之後,碰到問題依然是一頭霧水,不知道如何下手,心裡上首先產生了一種畏懼心理,以為是ANSYS軟體本身難學的原因,其實這本身並非是軟體的問題,也不是個人的不努力,而是努力的方向不對。
想要會用而不是學好ANSYS,首先,要加深對ANSYS的理解,也就是它是怎麼工作的,明白了這些再拿到問題就不會無從下手,而ANSYS是如何工作從國內這些大多數書籍上(很多是直接翻譯ANSYS英文幫助,這是一種誤人子弟和不負責任的做法)是學不到的。ANSYS這款軟體包括前處理、求解和後處理三部分,前處理主要是建立模型什麼的並不難理解,後處理是等計算完畢用來處理計算結果的,關鍵是在求解這一部分,把這一部分理解好了就會撥開迷霧見到陽光了。
ANSYS工作過程是這樣的:
(1)我們在前處理模塊建立模型也就是我們看到的工程系統的外形(稱為有限元實體模型);
(2)建立出來模型之後,我們要將其轉化為有限元模型,在這部分我們需要選擇單元類型,輸入材料參數和匹配單元與模型相應部位的對應關系。ANSYS計算出來的都是變位(也就是模型的位移),然後通過位移導出應變,再使用應變值導出應力值(輸入材料參數就是為了使用應變算出應力值),當然這些都是在程序內部完成的,這里我們遇到一個新的問題就是單元如何選取得問題,究竟選擇什麼樣的單元合適,對初學者來說去詳細的了解單元的詳細屬性還不太現實,所以建議查閱資料看看別人用的單元類型,因為我們現在還只是處在入門階段,想要真正做到熟練應用各種單元進行不同問題的分析,我推測國內真正做到的人還沒有出現,除非他是在扯淡,因為ANSYS單元庫本身也只有100多種單元,不可能適用於所有單元。等我們選擇了某種單元,輸入了相應的材質參數(這個比較確定,各種材料有其固定的參數,比如E)之後,我們可以我們的模型進行網格劃分,這是把實體模型轉化為有限元模型的過程,任何一本ANSYS書籍上都有如何劃分網格的詳細介紹,不詳述。
(3)劃分完網格後的模型,其實已經確定了內部各個單元應力是如何傳遞的,求解過程其實就是一個解方程組得過程,解前面通過單元網格劃分得出的大量方程組,計算機去完成好了。
所以,再拿到一個問題後,我們要進行分析可以按以下步驟完成:
(1) 建立實體模型;(2)選擇單元類型,劃分網格;(3)求解;
而在這些步驟中遇到一些問題,則隨著對ANSYS軟體本身的慢慢熟悉,會越來越得心應手,這不是學習ANSYS真正難得地方,各位不需要再這個方面畏懼。
二:當我們對ANSYS的操作比較熟練了以後,我們可以進入下一步的學習,拿到一個問題如何進行大體上正確的分析?
我們拿到問題進行有限元分析,首先要分析這個問題進行有限元分析想要得到的結果數據,比如應力場、溫度場等等,其次,當我們知道了我們想要得到什麼數據後,我們要學習通過什麼能夠得到這些數據,比如我們要想得到某結構的應力場,我們可以通過位移算出應變,通過應變算出應力,這時需要我們查閱相關資料得到通過彈性模量、楊氏模量和應變能夠計算出應力的信息,這時我們就會知道在材料參數里需要輸入彈性模量、楊氏模量才能得到應力值,而如何輸入這些變數,只是對ANSYS操作的熟練程度而已,不知道的也能夠查到怎樣操作,而進行其它方面的計算都是如此,我們之所以一頭霧水,是因為我們不知道能夠通過什麼得到我們需要的數據,而一旦知道了這些需要材料參數我們就會信心大增了。然後需要我們選擇單元,這時如果我們沒有很長時間的有限元分析經驗,這方面我們會很迷茫,這也確實沒有什麼好的方法,我們可以查閱ANSYS幫助文件(現在有一本ANSYS中文幫助指南的小冊子講述了某些單元的一些細節)里關於哪些單元適用於那些場合的指南。把這些確定下來後我們的問題解決方案已經確定了,後面的求解的設置什麼的可以通過大量的練習來熟悉。有了這些基礎我們可以進行我們拿到問題上大致准確的有限元分析過程,至於是否真正的正確,還需要進一步的驗證。
三、ANSYS高手應該達到的境界!
一名真正意義上的高手應該達到這樣的境界:
拿到一個具體的問題後,察看本領域的最新理論研究成果,如進行尿素合成塔分析,考慮層板間,想要得到層板應力場,我們要查閱前人如何計算尿素合成塔層板的應力場的,現在有沒有最新的研究成果,然後利用這些公式到ANSYS單元庫里去查找單元看看時候存在這樣的單元專門針對這種問題是按照這種計算公式來作為基礎開發單元的,如果有那就再好不過了,如果沒有則需要分析人員利用本領域最新的科研成果結合自己在ANSYS二次開放方面的知識,從二次開發的角度開發新的用於該問題的專門單元(這個過程比較難,但並不是不可完成,因為ANSYS本身已經開發出來100多種單元,而且只有這樣的分析才是足夠專業和令人信服的),否則,那隻能是近似的結果了,我們用這種新開發的單元來作分析的話,即使不能做到真正與現實情況一致,但至少是最接近於真實應力場分布的分析,因為這是以最新的理論研究為基礎做的分析。
所以,想真正的學好ANSYS,不但要知道怎樣操作,而且要知道如何擴充ANSYS,使他能夠完成自己需要的功能,使它成為自己獨一無二的ANSYS版本,這也是我們學習任何一款有限元軟體的方向,否則我們就無法做到隨心所欲、無所不能的使用這些利劍完成各種各樣的分析
㈨ 有限元分析方法的簡介
有限元分析是使用有限元方法來分析靜態或動態的物理物體或物理系統。在這種方法中一個物體或系統被分解為由多個相互聯結的、簡單、獨立的點組成的幾何模型。在這種方法中這些獨立的點的數量是有限的,因此被稱為有限元。由實際的物理模型中推導出來得平衡方程式被使用到每個點上,由此產生了一個方程組。這個方程組可以用線性代數的方法來求解。有限元分析 的精確度無法無限提高。元的數目到達一定高度後解的精確度不再提高,只有計算時間不斷提高。
有限元分析法(FEA)已應用得非常廣泛,現已成為年創收達數十億美元的相關產業的基礎。即使是很復雜的應力問題的數值解,用有限元分析的常規方法就能得到。此方法是如此的重要,以至於即便像這些只對材料力學作入門性論述的模塊,也應該略述其主要特點。 不管有限元法是如何的卓有成效,當你應用此法及類似的方法時,計算機解的缺點必須牢記在心頭:這些解不一定能揭示諸如材料性能、幾何特徵等重要的變數是如何影響應力的。一旦輸入數據有誤,結果就會大相徑庭,而分析者卻難以覺察。所以理論建模最重要的作用可能是使設計者的直覺變得敏銳。有限元程序的用戶應該為此目標部署設計策略,以盡可能多的封閉解和實驗分析作為計算機模擬的補充。 與現代微機上許多字處理和電子製表軟體包相比,有限元的程序不那麼復雜。然而,這些程序的復雜程度依然使大部分用戶無法有效地編寫自己所需的程序。可以買到一些預先編好的商用程序1,其價格範圍寬,從微機到超級計算機都可兼容。但有特定需求的用戶也不必對程序的開發望而生畏,你會發現,從諸如齊凱維奇(Zienkiewicz2)等的教材中提供的程序資源可作為有用的起點。大部分有限元軟體是用Fortran語言編寫的,但諸如felt等某些更新的程序用的是C語言或其它更時新的程序語言。
在實踐中,有限元分析法通常由三個主要步驟組成: 1、預處理:用戶需建立物體待分析部分的模型,在此模型中,該部分的幾何形狀被分割成若干個離散的子區域——或稱為「單元」。各單元在一些稱為「結點」的離散點上相互連接。這些結點中有的有固定的位移,而其餘的有給定的載荷。准備這樣的模型可能極其耗費時間,所以商用程序之間的相互競爭就在於:如何用最友好的圖形化界面的「預處理模塊」,來幫助用戶完成這項繁瑣乏味的工作。有些預處理模塊作為計算機化的畫圖和設計過程的組成部分,可在先前存在的CAD文件中覆蓋網格,因而可以方便地完成有限元分析。 2、分析:把預處理模塊准備好的數據輸入到有限元程序中,從而構成並求解用線性或非線性代數方程表示的系統
u和f分別為各結點的位移和作用的外力。矩陣K的形式取決於求解問題的類3、分析的早期,用戶需仔細地研讀程序運算後產生的大量數字,即 型,本模塊將概述桁架與線彈性體應力分析的方法。商用程序可能帶有非常大的單元庫,不同類型的單元適用於范圍廣泛的各類問題。有限元法的主要優點之一就是:許多不同類型的問題都可用相同的程序來處理,區別僅在於從單元庫中指定適合於不同問題的單元類型。
㈩ 有限元的基本理論
為避開抽象的概念,現以平面問題為對象進行有限元理論的推導說明。在平面區域內用有限元方法進行分析,單元節點上的力學狀態通常由下列參數表徵:
(1)節點位移量
考慮具有直線邊界的單元e,其節點為i,j,m,…。單元內任意點的位移u以列矢量
油氣藏現今地應力場評價方法及應用
式中N的分量一般為坐標(x,y)的函數,ae表示e的全部節點位移,i=1,2,3…是單元節點的局部符號。
以平面應力場為例,則下式表示單元內任意點(x,y)的位移x、y值:
油氣藏現今地應力場評價方法及應用
且:
油氣藏現今地應力場評價方法及應用
ai表示節點i的位移量。
(2)節點應變
如給定單元內所有節點的位移量,則可求出任意點的應變,其關系式可表示為:
ε=Lu (1-38)
式中L為適當的線性運算元。根據式(1-33),上式可變為:
ε=[B]a (1-39)
此處:
[B]=[L][N] (1-40)
對於平面應力的場,相關聯的應變將在平面內產生,在確定出運算元L後,而位移的函數則可表示如下:
油氣藏現今地應力場評價方法及應用
根據上式和已知的Ni,Ni,Nm函數,容易求得矩陣B。如果這些函數是線性函數,則單元內的應變為恆定值。
(3)單元應力
一般來講,單元材料隨溫度的變化、收縮、結晶等發生應變。這種應變以εi表示,由於實際的應變和初期應變ε0存在差值,因而產生了應力。而且,受某個已知系統的影響,為了便於分析,從分析初期開始,通常假定物體處於受初期殘留應力作用的狀態。ε0有時能被測定出來,但如果不清楚材料來源的話,就不能預測其值。另外,此應力只能適用於一般的應力-應變關系式。基於以上考慮及一般的彈性運動狀態,線性應力和應變的關系式可以表示如下:
σ=D(ε-ε0)+σ0 (1-42)
這里,σ0是初始應力,D是含有適當材料常數的彈性矩陣。
下面進一步說明有關彈性應力場的問題。對於已定義的應變,必須考慮三個應力分量,表示為:
油氣藏現今地應力場評價方法及應用
矩陣D可以用普通的各向同性彈性體關系式求得:
油氣藏現今地應力場評價方法及應用
油氣藏現今地應力場評價方法及應用
於是:
油氣藏現今地應力場評價方法及應用
(4)等價節點力
把作用於單元邊界上的應力及單元內的分布荷載(物體力—body force)等稱為靜態等價節點力,用下式表示:
油氣藏現今地應力場評價方法及應用
這里,各節點的力
例如,平面應力場的情況下,節點力為:
油氣藏現今地應力場評價方法及應用
分量U、V的方向與變形u、v的方向對應。另外,物體力為:
油氣藏現今地應力場評價方法及應用
其中:bx、by為其分量。
把節點力與實際的邊界應力、物體力等靜態地等價起來的最簡單方法是給任意的(假想)節點位移,由此使各種力和應力所產生的外部功與內部功相等。如果將賦給節點的假想位移表示為δae,則根據式(1-35)及式(1-41)單元內產生的位移和應變可由下式表示:
δu=Nδae及δε=Bδae (1-51)
節點力的功等於各個力的分量與相對應假想位移分量的積的和,可用矩陣可表示為:
δaeTqe (1-52)
同樣,單位面積上應力及物體力所做的內部功為:
δεTσ-δuTb (1-53)
或者,代入式(1-52)得:
δaT(BTσ-NTB) (1-54)
如果令由式(1-52)得到的外部功等於單元總體積Ve上積分得全部內部功時,則有:
油氣藏現今地應力場評價方法及應用
此式對於任意的應力-應變關系都成立。
將式(1-42)代入式(1-54)得:
qe=Keae+fe (1-56)
式中:
油氣藏現今地應力場評價方法及應用
且:
油氣藏現今地應力場評價方法及應用
最後式子中的三項各為物體力、初期應變和初期應力的力的表現形式。任意的構造單元特性均可用下式表示:
油氣藏現今地應力場評價方法及應用
(5)全區域的一般化
至此,已闡明了假想功的原理僅對一個單元適用以及等價節點力的概念。在有限元法中,可通過建立每個單元節點的局部方程式導出式來分析區域內有限個節點的平衡方程式。因而,任意節點上的內力及外力可通過與該節點相連的所有單元在該節點上的內力及外力的總合來計算出來,即:
Ka+f=r (1-60)
另外,可將單元相互間的分布作用力、反作用力用等價節點進行置換,這一方法是很容易理解的。