⑴ 怎樣開平方根
要知道怎麼開平方根,你先要清楚的知道平方根的公式。
1、利用公式可知,2的平方也就是2*2=4,所以√4 開方後就=2。同理可知√9=3,√169=13
2、√2 開方=1.414(保留小數點後三位)。可以根據計算圖計算出來。
(1)開平方根有哪些公式和方法擴展閱讀:
雙重非負性
如果x=√a
那麼:
1、a≥0(若小於0,則為虛數)
2、x≥0
與平方根的關系
正數的平方根有兩個,它們為相反數,其中非負的平方根,就是這個數的算術平方根。
負數沒有算術平方根。
⑵ 求平方根的公式是什麼
開平方公式:
X(n + 1) = Xn + (A / Xn − Xn)1 / 2。
如果一個非負數x的平方等於a,即x=a,(a≥0),那麼這個非負數x叫作a的算術平方根。a的算術平方根記為√a,讀作「根號a」,a叫作被開方數(radicand)。求一個非負數a的平方根的運算叫作開平方。
運算過程:
每一個過渡數都是由上一個過渡數變化而後,上一個過渡數的個位數乘以20,如果需要進位,則往前面進1,然後個位升十位。以此類推,而個位上補上新的運算數字。
簡單地講,過渡數27,是第一次商的1乘以20,把個位上的0用第二次商的7來換,過渡數343是前兩次商的17乘以20=340,其中個位0用第三次商的3來換,第三個過渡數3462是前三次商173乘以20=3460,把個位0用第四次的商2來換,依次類推。
⑶ 如何開平方根
要知道怎麼開平方根,你先要清楚的知道平方根的公式。
1、利用公式可知,2的平方也就是2*2=4,所以√4 開方後就=2。同理可知√9=3,√169=13
2、√2 開方=1.414(保留小數點後三位)。可以根據計算圖計算出來。
,讀作「根號a」,a叫做被開方數(radicand)。求一個非負數a的平方根的運算叫做開平方。
結論:被開方數越大,對應的算術平方根也越大(對所有正數都成立)。
一個正數如果有平方根,那麼必定有兩個,它們互為相反數。顯然,如果知道了這兩個平方根的一個,那麼就可以及時的根據相反數的概念得到它的另一個平方根。
⑷ 如何開方根
1、整數開平方步驟:
(1)將被開方數從右向左每隔2位用撇號分開;
(2)從左邊第一段求得算數平方根的第一位數字;
(3)從第一段減去這個第一位數字的平方,再把被開方數的第二段寫下來,作為第一個余數;
(4)把所得的第一位數字乘以20,去除第一個余數,所得的商的整數部分作為試商(如果這個整數部分大於或等於10,就改用9左試商,如果第一個余數小於第一位數字乘以20的積,則得試商0);
(5)把第一位數字的20倍加上試商的和,乘以這個試商,如果所得的積大於余數時,就要把試商減1再試,直到積小於或等於余數為止,這個試商就是算數平方根的第二位數字;
(6)用同樣方法繼續求算數平方根的其他各位數字。
2、小數部分開平方法:
求小數平方根,也可以用整數開平方的一般方法來計算,但是在用撇號分段的時候有所不同,分段時要從小數點向右每隔2段用撇號分開,如果小數點後的最後一段只有一位,就填上一個0補成2位,然後用整數部分開平方的步驟計算。
⑸ 開平方根的方法和步驟是什麼
開平方根的方法和步驟如下:
1、將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開,分成幾段,表示所求平方根是幾位數。
2、根據左邊第一段里的數,求得平方根的最高位上的數。
3、從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數。
4、把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商。
5、用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試。
6、用同樣的方法,繼續求平方根的其他各位上的數。
⑹ 平方根公式是什麼
平方根公式
結論:被開方數越大,對應的算術平方根也越大(對所有正數都成立)。
一個正數如果有平方根,那麼必定有兩個,它們互為相反數。顯然,如果知道了這兩個平方根的一個,那麼就可以及時的根據相反數的概念得到它的另一個平方根。
(6)開平方根有哪些公式和方法擴展閱讀
求平方根的迭代公式為:X(n+1)=(Xn+a/Xn) /2。要求前後兩次求出的x的差的絕對值小於10的負5次冪。
#include<stdio.h>
#include<math.h>
intmain()
{
doublex1, x2;
doublea;
scanf("%lf",&a);
x2=1.0;
do{
x1=x2;
x2=(x1+a/x1)/2.0;
}while(fabs(x1 - x2)>=0.00001);
printf("%.3lf",x2);
return0 ;
⑺ 平方根公式
開平方公式: X(n + 1) = Xn + (A / Xn − Xn)1 / 2.。(n,n+1是下角標)
舉例
例如,A=5: 5介於2的平方至3的平方;之間。我們取初始值2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9都可以,我們最好取 中間值2.5。 第一步:2.5+(5/2.5-2.5)1/2=2.2; 即5/2.5=2,2-2.5=-0.5,-0.5×1/2=-0.25,2.5+(-0.25)=2.25,取2位數2.2。 第二步:2.2+(5/2.2-2.2)1/2=2.23; 即5/2.2=2.27272,2.27272-2.2=-0.07272,-0.07272×1/2=-0.03636,2.2+0.03636=2.23。取3位數。 第三步:2.23+(5/2.23-2.23)1/2=2.236。 即5/2.23=2.2421525,,2.2421525-2.23=0.0121525,0.0121525×1/2=0.00607,2.23+0.00607=2.236. 每一步多取一位數。這個方法又叫反饋開方,即使你輸入一個錯誤的數值,也沒有關系,輸出值會自動調節,接近准確值。 例如A=200. 200介如10的平方---20的平方之間。初始值可以取11,12,13,14,15,16,17,18,19。我們去15. 第一步:15+(200/15-15)1/2=14。取19也一樣得出14.。:19+(200/19-19)1/2=14.。 第二步:14+(200/14-14)1/2=14.1。 第三步:14.1+(200/14.1-14.1)1/2=14.14.
抄自網路
其實手動開方很麻煩 一般是知道幾個常見數的開方即可
用計算器最簡便...
⑻ 平方根計算方法
【平方根計算步驟】
將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11』56),分成幾段,表示所求平方根是幾位數;
根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);
從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);
把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(20×3除256,所得的最大整數是 4,即試商是4);
用所求的平方根的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);
用同樣的方法,繼續求平方根的其他各位上的數.
如遇開不盡的情況,可根據所要求的精確度求出它的近似值.
【開平方】
求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。在實數范圍內a必須大於或等於零,即a為非負數;
⑼ 平方根的公式
平方根公式如圖:
如果一個非負數x的平方等於a,那麼這個非負數x叫做a的算術平方根。a的算術平方根記為,讀作「根號a」,a叫做被開方數(radicand)。求一個非負數a的平方根的運算叫做開平方。
結論:被開方數越大,對應的算術平方根也越大(對所有正數都成立)。一個正數如果有平方根,那麼必定有兩個,它們互為相反數。
平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算術平方根。一個正數有兩個實平方根,它們互為相反數;0隻有一個平方根,就是0本身;負數有兩個共軛的純虛平方根。
⑽ 開平方根,怎麼開
要知道怎麼開平方根,你先要清楚的知道平方根的公式。
1、利用公式可知,2的平方也就是2*2=4,所以√4 開方後就=2。同理可知√9=3,√169=13
2、√2 開方=1.414(保留小數點後三位)。可以根據計算圖計算出來。
,讀作「根號a」,a叫做被開方數(radicand)。求一個非負數a的平方根的運算叫做開平方。
結論:被開方數越大,對應的算術平方根也越大(對所有正數都成立)。
一個正數如果有平方根,那麼必定有兩個,它們互為相反數。顯然,如果知道了這兩個平方根的一個,那麼就可以及時的根據相反數的概念得到它的另一個平方根。