㈠ 小學五年級簡便計算題
1、27×17/26
解析:此題先用加法分配律,把27轉換成(26+1),再利用乘法結合律,使得運算簡便。
27×17/26
=(26+1)×17/26
=26×17/26+1×17/26
=17+17/26
=17又17/26
2、1.2×2.5+0.8×2.5
解析:運用提取公因數的方法,公式:ac+ab=a(b+c),提取公因數2.5,1.2和0.8相加正好湊整數,使得運算簡便。
1.2×2.5+0.8×2.5
=(1.2+0.8)×2.5
=2×2.5
=5
3、2.96×40
解析:此題先利用乘法分配律,把2.96×40轉換成29.6x4,再利用乘法結合律來簡便計算。
2.96×40
=29.6x4
=(30-0.4)x4
=30×4+0.4×4
=120-1.6
=118.4
4、0.36 x 1.5 - 0.45
解析:此題運用乘法分配律,把0.45轉換成1.5 x 0.3 ,即可提取公因數1.5,再根據乘法結合律進行簡便計算。
0.36 x 1.5 - 0.45
= 0.36 x 1.5 - 1.5 x 0.3
=1.5 × (0.36 - 0.3)
=1.5 × 0.06
= 0.09
5、46×44/45
解析:此題先利用加法分配律把46轉換成(45+1),再利用乘法結合律:(a×b)×c=a×(b×c)使得運算簡便。
46×44/45
=(45+1)×44/45
=45×44/45+44/45
=44+44/45
=44又44/45
6、1.6×7.5×1.25
解析:此題利用乘法分配律把1.6,轉化成2×0.8,再利用乘法結合律:(a×b)×c=a×(b×c)湊整,進行簡便計算。
1.6×7.5×1.25
=2×0.8×7.5×1.25
=(2×7.5)×(0.8×1.25)
=15×1
=15
7、0.72×10.1
解析:此題先利用加法分配律,把10.1轉換成10+0.1,再利用乘法結合律使得運算簡便。
0.72×10.1
=0.72×(10+0.1)
=0.72×10+0.72×0.1
=7.2+0.072
=7.272
㈡ 五年級上冊簡便方法計算類型題
1.提取公因式
這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
注意相同因數的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
2.借來借去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1-4
3.拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
4.加法結合律
注意對加法結合律
(a+b)+c=a+(b+c)
的運用,通過改變加數的位置來獲得更簡便的運算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
5.拆分法和乘法分配律結合
這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的時候,要首先考慮拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再現:57×101=?
6.利用基準數
在一系列數種找出一個比較折中的數字來代表這一系列的數字,當然要記得這個數字的選取不能偏離這一系列數字太遠。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
7.利用公式法
(1) 加法:
交換律,a+b=b+a
結合律,(a+b)+c=a+(b+c)
(2) 減法運算性質:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c
a-b-c=a-c-b
(a+b)-c=a-c+b=b-c+a
(3):乘法(與加法類似):
交換律,a*b=b*a
結合律,(a*b)*c=a*(b*c)
分配率,(a+b)xc=ac+bc
(a-b)*c=ac-bc
(4) 除法運算性質(與減法類似):
a÷(b*c)=a÷b÷c
a÷(b÷c)=a÷bxc
a÷b÷c=a÷c÷b
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
前邊的運算定律、性質公式很多是由於去掉或加上括弧而發生變化的。其規律是同級運算中,加號或乘號後面加上或去掉括弧,後面數值的運算符號不變。
8.裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。
常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
分數裂項的三大關鍵特徵:
(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」
(3)分母上幾個因數間的差是一個定值。
公式:
㈢ 五年級數學簡便計算題大全帶答案
您好!
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
23) 1.2×2.5+0.8×2.5
24) 8.9×1.25-0.9×1.25
25) 12.5×7.4×0.8
26) 9.9×6.4-(2.5+0.24)
(27) 6.5×9.5+6.5×0.5
0.35×1.6+0.35×3.4
6.72-3.28-1.72
0.45+6.37+4.55
5.4+6.9×3-(25-2.5)2×41846-620-380
4.8×46+4.8×54
0.8+0.8×2.5
1.25×3.6×8×2.5-12.5×2.4
28×12.5-12.5×20
23.65-(3.07+3.65)
(4+0.4×0.25)8×7×1.25
1.65×99+1.65
27.85-(7.85+3.4)
48×1.25+50×1.25×0.2×8
7.8×9.9+0.78
(1010+309+4+681+6)×12
3×9146×782×6×854
5.15×7/8+6.1-0.60625
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
51.[(7.1-5.6)×0.9-1.15] ÷2.5
52.5.4÷[2.6×(3.7-2.9)+0.62]
53.12×6÷(12-7.2)-6 (4)12×6÷7.2-6
102×4.5
7.8×6.9+2.2×6.9
5.6×0.25
8×(20-1.25)
1)127+352+73+44 (2)89+276+135+33
(1)25+71+75+29 +88 (2)243+89+111+57
9405-2940÷28×21
920-1680÷40÷7
690+47×52-398
148+3328÷64-75
360×24÷32+730
2100-94+48×54
51+(2304-2042)×23
4215+(4361-716)÷81
(247+18)×27÷25
36-720÷(360÷18)
1080÷(63-54)×80
(528+912)×5-6178
8528÷41×38-904
264+318-8280÷69
(174+209)×26- 9000
814-(278+322)÷15
1406+735×9÷45
3168-7828÷38+504
796-5040÷(630÷7)
285+(3000-372)÷36
1+5/6-19/12
3x(-9)+7x(-9
(-54)x1/6x(-1/3)
1.18.1+(3-0.299÷0.23)×1
2.(6.8-6.8×0.55)÷8.5
3.0.12× 4.8÷0.12×4.8
4.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
5.6-1.6÷4= 5.38+7.85-5.37=
6.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
7.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
8.10.15-10.75×0.4-5.7
㈣ 五年級簡便方法計算
練習 加、減法簡便計算。 2.64+11.33+8.67+6.366.02+(3.6+1.98) 3.2+0.36+(4.8+1.64)7.5+4.9-6.5 1.23+3.4-0.23+6.6 3.55+1.79+1.45-0.59 8.53+6-8.53+61.25+2.86-0.86+3.75 36.54-1.76-4.54 23.4-0.8-13.4-7.2 13.77-3.38-1.62 30-8.12-4.13-7.75 12.7-(3.7+0.84) 16.8-(6.8-3.2) 9.27-(3-0.73) 18.35-(1.84+6.35) 23.5-(6.35+3.5) 6.9+3.1-6.9+3.1 五年級數學計算練習 乘法簡便計算。 12.5×0.72×0.80.35×1.25×2×0.8 2.31×1.2×0.5 0.8×(4.3×1.25) 2.5×2.4 0.25×12.5×3.2 2.42×3.9+0.1×2
㈤ 5.34x10.1-53.4怎麼簡便運算五年級
這道題可以簡便計算,運用四則運演算法則,先觀察相同項,將5.34*10.01變化成53.4*0.1*10.1,再變成53.4*1.01,再提取相同項53.4,乘以1.01減去1的差即可。解題思路如下:5.34*10.1-53.4=53.4*0.1*10.1-53.4=53.4*1.01-53.4=53.4*(1.01-1)=53.4*0.01=0.534 謝謝
㈥ 簡算題五年級帶答案
簡算:
(1)2.5×32×0.125
=(2.5×4)×(8×0.125)
=10×1
=10
(2)3.5-7+6.5
=3.5+6.5-7
=3
(3)1.2×2.5+0.8×2.5
=2.5(1.2+0.8)
=25
(4)8.9×1.25-0.9×1.25
=1.25×(8.9-0.9)
=10
(5)12.5×7.4×0.8
=12.5×0.8×7.4
=74
含義
「4.9+0.1-4.9+0.1」這是小學數學第八冊練習二十七第二題中的一道非常簡單的常見簡便運算題。當我給學生布置了這道題後,我以為學生會毫不猶豫地使用加法交換率和結合率,順利完成此題,但是當我批改學生的作業時,卻發現了以下三種情況:
①4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1)。
②4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1。
③4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
㈦ 五年級的簡便運算.
簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×56、
除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
㈧ 五年級簡便計算50題
用簡便方法計算下列各題
0.25×0.28
0.125×3.2×2.5
35×40.2
0.25×4÷0.25×4
3.5×9.9
3.5×99+3.5
3.5×101-3.5
3.5×9.9+3.5×0.1
3.5×2.7+35×0.73
3.5×2.7-3.5×0.7
(32+5.6)÷0.8
3.5÷0.6-0.5÷0.6
4.9÷3.5
7÷0.25÷4
7÷0.125 ÷8
7.35÷(7.35×0.25)
7.35÷(7.35÷0.25)
7.325-(5.325+1.7)
3.29+0.73+2.27
3.29-0.73-2.27
7.5+2.5-7.5+2.5
7.325-3.29-3.325
7.325-(5.325+1.7)
7.325-(5.325-1.7)
3.29+0.73-2.29+2.27
3.29×0.25×4
0.125×8.8
63.4÷2.5÷0.4
4.9÷1.4 3.9÷(1.3×5)
(7.7+1.54)÷0.7
2.5×2.4
2.7÷45
0.35×1.25×2×0.8
32.4×0.9+0.1×32.4
15÷0.25
28.6×101-28.6
0.86×15.7-0.86×14.7
2.4×102
14-7.32-2.68
2.64+8.67+7.36+11.33
2.31×1.2×0.5
(2.5-0.25)×0.4
9.16×1.5-0.5×9.16
3.6-3.6×0.5
7.6×0.8+0.2×7.6
0.85×199
0.25×8.5×4
0.25×36
0.125×3.2×2.5
35×40.2