㈠ 1加到100的簡便演算法,急!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1+2+3+.....+100
=(1+100)x50
=5050
1,2,3...100這是一個等差數列。等差數列是指從第二項起,每一項與它的前一項的差等於同一個常數的一種數列,常用A、P表示。這個常數叫做等差數列的公差,公差常用字母d表示。
等差數列的前n項和公式為:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均屬於正整數。
等差數列從通項公式可以到的以下推論:
1、 和=(首項+末項)×項數÷2;
2、項數=(末項-首項)÷公差+1;
3、首項=2x和÷項數-末項或末項-公差×(項數-1);
4、末項=2x和÷項數-首項;
5、末項=首項+(項數-1)×公差;
6、2(前2n項和-前n項和)=前n項和+前3n項和-前2n項和。
㈡ 從1一直加到100有什麼簡便演算法
1+2+3+……+99+100
=(1+100)×50
=101×50
=5050
㈢ 從1加到100等於多少,用簡便的方法的計算
5050,這是等差數列前n項求和的辦法。
其公式用文字表叔為,首項加尾項的和乘以項數除以2
㈣ 從1加到10都加起來是多少有簡便演算法嗎
有
高斯演算法
1+2+...+10
=(1+10)+...+(5+6)
=11*5
=55
(4)從1加到130怎麼算簡便方法擴展閱讀
綜合算式(四則運算)應當注意的地方:
1、如果只有加和減或者只有乘和除,從左往右計算,例如:2+1-1=2,先算2+1的得數,2+1的得數再減1。
2、如果一級運算和二級運算,同時有,先算二級運算
3、如果一級,二級,三級運算(即乘方、開方和對數運算)同時有,先算三級運算再算其他兩級。
4、如果有括弧,要先算括弧里的數(不管它是什麼級的,都要先算)。
5、在括弧裡面,也要先算三級,然後到二級、一級。
㈤ 從1加到99怎樣簡便運算
1+2+3+……+99=(1+99)×99÷2=100×99÷2=9900÷2=4950
解題過程:
我們可以很容易看出這是一個等差數列,首相為1,末相為99,公差為1,項數為99。利用等差數列的求和公式可以求解:(首相+末相)*公差再除以2就是答案了。
也可以用高斯演算法,我們可以很容易發現1+99=2+98=......,原式中有49個1+99=100所以就是4900,還有一個沒有配對的50再加上就是1900+50=4950了。
(5)從1加到130怎麼算簡便方法擴展閱讀:
1加到100的小故事:高斯求和
德國著名數學家高斯幼年時代聰明過人,上學時,有一天老師出了一道題讓同學們計算:1+2+3+4+…+99+100的值。
老師出完題後,全班同學都在埋頭計算,小高斯卻很快算出答案等於5050。原來小高斯通過細心觀察發現:
1+100=2+99=3+98=…=49+52=50+51
1~100正好可以分成這樣的50對數,每對數的和都相等。於是,小高斯把這道題巧算為:
(1+100)×100÷2=5050。
㈥ 1加到100的簡便計算
1+100=2+99=3+98=……=50+51 =101,共100÷2=50組
所以,一共和為50*101=5050
也可以用:(1+100)+(2+99)+……(50+51)=101x50=5050
㈦ 從1一直加到100有什麼簡便演算法
從1一直加到100有兩種簡便演算法:
1、求平均數的演算法。
1到100共100個數字,而且他們是等差數列,所以只需要將1+100除以 2,就可以得到平均數,再乘以位數,則得到結果,(1+100)/ 2 x 100
=50.5 x 100
=5050
2、利用等差數列的求和公式直接求和。
等差數列的公式是:(首項+末項)x 項數/2
1到100共100個數,首項為1,公差為1,末項為100,代入公式就是
(1+100)x 100 / 2
=101x100/2
=10100/2
=5050
(7)從1加到130怎麼算簡便方法擴展閱讀:
等差數列的演算法:等差數列是常見數列的一種,可以用AP表示,如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,而這個常數叫做等差數列的公差,公差常用字母d表示。
例如:1,3,5,7,9……(2n-1)。等差數列{an}的通項公式為:an=a1+(n-1)d。前n項和公式為:首項×項數+【項數(項數-1)×公差】/2或【(首項+末項)×項數】/ 2。
㈧ 從1加到100的簡便方法有哪些
解:從1加到100的和可以看作是一個公差為1的等差數列,直接利用等差數列的公式(首項+末項)×項數÷2可以很快得出答案。
解:
sn = 1+2+3+4+...+100
= [n*(a1+an)]/2
= 100*(1 + 100)/2
= 5050
得出結果,從1加到100的和等於5050。
(8)從1加到130怎麼算簡便方法擴展閱讀:
「4.9+0.1-4.9+0.1」這是小學數學第八冊練習二十七第二題中的一道非常簡單的常見簡便運算題。當我給學生布置了這道題後,我以為學生會毫不猶豫地使用加法交換率和結合率,順利完成此題,但是當我批改學生的作業時,卻發現了以下三種情況:
①、4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1);
②、4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1;
③、4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
㈨ 從1加到100是怎樣用簡便方法算的
(1+100)x100/2
㈩ 從1加到10,然後從9加到1,用簡便方法怎麼算,詳細過程
梯形面積求法
第一個數加最後一個數,然後乘個數,除以2