、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
⑵ 數學簡便計算,有哪幾種方法
簡便計算主要有三大方法,分別是加減湊整、分組湊整、提公因數法。
它採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算。
就像68+77=?
大多數人不一定立刻能算出結果,
如果換成70+75=?
相信每一個人都可以一口算出和是145。
這里其實就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇見復雜的計算式時,
先觀察有沒有可能湊整,
湊成整十整百之後再進行計算,
不僅簡便,而且避免計算出錯。
①加減湊整
【例題1】999+99+29+9+4=?
題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例題2】5999+499+299+19=?
看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。
沒有槍沒有炮,自己去創造!
先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分組湊整
在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。
【例題3】100-95+92-89+86-83+80-77=?
題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。
根據加法減法運算性質,我們給相鄰的項加上括弧。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。
③提取公因數法
這就需要用到乘法分配律提取公因數,
又稱為提取公因數法。
如果沒有公因數,我們可以採取乘法結合律變化出公因數。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例題4】47.9x6.6+529x0.34=?
很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,創造出一個47.9,方便我們提取公因數。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
簡便計算的考察重點在於四則運算規律的靈活運用,方法掌握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。
⑶ 數學計算的規律有哪些
談數學解題的規范
解題是深化知識、發展智力、提高能力的重要手段.規范的解題能夠養成良好的學習習慣,提高思維水平.在學習過程中做一定量的練習題是必要的,但並非越多越好,題海戰術只能加重學生的負擔,弱化解題的作用.要克服題海戰術,強化解題的作用,就必須加強解題的規范.
解題的規范包括審題規范、語言表達規范、答案規范及解題後的反思四個方面.
一、審題規范
審題是正確解題的關鍵,是對題目進行分析、綜合、尋求解題思路和方法的過程,審題過程包括明確條件與目標、分析條件與目標的聯系、確定解題思路與方法三部分.
(1)條件的分析,一是找出題目中明確告訴的已知條件,二是發現題目的隱含條件並加以揭示.
目標的分析,主要是明確要求什麼或要證明什麼;把復雜的目標轉化為簡單的目標;把抽象目標轉化為具體的目標;把不易把握的目標轉化為可把握的目標.
(2)分析條件與目標的聯系.每個數學問題都是由若干條件與目標組成的.
解題者在閱讀題目的基礎上,需要找一找從條件到目標缺少些什麼?或從條件順推,或從目標分析,或畫出關聯的草圖並把條件與目標標在圖上,找出它們的內在聯系,以順利實現解題的目標.
(3)確定解題思路.一個題目的條件與目標之間存在著一系列必然的聯系,這些聯系是由條件通向目標的橋梁.用哪些聯系解題,需要根據這些聯系所遵循的數學原理確定.解題的實質就是分析這些聯系與哪個數學原理相匹配.有些題目,這種聯系十分隱蔽,必須經過認真分析才能加以揭示;有些題目的匹配關系有多種,而這正是一個問題有多種解法的原因.
二、語言敘述規范
語言(包括數學語言)敘述是表達解題程式的過程,是數學解題的重要環節.
因此,語言敘述必須規范.規范的語言敘述應步驟清楚、正確、完整、詳略得當,言必有據.數學本身有一套規范的語言系統,切不可隨意杜撰數學符號和數學術語,讓人不知所雲.
三、答案規范
答案規范是指答案准確、簡潔、全面,既注意結果的驗證、取捨,又要注意答案的完整.要做到答案規范,就必須審清題目的目標,按目標作答.
四、解題後的反思
解題後的反思是指解題後對審題過程和解題方法及解題所用知識的回顧節思考,只有這樣,才能有效的深化對知識的理解,提高思維能力.
(1)有時多次受阻而後「靈感」突來.不論哪種情況,思維都有很強的直覺性,若在解題後及時重現一下這個思維過程,追溯「靈感」是怎樣產生的,多次受阻的原因何在,總結審題過程中的思維技巧,這對發現審題過程中的錯誤,提高分析問題的能力都有重要作用.
(2)這些方法的熟練程度密切相關,學生在解題時總是用最先想到的方法,也是他們最熟悉的方法,因此,解題後反思一下有無其它解法,可使學生開拓思路,提高解題能力.
⑷ 簡便計算的方法規律
(1)125×88
=125×(8×11)
=125×8×11
=1000×11
=11000;
(2)38+38×99
=38×1+38×99
=38×(1+99)
=38×100
=3800;
(3)98×101
=98×(100+1)
=98×100+98×1
=9800+98
=9898;
(4)25×19×4
=25×4×19
=100×19
=1900;
(5)45×(200+2)
=45×200+45×2
=9000+90
=9090;
(6)75+34+125+366
=(75+125)+(34+366)
=200+400
=600.
⑸ 找規律的方法
如N(N正負1)除以2,等差數列,等比數列,1除以2的N減1次方,等等
⑹ 數學簡便計算,有哪幾種方法
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
⑺ 數學計算的各種規律
這是每行的第一個數字的通項公式:n^2-2n+2,n是行數。
若行數為20,則把n=20代入方程就得出第20行的第一個數字。
求第20行第7個,就+7,n^2-2n+2+7=369
即:第20行第7個數是369
⑻ 小學數學計算中的規律有哪些
小學數學計算中的規律有哪些
小學數學運算定律
✍ 加法交換律
兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。
✍ 加法結合律
三個數相加,先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。
✍ 乘法交換律
兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。
✍ 乘法結合律
三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把後兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。
✍ 乘法分配律
兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。
✍ 減法的性質
從一個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。
運演算法則
✍ 整數加法計演算法則
相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。
✍ 整數減法計演算法則
相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合並在一起,再減。
✍ 整數乘法計演算法則
先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然後把各次乘得的數加起來。
✍ 整數除法計演算法則
先從被除數的高位除起,除數是幾位數,就看被除數的前幾位; 如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補「0」佔位。每次除得的余數要小於除數。
✍ 小數乘法法則
先按照整數乘法的計演算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用「0」補足。
✍ 除數是整數的小數除法計演算法則
先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有餘數,就在余數後面添「0」,再繼續除。
✍ 除數是小數的除法計演算法則
先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補「0」),然後按照除數是整數的除法法則進行計算。
✍ 同分母分數加減法計算方法
同分母分數相加減,只把分子相加減,分母不變。
✍ 異分母分數加減法計算方法
先通分,然後按照同分母分數加減法的的法則進行計算。
✍ 帶分數加減法的計算方法
整數部分和分數部分分別相加減,再把所得的數合並起來。
✍ 分數乘法的計演算法則
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。
✍ 分數除法的計演算法則
甲數除以乙數(0除外),等於甲數乘乙數的倒數。
⑼ 找規律填數有哪些方法
找一道題,然後假設是平方啊,加減乘除,累加累減,自己開動腦筋不斷的去嘗試。通過思考和動腦的過程,你的大腦會越來越靈活,開始擅長並喜歡找規律。其實是沒有固定的方法的,動腦才是核心。唯有思考,才能超越別人。這個道理可以用在任何事情上。