㈠ 小學數學思想方法有哪幾種
小學數學常用16種思想方法:
1、對應思想方法對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較,題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法、用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式等。
5、類比思想方法類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。
6、轉化思想方法轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
7、分類思想方法分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。
8、集合思想方法集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學採用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。
9、數形結合思想方法數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的直觀幫助分析數量關系。
10、統計思想方法:小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。
11、極限思想方法:事物是從量變到質變的,事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長時,化圓為方」「化在講圓的面積和周長」時「化圓為方化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛的極限分割思盾轉化中萌發了無限逼近的極限思想。
12、代換思想方法:他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?
13、可逆思想方法:它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。
14、化歸思維方法:把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,歸結為一類以便解決可較易解決的問題,以求得解決,這就是「化歸」。而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。
15、變中抓不變的思想方法:在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共630本,其中科技書20%,後來又買來一些科技書,這時科技書佔30%,又買來科技書多少本?
16、數學模型思想方法:數學模型思想方法:所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。
17、整體思想方法:整體思想方法:對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法
㈡ 數學基本思想方法有哪些
1、數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。
2、轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
3、分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。
4、整體思想
從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。
5、類比思想
把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。
㈢ 數學思想方法有哪些
1、函數與方程的思想:用變數和函數來思考問題的方法就是函數思想,函數思想是函數概念、圖象和性質等知識更高層次的提煉和概括,是在知識和方法反復學習中抽象出的帶有觀念的指導方法。
5、整體思想:從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。
㈣ 數學常用的數學思想方法有哪些
數學常用的數學思想方法主要有:用字母表示數的思想,數形結合的思想,轉化思想 (化歸思想),分類思想,類比思想,函數的思想,方程的思想,無逼近思想等等。
1.用字母表示數的思想:這是基本的數學思想之一 .在代數第一冊第二章「代數初步知識」中,主要體現了這種思想。
2.數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。
3.轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
4.分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。
5.類比:類比推理在人們認識和改造客觀世界的活動中具有重要意義.它能觸類旁通,啟發思考,不僅是解決日常生活中大量問題的基礎,而且是進行科學研究和發明創造的有力工具.
6.函數的思想 :辯證唯物主義認為,世界上一切事物都是處在運動、變化和發展的過程中,這就要求我們教學中重視函數的思想方法的教學。
7.方程:是初中代數的主要內容.初中階段主要學習了幾類方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關系,通過設未知數、列方程或方程組,解方程或方程組等步驟,達到求值目的的解題思路和策略,
函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。
從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用。
㈤ 小學數學思想方法有哪些
1、符號化思想方法:指用符號化的語言包括字母、數字、圖形和各種特定的符號來描述數學內容的思想方法。
2、類比思想方法 :指依據兩類數學對象的相似性,將已知的一類數學對象的性質遷移到另一類數學對象上去的思想方法,如加法交換律和乘法交換律。
3、轉化思想方法 :指由一種形式變換成另一種形式的思想方法,如公式的變形等。
4、數形結合思想方法:數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形可使之直觀化、形象化、簡單化;另一方面復雜的形體可以用簡單的數量關系表示。
5、分類思想方法;指按照一定的分類標准,對數學對象進行分類的思想方法,如自然數的分類。
㈥ 數學思想方法有哪幾種
數學思想方法有以下5種:
一、方程思想
當一個問題可能與某個等式建立關聯時,可以構造方程並對方程的性質進行研究以解決這個問題。例如證明柯西不等式的時候,就可以把柯西不等式轉化成一個二次方程的判別式。
二、分類討論思想
當一個問題因為某種量或圖形的情況不同而有可能引起問題的結果不同時,需要對這個量或圖形的各種情況進行分類討論。比如解不等式|a-1|>4的時候,就要分類討論a的取值情況。
三、隱含條件思想
沒有明文表述出來,但是根據已有的明文表述可以推斷出來的條件,或者是沒有明文表述,但是該條件是一個常規或者真理。例如一個等腰三角形,一條過頂點的線段垂直於底邊,那麼這條線段所在的直線也平分底邊和頂角。
四、類比思想
把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。
五、極限思想
極限思想是微積分的基本思想,數學分析中的一系列重要概念,如函數的連續性、導數以及定積分等等都是藉助於極限來定義的。如果要問:「數學分析是一門什麼學科?」那麼可以概括地說:「數學分析就是用極限思想來研究函數的一門學科」。
㈦ 目前的數學思想方法一共有幾種
四種。其中的具體情況如下:
1
數形結合的思想:
這是我們學習數學最先接觸的思想方法。數形結合,包含「以形助數」和「以數輔形」兩個方面,其應用大致可以分為兩種情形:或者是藉助形的生動和直觀性來闡明數之間的聯系,即以形作為手段,數為目的,比如應用函數的圖像來直觀地說明函數的性質;或者是藉助於數的精確性和規范嚴密性來闡明形的某些屬性,即以數作為手段,形作為目的,如應用曲線的方程來精確地闡明曲線的幾何性質。
㈧ 數學四大思想八大方法是什麼
數學四大思想:數形結合思想,轉化思想,分類討論思想,整體思想。八大數學方法:配方法,因式分解法,待定系數法,換元法,構造法,等積法,反證法,判別式法。
以上是學習中常用的思想方法。這些都是學習數學的過程中,經常運用的。不同學習階段,數學思想方法的運用也不同,側重點各有差異。思想方法分類也不盡相同。
方法概述
函數的思想,就是用運動和變化的觀點,分析和研究數學中的數量關系,建立函數關系或構造函數,運用函數的圖像和性質去分析問題、轉化問題,從而使問題獲得解決的數學思想。
方程的思想,就是分析數學問題中變數間的等量關系,建立方程或方程組,或者構造方程,通過解方程或方程組,或者運用方程的性質去分析、轉化問題,使問題獲得解決的數學思想。
㈨ 一般的數學思想方法有哪些
1 函數思想
把某一數學問題用函數表示出來,並且利用函數探究這個問題的一般規律。
2 數形結合思想
把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答。
3 整體思想
整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學問題中的具體運用。
4 轉化思想
在於將未知的,陌生的,復雜的問題通過演繹歸納轉化為已知的,熟悉的,簡單的問題。
5 類比思想
把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼推斷它們在其他方面也可能有相同或類似之處。
(9)數學思想主要有哪些方法擴展閱讀:
函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。有時,還實現函數與方程的互相轉化、接軌,達到解決問題的目的。
笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程;求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。
函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。
它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題,經常利用的性質是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。
在解題中,善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系,構造出函數原型。另外,方程問題、不等式問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。
函數知識涉及的知識點多、面廣,在概念性、應用性、理解性都有一定的要求,所以是高考中考查的重點。
我們應用函數思想的幾種常見題型是:遇到變數,構造函數關系解題;有關的不等式、方程、最小值和最大值之類的問題,利用函數觀點加以分析;含有多個變數的數學問題中,選定合適的主變數,從而揭示其中的函數關系。
實際應用問題,翻譯成數學語言,建立數學模型和函數關系式,應用函數性質或不等式等知識解答;等差、等比數列中,通項公式、前n項和的公式,都可以看成n的函數,數列問題也可以用函數方法解決。
引起分類討論的原因主要是以下幾個方面:
① 問題所涉及到的數學概念是分類進行定義的。如|a|的定義分a>0、a=0、a<0三種情況。這種分類討論題型可以稱為概念型。
② 問題中涉及到的數學定理、公式和運算性質、法則有范圍或者條件限制,或者是分類給出的。如等比數列的前n項和的公式,分q=1和q≠1兩種情況。這種分類討論題型可以稱為性質型。
③ 解含有參數的題目時,必須根據參數的不同取值范圍進行討論。如解不等式ax>2時分a>0、a=0和a<0三種情況討論。這稱為含參型。
另外,某些不確定的數量、不確定的圖形的形狀或位置、不確定的結論等,都主要通過分類討論,保證其完整性,使之具有確定性。
進行分類討論時,我們要遵循的原則是:分類的對象是確定的,標準是統一的,不遺漏、不重復,科學地劃分,分清主次,不越級討論。其中最重要的一條是「不漏不重」。
解答分類討論問題時,我們的基本方法和步驟是:首先要確定討論對象以及所討論對象的全體的范圍;其次確定分類標准,正確進行合理分類,即標准統一、不漏不重、分類互斥(沒有重復);再對所分類逐步進行討論,分級進行,獲取階段性結果;最後進行歸納小結,綜合得出結論。
㈩ 數學四大思想八大方法是什麼
數學思想是指人們對數學理論和內容的本質的認識,數學方法是數學思想的具體化形式,實際上兩者的本質是相同的,差別只是站在不同的角度看問題,通常混稱為數學思想方法。數學四大思想八大方法是代數思想、數形結合、轉化思想、對應思想方法、假設思想方法、比較思想方法、符號化思想方法、極限思想方法。
數學思想方法
數形結合是一個數學思想方法,包含以形助數和以數輔形兩個方面,其應用大致可以分為兩種情形,或者是藉助形的生動和直觀性來闡明數之間的聯系,即以形作為手段,數為目的,比如應用函數的圖像來直觀地說明函數的性質。
或者是藉助於數的精確性和規范嚴密性來闡明形的某些屬性,即以數作為手段,形作為目的,如應用曲線的方程來精確地闡明曲線的幾何性質。
數形結合的思想,其實質是將抽象的數學語言與直觀的圖像結合起來,關鍵是代數問題與圖形之間的相互轉化,它可以使代數問題幾何化,幾何問題代數化。