❶ 如何求∫arctanxdx的結果
結果為:xarctanx - (1/2)ln(1+x²) + C
解題過程如下:
∫arctanxdx
= xarctanx - ∫x d(arctanx)
= xarctanx - ∫ x/(1+x²)dx
= xarctanx - (1/2)∫1/(1+x²) d(1+x²)
= xarctanx - (1/2)ln(1+x²) + C
求函數積分的方法:
設F(x)是函數f(x)的一個原函數,我們把函數f(x)的所有原函數F(x)+C(C為任意常數)叫做函數f(x)的不定積分,記作,即∫f(x)dx=F(x)+C。
其中∫叫做積分號,f(x)叫做被積函數,x叫做積分變數,f(x)dx叫做被積式,C叫做積分常數,求已知函數不定積分的過程叫做對這個函數進行積分。
積分是微積分學與數學分析里的一個核心概念。通常分為定積分和不定積分兩種。直觀地說,對於一個給定的實函數f(x),在區間[a,b]上的定積分。
若f(x)在[a,b]上恆為正,可以將定積分理解為在Oxy坐標平面上,由曲線(x,f(x))、直線x=a、x=b以及x軸圍成的面積值(一種確定的實數值)。
❷ arctanx的不定積分
用分部積分解決
∫ arctanx dx
=xarctanx-∫ x d(arctanx)
=xarctanx-∫ x /(1+x^2) dx
=xarctanx-(1/2) ∫ 1/(1+x^2) d(1+x^2)
=xarctanx-(1/2)ln(1+x^2)+C
不定積分和定積分間的關系由微積分基本定理確定。其中F是f的不定積分。
一個函數,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函數,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函數有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函數一定不存在,即不定積分一定不存在。
(2)arctanxdx解決方法擴展閱讀:
求函數f(x)的不定積分,就是要求出f(x)的所有的原函數,由原函數的性質可知,只要求出函數f(x)的一個原函數,再加上任意的常數C就得到函數f(x)的不定積分。
證明:如果f(x)在區間I上有原函數,即有一個函數F(x)使對任意x∈I,都有F'(x)=f(x),那麼對任何常數顯然也有[F(x)+C]'=f(x).即對任何常數C,函數F(x)+C也是f(x)的原函數。這說明如果f(x)有一個原函數,那麼f(x)就有無限多個原函數。
設G(x)是f(x)的另一個原函數,即∀x∈I,G'(x)=f(x)。於是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。
由於在一個區間上導數恆為零的函數必為常數,所以G(x)-F(x)=C』(C『為某個常數)。
這表明G(x)與F(x)只差一個常數.因此,當C為任意常數時,表達式F(x)+C就可以表示f(x)的任意一個原函數。也就是說f(x)的全體原函數所組成的集合就是函數族{F(x)+C|-∞<C<+∞}。
由此可知,如果F(x)是f(x)在區間I上的一個原函數,那麼F(x)+C就是f(x)的不定積分,即∫f(x)dx=F(x)+C。
因而不定積分∫f(x) dx可以表示f(x)的任意一個原函數。
❸ 如何求出∫arctanxdx的積分呢
方法如下,請作參考:
若有幫助,
請採納。
❹ 請問如何解決∫arctanxdx
首先分部積分得到
∫arctanx dx=x *arctanx -∫x d(arctanx)
而arctanx的導數就是1/(1+x²)
所以∫x d(arctanx)=∫x/(1+x²)dx
那麼再湊微分得到
∫x/(1+x²)dx =1/2 *∫1/(1+x²)d(1+x²)
=1/2 *ln(1+x²) +C