❶ 數學解決問題的策略
在解題過程中,運用畫圖的方法,畫出與題意相關的示意圖,藉助示意圖來幫助推理、思考,這是小學數學解決問題中最常用的一種策略。
常見的畫圖方式有:線段圖、集合圖等。
將疑難問題的文字「翻譯成圖」,能夠立竿見影地理清思路,找到解題策略。
例:某班有45位同學,其中有30人沒有參加數學小組,有20人參加航模小組,有8小組都參加了。問:只參加一個小組的學生有多少人?
分析:畫出集合圖。
方框表示全班所有人。區域①表示只參加數學小組的同學。區域②表示只參加航模小組的人。區域③表示同時參加數學、航模兩個小組的人。區域④表示兩個小組都沒有參加的人。
圖片、圖形轉達信息的效率要遠遠高於文字和語言。
利用集合圖將復雜的文字概念關系轉化為直觀的圖,可以幫助孩子快速理清各種量之間的邏輯關系,提高解題效率。
轉化策略
轉化也是小學數學解決問題中常用的一種方法,能把較復雜的問題轉化為簡單問題,能把未知的問題變為已知的問題。
例:媽媽買了2千克柑橘和5千克生梨,共花了28.6元。每千克柑橘的價格是生梨的4倍,每千克柑橘和生梨各多少元?
分析:「每千克柑橘的價格是生梨的4倍」,這句話就是轉化的條件。我們可以這樣想:買1千克柑橘的價錢可以買4千克生梨,那麼買2千克柑橘的價錢可以買2×4=8千克生梨。所以總共花了28.6元相當於買了(8+5)千克生梨所花的錢。通過轉換,問題就得以解決了。
列表策略
列表策略,又叫列舉策略。是將問題的條件信息用表格的形式列舉出來,便於從中發現問題、分析數量關系,從而排除非數學信息的干擾,同時也便於找到解決問題的方法。
例:有1張五元紙幣,2張兩元紙幣,8張1元紙幣,要拿9元錢,有幾種拿法?
❷ 什麼是轉化思想什麼是什麼是從特殊到一般的數學方法
就是把所要解決的問題轉化為另一個較易解決的問題或已經解決的問題。
轉化思想是將未知解法或難以解決的問題,通過觀察、分析、聯想、類比等思維過程,選擇恰當的方法進行變換,化歸為已知知識范圍內已經解決或容易解決的問題方法的數學思想。
化歸與轉化的思想是解決數學問題的根本思想,解題的過程實際就是轉化的過程。數學中的轉化比比皆是,如:未知向已知的轉化、數與形的轉化、空間向平面的轉化、高維向低維的轉化、多元向一元的轉化,高次向低次的轉化等,都是轉化思想的體現。
從特殊到一般的數學方法就是轉化思想中的一部分,也就是從特殊的事例中總結出一半規律的過程就叫做從特殊到一般的數學方法。
(2)轉化是解決復雜問題的方法擴展閱讀:
通過不斷的轉化,把不熟悉、不規范、復雜的問題轉化為熟悉、規范甚至模式法、簡單的問題。歷年高考,等價轉化思想無處不見,我們要不斷培養和訓練自覺的轉化意識,將有利於強化解決數學問題中的應變能力,提高思維能力和技能、技巧。
轉化有等價轉化與非等價轉化。等價轉化要求轉化過程中前因後果是充分必要的,才保證轉化後的結果仍為原問題的結果。
非等價轉化其過程是充分或必要的,要對結論進行必要的修正,它能給人帶來思維的閃光點,找到解決問題的突破口。我們在應用時一定要注意轉化的等價性與非等價性的不同要求,實施等價轉化時確保其等價性,保證邏輯上的正確。
❸ 在生活中遇到用轉化的方法來解決問題的比如哪些
轉化總是和化歸聯系在一起,它們是重要的思想方法.比如現在要你寫一個燒開水的方案,給你未裝水的電水壺,你會先裝水,再插插頭燒水;再給你一個裝了水的水壺,用化歸的思想,會先把水倒掉,得到一個未裝水的水壺,然後再按先寫的方案操作,這就是轉化和化歸