㈠ 初一數學一元一次方程技巧
初一數學一元一次方程技巧如下:
一、一元一次方程 :
(1)含有未知數的等式是方程。
(2)只含有一個未知數(元),未知數的次數都是1的方程叫做一元一次方程。

二、等式的性質:
(1)用等號「=」表示相等關系的`式子叫做等式。
(2)等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。 如果a=b,那麼a±c=b±c.
(3)等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。 如果a=b,那麼ac=bc; 如果a=b且c≠0。
(4)運用等式的性質時要注意三點: ①等式兩邊都要參加運算,並且是作同一種運算; ②等式兩邊加或減,乘或除以的數一定是同一個數或同一個式子; ③等式兩邊不能都除以0,即0不能作除數或分母。
㈡ 七年級數學一元一次方程怎麼學
一般解法:
1.去分母:在方程兩邊都乘以各分母的最小公倍數(不含分母的項也要乘);
2.去括弧:先去小括弧,再去中括弧,最後去大括弧;(記住如括弧外有減號的話一定要變號)
3.移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號
4.合並同類項:把方程化成ax=b(a≠0)的形式;
5.化系數化成1:在方程兩邊都除以未知數的系數a,得到方程的解x=b/a.
做一元一次方程應用題的重要方法:
⒈認真審題(審題)
⒉分析已知和未知量
⒊找一個合適的等量關系
⒋設一個恰當的未知數
⒌列出合理的方程 (列式)
⒍解出方程(解題)
⒎檢驗
⒏寫出答案(作答)
㈢ 七年級下冊數學解一元一次方程怎麼做
一般解法:
1.去分母:在方程兩邊都乘以各分母的最小公倍數;
2.去括弧:先去小括弧,再去中括弧,最後去大括弧;(記住如括弧外有減號的話一定要變號)
3.移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號
4.合並同類項:把方程化成ax=b(a≠0)的形式;
5.系數化成1:在方程兩邊都除以未知數的系數a,得到方程的解x=b/a.
同解方程
如果兩個方程的解相同,那麼這兩個方程叫做同解方程。
方程的同解原理:
⒈方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。
⒉方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。
㈣ 七年級數學上冊一元一次方程怎麼解
判斷方法
要判斷一個方程是否為一元一次方程,先看它是否為整式方程。若是,再對它進行整理。如果能整理為 ax+b=0(a≠0)的形式,則這個方程就為一元一次方程。裡面要有等號,且分母里不含未知數。
變形公式
ax=-b(a,b為常數,x為未知數,且a≠0)
求根公式
通常解法
去分母→去括弧→移項→合並同類項→系數化為1。
兩種類型
(1)總量等於各分量之和。將未知數放在等號左邊,常數放在右邊。如:x+2x+3x=6。
(2)等式兩邊都含未知數。如:300x+400=400x,40x+20=60x[1]。
方程舉例
2a=4a-6
3b=-1
x=1
都是一元一次方程。
㈤ 初一數學一元一次方程怎麼解
含字母系數的一元一次方程
教學目標
1.使學生理解和掌握含有字母系數的一元一次方程及其解法;
2.理解公式變形的意義並掌握公式變形的方法;
3.提高學生的運算和推理能力.
教育重點和難點
重點:含有字母系數的一元一次方程和解法.
難點:字母系數的條件的運用和公式變形.
教學過程設計
一、導入新課
問:什麼叫方程?什麼叫一元一次方程?
答:含有未知數的等式叫做方程,含有一個未知數,並且未知數的次數是1的方程叫做一元一次方程.
例 解方程2x-1 3-10x+1 6=2x+1 4-1
解 去分母,方程兩邊都乘以12,得
4(2x-1)-2(10x+1)=3(2x+1)-12,
去括弧,得
8x-4-20x-2=6x+3-12
移項,得
8x-20x-6x=3-12+4+2,
合並同類項,得
-18x=-3,
方程兩邊都除以-18,得
x=3 18 ,即 x=1 6.
二、新課
1.含字母系數的一元一次方程的解法.
我們把一元一次方程用一般的形式表示為
ax=b (a≠0),
其中x表示未知數,a和b是用字母表示的已知數,對未知數x來說,字母a是x的系數,叫做字母系數,字母b是常數項.
如果一元一次方程中的系數用字母來表示,那麼這個方程就叫做含有字母系數的一元一
次方程.
以後如果沒有特別說明,在含有字母系數的方程中,一般用a,b,c等表示已知數,用x,y,z等表示未知數.
含字母系數的一元一次方程的解法與只含有數字系數的一元一次方程的解法相同.按照解
一元一次方程的步驟,最後轉化為ax=b(a≠0)的形式.這里應注意的是,用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零.如(m-2)x=3,必須當m-2≠0時,即m≠2時,才有x=3 m-2 .這是含有字母系數的方程和只含有數字系數的方程的重要區別.
例1 解方程ax+b2=bx+a2(a≠b).
分析:這個方程中的字母a,b都是已知數,x是未知數,是一個含有字母系數的一元一次方程.這里給出的條件a≠b,是使方程有解的關鍵,在解方程的過程中要運用這個條件.
解 移項,得
ax-bx=a2-b2,
合並同類項,得
(a-b)x=a2-b2.
因為a≠b,所以a-b≠0.方程兩邊都除以a-b,得
x=a2-b2 a-b=(a+b)(a-b) a-b,
所以 x=a+b.
指出:
(1)題中給出a≠b,在解方程過程中,保證了用不等於零的式子a-b去除方程的兩邊後所得的方程的解是原方程的解;
(2)如果方程的解是分式形式時,一般要化成最簡分式或整式.
例2 x-b a=2-x-a b(a+b≠0).
觀察方程結構的特點,請說出解方程的思路.
答:這個方程中含有分式,可先去分母,把方程轉化成含有字母系數的一元一次方程
的一般形式.在方程變形中,要應用已知條件a+b≠0.
解 去分母,方程兩邊都乘以ab得
b(x-b)=2ab-a(x-a),
去括弧,得
bx-b2=2ab-ax+a2,
移項,得
ax+bx=a2+2ab+b2
合並同類項,得
(a+b)x=(a+b)2.
因為a+b≠0,所以x=a+b.
指出:ab≠0是一個隱含條件,這是因為字母a,b分別是方程中的兩個分式的分母,因此a≠0,b≠0,所以ab≠0.
例3 解關於x的方程
a2+(x-1)ax+3a=6x+2(a≠2,a≠-3).
解 把方程變形為,得
a2x-a2+ax+3a=6x+2,
移項,合並同類項,得
a2x+ax-6x=a2-3a+2,
(a2+a-6)x=a2-3a+2,
(a+3)(a-2)x=(a-1)(a-2).
因為a≠2,a=-3,所以a+3≠0,a-2≠0.方程兩邊都除以(a+3)(a-2),得
x=a-1 a+3.
2.公式變形.
在物理課中我們學習了很多物理公式,如果q表示燃燒值,m表示燃料的質量,那麼完全燃燒這些燃料產生的熱量W,三者之間的關系為W=qm,又如,用Q表示通過異體橫截面的電量,用t表示時間,用I表示通過導體電流的大小,三者之間的關系為I=Qt.在這個公式中,如果用I和t來表示Q,也就是已知I和t,求Q,就得到Q=It;如果用I和Q來表示t,也就是已知I和Q,,求t,就得到t=QI.
像上面這樣,把一個公式從一種形式變換成另一種形式,叫做公式變形.
把公式中的某一個字母作為未知量,其它的字母作為已知量,求未知量,就是解含字母
系數數的方程.也就是說,公式變形實際就是解含有字母系數的方程.公式變形不但在數學,而且在物理和化學等學科中非常重要,我們要熟練掌握公式變形的技能.
例4 在公式υ=υo+at中,已知υ,υo,a,且a≠0,求t.
分析:已知υ,υo和a,求t,也就是把υ,υo和a作為已知量,解關於未知量t的字母系數的方程.
解 移項,得
υ-υ0=at.
因為a≠0,方程兩邊都除以a,得
t=υ-υo a.
例5 在梯形面積公式s=12(a+b)h中,已知a,b,h為正數.
(1)用s,a,b表示h;(2)用S,b,h表示a.
問:(1)和(2)中哪些是已知量?哪些是未知量;
答:(1)中S,a,b是已知量,h是未知量;(2)中s,b,h都是知已量,a是未知量.
解 (1)方程兩邊都乘以2,得
2s=(a+b)h.
因為a與b都是正數,所以a≠0,b≠0,即a+b≠0,方程兩邊都除以a+b,得
h=2sa+b.
(2)方程兩邊都乘以2,得
2s=(a+b)h,
整理,得
ah=2s-bh.
因為h為正數,所以h≠0,方程兩邊都除以h,得
a=2s-bh h.
指出:題是解關於h的方程,(a+b)可看作是未知量h的系數,在運算中(a+b)h不要展開.
三、課堂練習
1.解下列關於x的方程:
(1)3a+4x=7x-5b; (2)xa-b=xb-a(a≠b);
(3)m2(x-n)=n2(x-m)(m2≠n2);
(4)ab+xa=xb-ba(a≠b);
(5)a2x+2=a(x+2)(a≠0,a≠1).
2.填空:
(1)已知y=rx+b r≠0,則x=_______;
(2)已知F=ma,a≠0,則m=_________;
(3)已知ax+by=c,a≠0,則x=_______.
3.以下公式中的字母都不等於零.
(1)求出公式m=pn+2中的n;
(2)已知xa+1b=1m,求x;
(3)在公式S=a+b2h中,求a;
(4)在公式S=υot+12t2x中,求x.
答案:
1.(1)x=3a+5b 3; (2)x=ab; (3)x=mn m+n; (4)x=a2+b2 a-b (5)x=2a.
2.(1)x=y-b r; (2)m=Fa; (3)x=c-by a.
3.(1)n=p-2m m; (2)x=ab-am bm; (3)a=2s-bh h;
(4)x=2s-2υott2.
四、小結
1.含字母系數的一元一次方程與只含有數字系數的一元一次方程的解法相同,但應特別注意,用含有字母的式子去乘或除方程的兩邊時,這個式子的值不能為零.我們所舉的例題及課堂練習的題目中所給出的條件,都保證了這一點.
2.對於公式變形,首先要弄清公式中哪些是已知量,哪個是未知量.把已知量作為字
母系數,求未知量的過程就是解關於字母系數的方程的過程.
如果想提高解題熟練度。看參考資料的五
㈥ 初一的數學一元一次公式怎麼解
一元一次方程吧!
解方程最後的目的是要達到:X=a(a是一般是常數,即數值)
如:3X+5=11這個方程,你想辦法通過"合法"的手段將它變至X=a.
那麼,第一步必須使左邊的+5"消失",這樣的"合法"手段之一是移項,即把+5移到等號的右邊,這需要改變+5的符號,即變為-5,這時方程可化為:3X=11-5,化簡後為:3X=6.第二步:將3X前面的"3"(系數)化為"1",這時的"合法"手段是兩邊同時除以3(或乘以1/3),得X=2
又如:
解方程: -5X-2=3X-10
解:-5X-3X=-10+2 (第一步將含X的項移到左邊,將不含X的項移到右邊)
-8X=-8 (在上一步的基礎上,合並同類項)
X=1 (在上一步的基礎上,將X前面的-8化為1,手段是:兩邊同時除以-8)
㈦ 七年級一元一次方程應用題解題技巧是什麼
七年級一元一次方程應用題解題技巧:
1、找出已知條件,寫在演草紙上。
2、找出隱含條件,寫在演草紙上。
3、把未知數設定,視為已知數,寫在演草紙上。
4、畫出圖形(這是最常用的,也是最直觀的分析方法),分析量與量之間的關系。
5、根據圖形分析,列出量與量之間的關系等式,就得出方程式。
6、解方程,求出未知數(必要時根據數與數之間的關系求出問題中要求的結果)。
7、答。
解方程依據
1、移項變號:把方程中的某些項帶著前面的符號從方程的一邊移到另一邊,並且加變減,減變加,乘變除以,除以變乘。
2、等式的基本性質:
(1)等式兩邊同時加(或減)同一個數或同一個代數式,所得的結果仍是等式。用字母表示為:若a=b,c為一個數或一個代數式。
(2)等式的兩邊同時乘或除以同一個不為0的數,所得的結果仍是等式。用字母表示為:若a=b,c為一個數或一個代數式(不為0)。
㈧ 七年級數學《一元一次方程詳解》知識點
1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。
2.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a0)。
3.條件:一元一次方程必須同時滿足4個條件:
(1)它是等式;
(2)分母中不含有未知數;
(3)未知數最高次項為1;
(4)含未知數的項的系數不為0.
4.等式的性質:
等式的性質一:等式兩邊同時加一個數或減去同一個數或同一個整式,等式仍然成立。
等式的性質二:等式兩邊同時擴大或縮小相同的倍數(0除外),等式仍然成立。
等式的性質三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據等式的這三個性質等式的性質一:等式兩邊同時加一個數或減同一個數,等式仍然成立。
5.合並同類項
(1)依據:乘法分配律
(2)把未知數相同且其次數也相同的相合並成一項;常數計算後合並成一項
(3)合並時次數不變,只是系數相加減。
6.移項
(1)含有未知數的項變號後都移到方程左邊,把不含未知數的項移到右邊。
(2)依據:等式的性質
(3)把方程一邊某項移到另一邊時,一定要變號。
7.一元一次方程解法的一般步驟:
使方程左右兩邊相等的'未知數的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最小公倍數;
(2)去括弧:先去小括弧,再去中括弧,最後去大括弧;(記住如括弧外有減號的話一定要變號)
(3)移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號
(4)合並同類項:把方程化成ax=b(a0)的形式;
(5)系數化成1:在方程兩邊都除以未知數的系數a,得到方程的解x=b/a.
8.同解方程
如果兩個方程的解相同,那麼這兩個方程叫做同解方程。
9.方程的同解原理:
(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。
10.列一元一次方程解應用題:
(1)讀題分析法: 多用於和,差,倍,分問題
仔細讀題,找出表示相等關系的關鍵字,例如:大,小,多,少,是,共,合,為,完成,增加,減少,配套-----,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法: 多用於行程問題
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
11.列方程解應用題的常用公式:
12.做一元一次方程應用題的重要方法:
(1)認真審題 (審題)
(2)分析已知和未知量
(3)找一個合適的等量關系
(4)設一個恰當的未知數
(5)列出合理的方程(列式)
(6)解出方程(解題)
(7)檢驗
(8)寫出答案(作答)
一元一次方程牽涉到許多的實際問題,例如工程問題、種植面積問題、比賽比分問題、路程問題,相遇問題、逆流順流問題、相向問題分段收費問題、盈虧、利潤問題。
以上內容由數學網獨家專供,希望這篇七年級數學知識點:一元一次方程詳解能夠幫助到大家。
㈨ 七年級數學一元一次方程怎麼解
1、有分母的先去分母
2、去括弧
3、移項(把含有未知數的移到方程等號的左邊,不含未知數的移到右邊)
4、合並同類項
5、未知數系數化1