㈠ TOC測定儀的區別比較
TOC與CODCr的測定方法不同。測定CODCr是採用強氧化劑和加熱迴流的方法,只能將水中的有機物部分氧化 (氧化率較低,其氧化率一般為80~90%,對於多環芳烴等復雜有機物的氧化率更低。 ) ,並且測定時間較長,即使目前一些快速測定儀器 (採用比色法測定 )簡化了操作過程,但測定時間仍在 2h以上;
而測定TOC是採用燃燒法或光催化法 ,能將水中有機物全部氧化,因此TOC比CODCr更能直接表示水中有機物的總量,並且測定時間短 (不到10min即可測定一個樣品 )。其測定結果的精密度、准確度均比CODCr的高。
總有機碳(TOC)的測定是採用燃燒法,能將有機物全部氧化,因此常被用來評價水體中有機物污染的程度,結果用水體的有機碳的含量來表示,與氧的消耗無關。
化學需氧量(CODCr)是用消耗的氧來表示水中受還原性物質污染的程度,是有機物相對含量的指標之一。
㈡ TOC 監測方法有哪些
總有機碳(Total organic carbon,TOC)是水中有機物所含碳的總量,由於有機物是以碳鏈為骨架的一類化合物,所以這個指標能完全反映有機物對水體的污染水平。為測定水中有機物所含碳量,先把水中有機物的碳氧化成二氧化碳,消除干擾因素後由二氧化碳檢測器測定,再由數據處理把二氧化碳氣體含量轉換成水中有機物的濃度。經過不斷的研究實驗,TOC檢測方法從傳統的復雜技術漸漸變成便捷准確。
一、濕法氧化(過硫酸鹽) - 非色散紅外探測 (NDIR)
該方法是在氧化之前經磷酸處理待測樣品 ,去除無機碳,而後測量 TOC的濃度。現代的TOC連續分析儀中,絕大部分都是濕法氧化。濕法氧化對於復雜的水體(例如:腐殖酸、高分子量化合物等)氧化不充分,所以不適用 TOC含量高的水體,但是對於常規水體如地表水、常規海水還是可以的。
二、高溫催化燃燒氧化 - 非色散紅外探測 (NDIR)
高溫催化燃燒氧化的應用時間遠比濕法氧遲,但是因為高溫燃燒相對徹底,可以適用於污染較重的江河、海水以及工業廢水等水體。
三、紫外氧化 - 非色散紅外探測 (NDIR)
其方式與濕法氧化相同,不過是採用紫外光(185nm)進行照射的原理,在樣品進入紫外反應器之前去除無機碳,得到更精確的結果。紫外氧化法,對於顆粒狀有機物、葯物、蛋白質等高含量TOC是不適用的,但可以用於原水、工業用水等水體。
四、紫外(UV) - 濕法(過硫酸鹽)氧化 - 非色散紅外探測(NDIR)
這種方式是紫外氧化和濕法氧化兩者協同作用,相互補充,相互促進,氧化降解效果優於其中任何一種方法。針對紫外氧化無法用於高含量TOC水體,兩者的協同可以測量污染較重的水體,但是存在裝置相對復雜 ,運行成本高的特點。
五、電阻法
該法是近年來開始應用的技術 ,其原理是在溫度補償前提下,測量樣品在紫外線氧化前後電阻率的差值來實現的。但該方法對被測量的水體來源要求比較苛刻 ,只能用相對潔凈的工業用水和純水,應用方向單一。
六、紫外法
紫外吸收光譜用於 TOC的檢測分析最早可追溯到 1972年,Dobbs等人對於254nm處紫外吸光度值(A)和城市污水處理二級出水及河水的TOC之間線性關系進行了研究。經過幾十年的發展,由於具有快速、不接觸測量、重復性好、維護量少等優點,該方法的應用得到飛速發展。
七、電導法
該法中涉及的主要器件是電導池,它由參比電極、測量電極、氣液分離器、離子交換樹脂、反應盤管、NaOH電導液等組成。電導池的優點是價格低、易普及,但穩定性較差。
八、臭氧氧化法
利用臭氧的強氧化性,採用臭氧氧化作為TOC的檢測技術,具有反應速度快,無二次污染,以及較高的應用價值。故此方法的應用前景非常可觀。
九、超聲空化聲致發光法
聲化學已成為一個蓬勃發展的研究領域,聲致發光的研究已涉及到環境保護領域,我國的相關學者在基礎研究和應用研究方面做了大量的工作,近年來,這一獨特的方法已經得到專家的認可。具有無二次污染、不需添加試劑,設備簡單等優點。
十、超臨界H2O氧化法
適用於鹽分高的應用,超零界水氧化(Supercritical Water Oxidation — SCWO)技術原先被用於處理大體積廢水、污泥和被污染過的土壤。
現被運用於商業實驗室TOC分析儀,將進樣水的溫度和壓力提升至高於水的臨界點(375°C和3,200psi)時,有機廢物迅速被水中的氧化劑徹底氧化。
超臨界水的特性均可以使有機碳極高效、快速地 氧化為二氧化碳,即便存在使用非超臨界氧化方式時會造成負干擾的氯化物及其他無機物也無妨。
㈢ 水質檢測里說的 TOC 是什麼意思
TOC(Total Organic Carbon,簡稱TOC) 總有機碳的簡稱。
總有機碳是指水體中溶解性和懸浮性有機物含碳的總量。水中有機物的種類很多,目前還不能全部進行分離鑒定。
常以「TOC」表示。TOC是一個快速檢定的綜合指標,它以碳的數量表示水中含有機物的總量。
(3)toc檢測方法的優缺點擴展閱讀:
由於它不能反映水中有機物的種類和組成,因而不能反映總量相同的總有機碳所造成的不同污染後果。由於TOC的測定採用燃燒法,因此能將有機物全部氧化,它比BOD₅或COD更能直接表示有機物的總量。通常作為評價水體有機物污染程度的重要依據。
某種工業廢水的組分相對穩定時,可根據廢水的總有機碳同生化需氧量和化學需氧量之間的對比關系來規定TOC的排放標准,這樣能夠大大提高監測工作的效率。
測定時,先用催化燃燒或濕法氧化法將樣品中的有機碳全部轉化為二氧化碳,生成的二氧化碳可直接用紅外線檢測器測量,亦可轉化為甲烷,用氫火焰離子化檢測器測量,然後將二氧化碳含量折算成含碳量。
污水中 TOC 的監測分析:
目前我國污水中TOC的標准測定方法正在制定當中,也擬採用燃燒氧化- 非分散紅外法或濕式氧化- 非分散紅外法。燃燒氧化法的最低檢測限為1.0mg/L。進樣量過小會影響重現性和降低方法靈敏度,但進樣量又不能太多,否則將影響氣化效率。
通常測試幾個mg/L時,進樣量以30~50微升為宜;測試在幾十個mg/L以上時,進樣量可在10~30 微升范圍內選擇。由於廢水中TOC 含量較高,對於不同污水樣品,在測定過程中要適當加以稀釋,使其測定值在標准曲線的線性范圍內。
從而保證測定值的准確,而濕式氧化法則不存在這些問題。另外,對含懸浮物較多水樣也應對樣品稀釋後進樣。水樣中含有大顆粒懸浮物時,受水樣注射器針孔限制,測定結果往往不包括全部顆粒態有機碳。
㈣ 土壤doc與TOC區別
影響不同、檢測方法的不同。
影響不同:
DOC土壤溶解性有機碳。是土壤圈中一種非常活躍的化學物質,它對土壤中化學物質的溶解、吸附、解吸、遷移和毒性等行為均有顯著的影響。
TOC總有機碳。是土壤和沉積物中一個和重要的組成成分,對土壤的性質及有機污染物在土壤中的遷移和轉化有很大的影響。
檢測方法的不同:
土壤DOC的檢測方法:目前主要採用干燒法和是氧化法。
土壤TOC的檢測方法:重鉻酸鉀外加熱法和TOC分析儀法。
㈤ TOC分析儀的TOC檢測方法
一、濕法氧化(過硫酸鹽)- 非色散紅外探測 (NDIR) 該方法是在氧化之前經磷酸處理待測樣品 ,去除無機碳,而後測量 TOC的濃度。現代的TOC
連續分析儀中,絕大部分都是濕法氧化。濕法氧化對於復雜的水體(例如:腐殖酸、高分子量
化合物等)氧化不充分,所以不適用 TOC含量高的水體 ,但是對於常規水體如地表水是可以
的。
二、高溫催化燃燒氧化 - 非色散紅外探測(NDIR)
高溫催化燃燒氧化的應用時間遠比濕法氧化遲,但是因為高溫燃燒相對徹底,可以適用於污
染較重的江河、海水以及工業廢水等水體。
三、紫外氧化 - 非色散紅外探測 (NDIR)
其方式與濕法氧化相同,不過是採用紫外光(185nm)進行照射的原理,在樣品進入紫外反應器
之前去除無機碳,得到更精確的結果。紫外氧化法,對於顆粒狀有機物、葯物、蛋白質等高
含量 TOC是不適用的,但可以用於原水、工業用水等水體。
四、紫外(UV)- 濕法(過硫酸鹽)氧化 - 非色散紅外探測(NDIR)
這種方式是紫外氧化和濕法氧化兩者協同作用,相互補充,相互促進,氧化降解效果優於其中
任何一種方法。針對紫外氧化無法用於高含量TOC水體,兩者的協同可以測量污染較重的
水體。因其適用性強、可測范圍廣泛的特點而普及度高,技術成熟。
五、電阻法
該法是近年來開始應用的技術 ,其原理是在溫度補償前提下,測量樣品在紫外線氧化前後電
阻率的差值來實現的。但該方法對被測量的水體來源要求比較苛刻 ,只能用相對潔凈的工業
用水和純水 ,應用方向單一。
六、紫外法
紫外吸收光譜用於 TOC的檢測分析最早可追溯到 1972 年 ,Dobbs 等人對於 254nm處紫
外吸光度值(A)和城市污水處理二級出水及河水的 TOC之間線性關系進行了研究。經過幾
十年的發展, 由於具有快速、不接觸測量、重復性好、維護量少等優點,該方法的應用得到
飛速發展。
七、電導法
該法中涉及的主要器件是電導池,它由參比電極、測量電極、氣液分離器、離子交換樹脂、
反應盤管、NaOH電導液等組成。電導池的優點是價格低、易普及 ,但穩定性較差。
八、臭氧氧化法
利用臭氧的強氧化性,採用臭氧氧化作為TOC的檢測技術,具有反應速度快,無二次污染 ,
以及較高的應用價值。故此方法的應用前景非常可觀。
九、超聲空化聲致發光法
超聲化學已成為一個蓬勃發展的研究領域 ,聲致發光的研究已涉及到環境保護領域 ,我國的
相關學者在基礎研究和應用研究方面做了大量的工作 ,近年來 ,這一獨特的方法已經得到專
家的認可。具有無二次污染、不需添加試劑 ,設備簡單等優點。
十、超臨界水氧化法
適用於鹽分高的應用,超零界水氧化(Supercritical Water Oxidation — SCWO)技術原先被用於處理大體積廢水、污泥和被污染過的土壤。現被運用於商業實驗室TOC分析儀,將進樣水的溫度和壓力提升至高於水的臨界點(375°C和3,200psi)時,有機廢物迅速被水中的氧化劑徹底氧化。超臨界水的特性均可以使有機碳極高效、快速地氧化為二氧化碳,即便存在使用非超臨界氧化方式時會造成負干擾的氯化物及其他無機物也無妨。
技術參數: 測量范圍:0—100,000ppm C(非稀釋狀態) ,0----5,000ppm N 。
自動進樣,一次進樣得6個結果:TOC/TIC/TC/NPOC/POC/TNb 。
可選全自動多孔位進樣器、總氮(TNb)分析模塊、固體分析模塊。 測定誤差與精度 ≤1%。
應用:
滿足醫用注射水檢測。
清潔驗證(符合FDA/USP/EP)。 飲用水、地表水、自來水、排水、污水
環保、水文監測等不同行業。
㈥ 你認為TOC分析儀的原理是什麼
TOC分析通常分為直接測定法和間接測定法。直接測定法一般是通過將無機碳(IC)除去後測定全碳(TC)的方法,適用於測定IC含量高的水樣,但容易損失水樣中揮發性的有機碳(POC)。
IC的處理方法採用酸化曝氣處理法,將水樣酸化至pH<3,CO32-和HCO3-轉化成碳酸,產生二氧化碳,再通過曝氣去除CO2。由於在曝氣過程中會造成水樣中揮發性有機物(VOC)的損失,因此直接法的測定結果僅能代表不可吹出的有機碳(NPOC)含量。樣品中無機碳含量較高時,因其干擾對有機碳的測定,所以必須消除廢水中無機碳的干擾,在測定前要對樣品進行預處理。
在間接測定法中,TOC是通過TC減去IC得到,將所有的碳氧化得到TC,IC則是通過測定樣品經酸分解的CO2量得到的,適用於測定IC比TOC低的水樣。
差減法存在以下幾方面的不足:(1)差減法對水樣進行兩次測定,分別得出IC和TC,所以要求配備一個外接采樣器,以保證IC和TC測定時的水質一致,這在污染物有時空分布的情況下,是很難做到的;(2)由於要分別測定水樣的IC和TC,故在儀器標定時也同樣要求IC和TC兩種標樣,這樣就增加了儀器的復雜程度;(3)測量周期較長;(4)對產生的CO2量進行兩次積分測量增大了儀器的誤差。
氧化技術
測定TOC時使用的氧化有機污染物的方法分為干法氧化和濕法氧化兩類,更具體來說,主要有以下幾種:高溫催化燃燒氧化、過硫酸鹽氧化、紫外光(UV)/過硫酸鹽氧化、紫外光(UV)氧化等。干法氧化(高溫催化燃燒氧化)的特點是檢出率較高,氧化能力強,操作簡單、快速。濕法氧化特點是准確度高、進樣量大、靈敏度高、安全性能好,但費時。
㈦ 在水處理中TOC指的什麼
TOC=總有機碳(Total organic carbon)
水中的有機物質的含量,以有機物中的主要元素一碳的量來表示,稱為總有機碳。 TOC的測定類似於TOD的測定。在950℃的高溫下,使水樣中的有機物氣化燃燒,生成CO2,通過紅外線分析儀,測定其生成的CO2之量,即可知總有機碳量。
水中TOC的監測
我們的生活離不開水,若相當多的有機污染物存在於水中,將直接影響水體的質量,對我們的生活和生產造成危害,因此水和廢水的監測,越來越引起人們的重視。
其中水體中總有機碳(TOC)含量的檢測,日益引起關注。它是以碳含量表示水體中有機物質總量的綜合指標。TOC的測定一般採用燃燒法,此法能將水樣中有機物全部氧化,可以很直接地用來表示有機物的總量。因而它被作為評價水體中有機物污染程度的一項重要參考指標。
拓展資料:
水處理的方式包括物理處理和化學處理。
人類進行水處理的方式已經有相當多年歷史,物理方法包括利用各種孔徑大小不同的濾材,利用吸附或阻隔方式,將水中的雜質排除在外,吸附方式中較重要者為以活性炭進行吸附,阻隔方法則是將水通過濾材,讓體積較大的雜質無法通過,進而獲得較為干凈的水。
另外,物理方法也包括沉澱法,就是讓比重較小的雜質浮於水面撈出,或是比重較大的雜質沉澱於下,進而取得。
化學方法則是利用各種化學葯品將水中雜質轉化為對人體傷害較小的物質,或是將雜質集中,歷史最久的化學處理方法應該可以算是用明礬加入水中,水中雜質集合後,體積變大,便可用過濾法,將雜質去除。
㈧ TOC 的標準是多少,多少說明水質好
TOC 可較全面反映飲用水中有機微污染程度,是反映各個污染物中所含碳的量,其數量愈高,表明水受到的有機物污染愈多。美國、德國等歐美國家很早就把TOC納入常規檢測中。中國也在 2006 年將TOC 納入《生活飲用水衛生標准》(GB/T5749-2006)檢測項目中,限值為 5 mg/L。相比水中有機物成分分析存在實驗周期長、分析成本高、難以對突發性水污染事故作出及時有效地分析判斷的缺點,TOC 以其簡單、快捷、准確的特性作為綜合評價水質有機物污染指標,更具實際意義。
㈨ 水質檢測里說的 TOC 是什麼意思
水中TOC的監測
中文名稱:總有機碳
英文名稱:total
organic
carbon;TOC
我們
TOC
的生活離不開水,若相當多的有機污染物存在於水中,將直接影響水體的質量,對我們的生活和生產造成危害,因此水和廢水的監測,越來越引起人們的重視。其中水體中總有機碳(TOC)含量的檢測,日益引起關注。它是以碳含量表示水體中有機物質總量的綜合指標。TOC的測定一般採用燃燒法,此法能將水樣中有機物全部氧化,可以很直接地用來表示有機物的總量。因而它被作為評價水體中有機物污染程度的一項重要參考指標。
參考資料:http://ke..com/view/31497.htm#3
㈩ toc監測有什麼意義
TOC(Total Organic Carbon)總有機碳是反映在水質檢測中最重要的指標之一,它反映了水中有機碳物質的總量。
TOC可較全面反映飲用水中有機微污染程度
2000年12月8日,國家環境保護總局發布《環境監測儀器發展指南》,「有機污染物自動連續監測系統」被列為唯一的水質重點研究儀器,「TOC分析儀」被列為重點發展的儀器;國家科技部在「十五」期間國家高技術研究發展計劃(863計劃)的水質自動監測系統關鍵技術及集成設備研製中有TOC監測技術和設備項目;2002年,國家經貿委、國家稅務總局在23號公告中,把TOC分析儀列為鼓勵發展的環境監測設備。
2003年7月1日,國家計委、財政部、國家環保總局、國家經貿委令第31號《排污費徵收標准管理辦法》,化學需氧量(COD)、生化需氧量(BOD)、總有機碳(TOC)被並列為有機污染物,並說明在同一排放口中的COD、BOD、TOC只徵收一項,還規定了COD的污染當量值為1,BOD的污染當量值為0.5、TOC的污染當量值為0.49。
總有機碳(TOC)是水中所含有機物的總和,通過檢測TOC可以更加全面地評價水體受有機物質污染程度。研究了紫外光學吸收式TOC檢測技術,利用有機物和無機物的吸收光譜分界線的254nm的紫外光作為檢測光源,並應用鎖相放大技術提取微弱的一次諧波幅度信號,實現對TOC濃度的測量。結果表明:該項技術具有實時在線、不接觸測量、體積小等優點,可以廣泛應用到日常飲用水、工業用水TOC含量的檢測。