A. 介紹一種測定設備固有頻率的原理和方法
一、原理:
當一個部件(或零件)成型時,他本身發生的振動頻率是固定的,這一頻率就是固有頻率。如果在外力激勵下,1個具有固有頻率的部件,在某一頻率振動值突然增大,那就有可能產生了共振。
隨著產品精細化的發展,測量零部件或整台設備的固有頻率/共振頻率,越來越重要,如汽車行業的擋把、剎車片、座椅等等。要想避開共振,就要先測出各部件的固有頻率,然後想辦法錯開,這樣組裝起來運行,才能避免共振。
二、方法(敲擊法)
原理:適用於剛性物體,比如金屬零件。通過敲擊使被測體自由振動,然後分析固有頻率。
設置:敲擊法建議選擇「加速度2kHz」或「加速度6kHz」
工具:不同的被測體可能需要不同的錘子、錘頭一般優先選擇金屬的
敲擊方法:要干凈利落的單擊,錘頭碰到被測體後盡快離開,避免粘連。可以多次敲擊,然後挑幾段明顯、干凈的波形段做頻譜分析。
案例1:用S956測量金屬零件,頻譜圖如下:
(1)頻譜相關檢測方法擴展閱讀:
物體做自由振動時,其位移隨時間按正弦規律變化,又稱為簡諧振動。簡諧振動的振幅及初相位與振動的初始條件有關,振動的周期或頻率與初始條件無關,而與系統的固有特性有關,稱為固有頻率或者固有周期。
物體的頻率與它的硬度、質量、外形尺寸有關,當其發生形變時,彈力使其恢復。彈力主要與尺寸和硬度有關,質量影響其加速度。同樣外形時,硬度高的頻率高,質量大的頻率低。 一個系統的質量分布,內部的彈性以及其他的力學性質決定。
參考資料來源:
網路-固有頻率
B. 怎麼用頻譜儀測諧波
1、頻譜儀:測試寬度20Hz-26.5GHz
2、30dBm電台
會用到的設置:中心頻率、掃寬、幅度設置
測試參數
頻率選擇:433.125M
掃寬:1GHz
BM:1MHz
首先為30dBM衰減器做一個補償,用485介面和射頻出口進行連接。每發一次,頻譜儀上都會顯示當前測試頻點的功率。
C. 請問怎麼用gnuradio實現頻譜檢測
gnuradio裡面有一個實例,usrp_spectrum_sense.py 可以參照一下
D. 頻譜分析儀測量諧波時,都出現了哪些頻譜分量
無線電工程應用不僅要對射頻信號的諧波進行測量,有時還要確定音頻信號的總諧波失真(THD)。射頻信號可能是已調信號或連續波信號。這些信號可以由有漂移的壓控振盪器(VCO)或穩定的鎖相振盪器或合成器產生。現代頻譜分析儀能利用本文中所述方法來進行這些測量。本文還將討論如何斷定在分析設備或被測器件(DUT)中是否產生諧波、對不同類型信號的最佳測量方法以及對數平均、電壓單位和均方根值(ms)計算的利用。
我們這里所處理的所有信號均假定為周期信號,亦即它們的電壓隨時間的變化特性是重復的。傅里葉變換分析可以將任何重復信號表示為若干正弦波之和。按一定目的產生的頻率最低的正弦波稱為基頻信號。其它正弦波則稱為諧波信號。可以利用頻譜分析儀來測量基頻信號及其諧波信號的幅度。
諧波常常是人們不希望存在的。在無線電發射機中,它們可能幹擾射頻頻譜的其它用戶。例如,在外差接收機的本振(LO)中,諧波可能產生寄生信號。因此,通常應對它們進行監控並將其減小到最低限度。
利用頻譜分析儀對信號進行測量時,分析儀的電路也會引入其自身的某種失真。為了進行精確測量,用戶需要了解所測得的失真究竟是所考察的信號的一部分還是由於引人分析儀所引起的。
分析儀所產生的失真起因於某些微弱非線性特性(因為它沒有理想線性特性)。因此,可以用表明輸出電壓(O)與輸入電壓(I)之間的關系的泰勒(Taylor)級數來表示頻譜分析儀的信號處理特性:
V0=K1Vi+K2Vi2+K3V3i…………(1)
式中
V0=輸出電壓
Vi=輸入電壓
K1、K2和K3均為常數
利用上面的關系式,可以直接證明:輸入電壓加倍將引起Vi2項增加4倍(6dB),因而引起對正弦波的二次諧波響應增加4倍。類似類推,三階諧波失真隨輸入電平按三次方規律增加。有兩種方法即依靠技術指標或實驗能斷定分析儀是否對測出的失真有影響。
為了依據分析儀的諧波失真技術指標來判斷其影響,利用對失真量級的了解,將相對於分析儀輸入混頻器上的特定信號以伽給出的那些技術指標變換成針對選擇的輸入電平給出的dBC。圖1示出這個過程的圖解實例。從圖中可以看出,對頻譜分析儀只規定了二階失真和三階失真。而更高階次的失真通常可忽略不計。
與技術指標有關的數據點1:1和2:1鈄率進行予測
請注意,所關注的參數即三階諧波失真不同於已規定的參數三階互調失真(IMD3)。
在未被預選的頻段內,三階諧波失真應比微弱非線性的互調(IM)分量低9.5dB。這個關系可以由將對Vi的Acos(xt)+Bcos(yt)代人上面提到的(4)式,並將IM項如cos[(x-2y)t]與諧波項如cos(3xt)相比較來導出。若前端增益在基頻與三次諧波信號之間變化,則將使IM與所觀察的分析儀產生的諧波電平之間的關系有相同數量的變化。若三次諧波處在預選的頻段內,則它將比規定的IM分量低得多,因為預選濾波器使基頻信號不受前端非線性的影響。
從實驗上判斷分析儀是否會引人失真更加容易。僅僅增大輸入衰減,觀察失真電平是否發生變化即可。如發生了變化,則分析儀對測得的失真有影響。
盡管分析儀對測得的諧波的影響可以僅靠增大輸入衰減來降低,但這會降低信噪比(SNR),從而限制了分析儀測量低諧波電平的能力。不過,對接近本底雜訊的信號的測量可以通過對數平均方法來改善。
頻譜分析儀可以通過對測量結果取平均來降低測量結果的變化。取平均的一種形式是對分析儀屏幕的若干條數據跡線進行平均。另一種形式是視頻濾波。在完成取平均操作時,重要的是應知道取平均所在的幅度刻度。當視頻濾波或跡線平均是對在對數刻度上顯示的信號完成時,其結果是信號對數的平均。另一種方法是,取平均可以在線性(電壓)刻度上完成。某些分析儀能在功率(有效值電壓)刻度上取平均。基於快速傅里葉變換(FFT)的分析儀通常只能在功率刻度上取平均。
眾所周知,對於上述三種刻度,測得的純雜訊電平是不相同的。其中,對數刻度的雜訊被低估了2.51dB。無疑,對數刻度最適於測量低諧波電平,因為它能給出受本底雜訊影響最小的信號電平。因此,應當使用對數刻度來測量諧波電平,並根據需要減小視頻帶寬或增加取平均數。
現實中並不存在上面所討論的理想重復信號。與理想情況的兩大偏離是漂移和調制。來自未鎖定壓控振盪器(VCO)的漂移信號可能造成測量困難。漂移可能是如此之大,以致為了測量某個諧波而必須對可能的整個頻率范圍掃描,並利用峰值檢波器來測量諧波電平。對於頻率的這種高變化性,取平均可能引起誤差而不宜採用。此外,峰值檢波特別適於檢測雜訊,所以,當用這種掃描——峰值檢波方法進行測量時,分析儀的測量范圍會受到損害。盡管如此,這類解決方案仍十分有用而被用於某些頻譜分析儀中,如安捷倫科技公司的8560E系列,該系列頻譜分析儀配備有該公司的85672A寄生響應測量應用程序。
已調信號也是一個測量難題。當信號被調制時,其譜寬增加。因此,必須使用足夠寬的分辨帶寬來對信號中的所有能量起響應。使用寬的帶寬將增大本底雜訊,從而減小可利用的動態范圍。採用頻率調制(FM)、脈沖調制(PM)和普通數字調制格式的信號譜寬與諧波數成正比增大,因此,建議針對諧波數來增大分辨帶寬。
已調信號幾乎總是鎖相信號。因此,一種可能的解決方案是利用頻率計數器仔細測量基頻頻率。然後,利用頻譜分析儀的零頻率間隔分析功能在預計的諧波上尋找所有諧波信號。零頻率間隔分析(分析儀不進行掃描的工作方式)是最佳分析方式,因為它對所有掃描數據而不僅是峰值幅度進行平均。安捷倫科技公司的ESA系列頻譜分析儀(圖2)採用了零頻率間隔的計數和平均解決方案,並具有按比例變化的分辨帶寬。盡管這種解決方案不及掃描峰值檢波解決方案完善,但它能很快取得離散很小的結果,且適於用調制源進行工作。
(dBc)和計算出的總諧波失真(THD)結果的數據表
所有諧波的幅度之和是音頻產品中常用的一個品質因數。它也稱為總諧波失真(THD)。總諧波失真是以功率相加而不是以電壓相加為依據的。THD的定義為:
THD=100%×(nmaxn=2×E2n)0.5/Ef(2)
式中:
En=n次諧波電壓
Ef=基頻電壓
nmax=被考察的最高諧波次數(在許多情況下,nmax限定到10。在另一些情況下,nmax是不超過20kHz的最高次諧波,即音頻范圍的上限)
上面討論了可能進行平均的三種刻度即電壓、對數或功率。應當注意THD測量結果與這幾種刻度之間的關系。數據最好是按對數刻度進行採集和平均。THD的計算是按平方和的平方根(RSS)進行計算的,它與RMS或功率計算相關。但是,結果是由電壓算出的,而百分比指的則是電壓百分比。
總之,射頻和音頻諧波以及THD可以利用所述方法由頻譜分析儀進行測量。在某些頻諧分析儀中,為了加快測量速度,這些測量的實施已實現了自動化。
E. 如何使用頻譜分析儀
頻譜儀的參數設置背後有其依據,想學習如何使用頻譜儀,得從頻譜儀構造原理了解。簡單介紹一下我們技術團隊總結的檢波器選擇:
設置當前測量的檢波方式,同時將檢波方式應用於當前跡線。可選的檢波器類型包括:正峰值、負峰值、標准、抽樣、有效值平均或電壓平均。
1. 正峰值
對於跡線上的每一個點,正峰值檢波顯示對應時間間隔內的采樣數據中的最大值。
2. 負峰值
對於跡線上的每一個點,負峰值檢波顯示對應時間間隔內的采樣數據中的最小值。
3. 標准檢波
標准檢波(也稱正態檢波或rosenfell檢波)依次選取采樣數據段中的最大值和最小值顯示,即對於跡線上每一個奇數號點,顯示采樣數據的最小值,對於跡線上每一個偶數號點,顯示采樣數據的最大值。使用標准檢波可直觀地觀察信號的幅度變化范圍。
4. 抽樣檢波
對於跡線上的每一個點,抽樣檢波顯示對應時間間隔中心時間點對應的瞬態電平。抽樣檢波適用於雜訊或類似雜訊信號。
5. 有效值平均
對於每一個數據點,檢波器對相應時間間隔內的采樣數據做均方根計算(見公式(2-8)),顯示計算結果。有效值平均檢波可以抑制雜訊,觀察弱信號。
欲知更多,請找我們的公,眾-號。學習:安泰測試
F. 電磁頻譜監測的基本環節
咨詢記錄 · 回答於2021-12-30
G. 如何通過分析頻譜圖來檢測材料內部裂紋
常用的無損檢測方法有以下幾種:磁粉探傷、滲透探傷、超聲波探傷、射線檢測等。裂紋易於產生的應力集中部位,如葉片進水邊正面(壓力分布面)靠近上冠處、葉片出水邊正面的中部、葉片出水邊背面靠近上冠處、葉片與下環連接區等部位,由於透照布置比較困難,不能用射線透照法進行無損探傷。根據水輪機轉輪葉片表面比較粗糙、結構復雜和厚度變化大的特點,一般應採用滲透、磁粉、超聲波的方法進行無損檢測。 3.1 超聲波檢測 超聲波探傷方法對裂紋、未熔合等面積型缺陷的檢出率較高,適宜檢驗較大厚度的工件,但是對於鑄鋼、奧氏體不銹鋼材,由於粗大晶粒的晶界會反射聲波,在屏幕上出現大量的「草狀波」,容易與缺陷波混淆,影響檢測可靠性,限制了超聲波探傷方法在鑄鋼制水輪機轉輪葉片上無損檢測的應用。探測頻率越高,雜波就越顯著,為了減小晶界反射波的影響,我們採用了低頻探頭(2MHz)對鑄鋼轉輪進行超聲波探傷,發現反射信號以後再用高頻探頭(4MHz)進行定量,實踐證明這是可行的。 3.2 滲透探傷 滲透探傷方法簡單易行,顯示直觀,適合於大型和不規則工件的檢查和現場檢修檢查。但是,滲透探傷方法是利用滲透能力強的彩色滲透液滲入到裂紋等缺陷的縫隙中,再利用吸附能力強的白色顯像劑,將滲透液吸出來以顯示缺陷的,因此,只能檢查表面開口的缺陷。 3.3 磁粉探傷 磁粉探傷方法是利用工件磁化後,在材料中的不連續部位(包括缺陷造成的不連續性和結構、形狀、材質等原因造成的不連續性),磁力線會發生畸變,部分磁力線有可能逸出材料表面形成漏磁場,這時在工件上撒上磁粉,漏磁場就會吸附磁粉,形成與缺陷形狀相近的磁粉堆積,從而顯示缺陷。因此,磁粉探傷適用於鐵磁材料探傷,可以檢出表面和近表面缺陷,但是有些部位由於難以磁化而無法探傷。 第五種射線探傷法(RT),能比較直觀地對缺陷定性和定量,底片可長期保存。此方法已廣泛應用於鍋爐壓力容器壓力管道的檢驗。但對於微裂紋檢測,卻受到微裂紋本身取向及其寬度和深度的影響,加之透照、暗室處理等諸多環節因素,其過程處理稍有不當,結果將事倍功半,檢測靈敏度降低,甚至無法檢出。 3裂紋檢測的主要方法 3.1磁粉法 此法是利用高磁導率的磁粉細粒,在進入由於裂紋而引起的漏磁場時,就會被吸住留下,從而形成磁痕。由於漏磁場比裂紋寬,故積聚的磁粉用肉眼容易看出。其應用非常簡單,直接檢測表面裂紋,特點是顯示直觀、操作簡單,它是最常用的方法之一。但磁粉檢測也存在如下問題:無法檢測應力集中,而應力集中往往會引起疲勞裂紋。檢測時必須對被檢工件磁化,而形狀復雜的承載部件磁化時有一定的難度。為了清晰的顯示磁痕,檢測前,必須對被檢件表面進行表面處理,即清理檢測區域影響磁痕顯示的油漆和膩子等,這不僅大大的增加了檢測成本、檢測時間,而且打磨過程本身會使被檢工件形成新的缺陷。檢測時速度慢,無法對整個承載部件全面檢查,只能在目測的基礎上重點檢測一些部位,使得檢測存在一定的隱患。檢測結果受人為因素影響,降低了檢測的准確度及可靠性。檢測後為了不影響構件的性能,往往要求對檢測件進行退磁,這也增加了檢測成本。目前主要應用於汽車零部件等的探傷。 3.2滲透法 滲透法是利用毛細現象來進行探傷的方法。對於表面光滑而清潔的零部件,用一種有色或帶有熒光的、滲透性很強的液體,塗覆於待探零部件的表面。若表面有肉眼不能直接觀察的微裂紋,由於該液體的滲透性很強,它將沿著裂紋滲透到其根部。然後將表面的滲透液洗去,再塗上對比度較大的顯示液。放置片刻後,由於裂紋很窄,毛細現象作用顯著,原滲透到裂紋內的滲透液將上升到表面並擴散,在襯底上顯出較粗的線條,從而顯示出裂紋露於表面的形狀,因此,常稱為著色探傷。若滲透液採用的是帶熒光的液體,由毛細現象上升到表面的液體,則會在紫外燈照射下發出熒光,從而更能顯示出裂紋露於表面的形狀,故常常又將此時的滲透探傷直接稱為熒光探傷。此探傷方法也可用於金屬和非金屬表面探傷。其使用的探傷液劑有較大氣味,常有一定毒性。滲透法對表面開口裂紋檢測靈敏度很高,但對表面有塗層的工件不佳; 3.3超聲法 超聲波檢測採用高頻率、高定向聲波來測量材料的厚度、發現隱藏的內部裂紋,分析諸如金屬、塑料、復合材料、陶瓷、橡膠以及玻璃等材料的特性。超聲波儀器使用人耳聽力極限之外的頻率,向被檢測材料內發射短脈沖聲能,而後儀器監測和分析經過反射或透射的聲波信號來獲取檢測結果。 超聲導波方法可細分為接觸式檢測方法、非接觸式檢測方法,其作用機理為當超聲入射至被測工件時,產生反射波,根據反射波的時間及形狀來判斷工件的裂紋。這種檢測方法有時會產生盲區,發生阻塞現象,不能發現近距離裂紋。它常用於管道內壁的裂紋檢測,能較為精確的判斷出裂紋位置、周向開口裂紋長度、管壁減薄程度及裂紋截面積。 表面波對於表面上的復層油污不光潔等反應敏感,並被大量衰減。利用表面波測定裂紋深度有2種方法: (1)表面波入射到上表面開口裂紋時,會產生一個反射回波,其波高與裂紋深度有關,當裂紋深度較小時,波高隨裂紋深度增加而升高,這種方法只適用於測試深度較小的表面裂紋。當裂紋深度超過2倍波長時,測試誤差較大。 (2)利用表面波在裂紋開口處和尖端處產生的2個反射回波及回波前沿所對應的一起水平刻度差值來確定裂紋深度,此法適用於深度較大的裂紋。裂紋深度太小,裂紋表面過於粗糙會導致測試誤差增加。如果裂紋中充滿了油和水,誤差會更大。 相控陣檢測是一種特殊的超聲檢測技術。它使用復雜的多晶片陣列探頭及功能強大的軟體來操控高頻聲束,使其通過被檢測材料,並顯示保真(或幾何校正)的回波圖像。所生成的材料內部結構的圖像類似於醫用超聲波圖像。對諸如關鍵金屬結構、管道焊接、航空航天復合材料等的檢測,相控陣技術所提供的附加信息是非常有價值的。 目前激光超聲技術、超聲紅外熱成像技術等的發展為超聲技術在裂紋檢測方面的應用提供了有益的啟示。 3.4漏磁法 所謂漏磁檢測是指,鐵磁材料被磁化達到磁飽和後,其表面和近表面缺陷與空氣邊界出現磁導率躍變,裂紋及附近的磁阻會增加,裂紋附近的磁場會因此發生畸變而形成漏磁通,通過檢測漏磁場即可確定鐵磁性金屬結構上的應力和變形集中區,進而發現缺陷的非破壞檢測技術。從整個檢測過程來說,漏磁檢測可以分為以下幾個部份: 測試系統是基於金屬磁記憶效應原理檢測鐵磁管件裂紋,診斷評估其應力狀態和集中區域,為及時處理或更換管件提供科學依據。鐵磁體在形變和微弱地球磁場的作用下產生磁記憶現象的內部原因取決於鐵磁晶體的微觀結構特點,是由於磁彈性作用的結果。 漏磁場檢測方法是由感測器獲取信號,計算機判斷有無缺陷,可以從根本上解決人為因素的影響,具有較高的檢測可靠性,也易於實現自動化,檢測效率很高。在一定條件下,漏磁通信號的峰值和表面裂紋的深度有很好的線性關系。因此這種方法不僅可以檢測裂紋的方位,還可對裂紋的危險程度作進一步判斷,這是實現非破壞評價的基礎。但這種檢測方法也有一定的局限性。和磁粉檢測一樣它只適合於鐵磁材料的表面檢測,而且檢測靈敏度較低,檢測得到的信號相對簡單,只能給出裂紋的初步量化,不適合檢測形狀復雜的試件 實際工業生產中,漏磁檢驗方法被大量應用於鋼鈹、鋼棒、鋼管的自動化檢測。特別值得指出的是,漏磁場檢測是地埋輸油管線等最主要的檢測方法,採用漏磁技術的「管道豬」可在地下管道中爬行300km。在管道的檢查中,在厚度高達30mm的壁厚范圍內,可同時檢測內外壁缺陷。該技術也應用於火炮、飛機、導彈、彈葯、鐵道機車、石油等應用領域。 3.5紅外線法 紅外檢測常用於高溫或低溫承壓設備內部保溫層狀態的檢測與評價,而熱彈性紅外檢測技術適用於各種特種設備高應力集中和疲勞損傷部位的檢測;許多高溫特種設備內部有一層珍珠岩保溫材料,若其出現裂紋或部分脫落,殼體會出現超溫運行,引起材料的熱損傷,採用常規紅外熱成像技術即可發現該局部超溫現象。特種設備上的高應力集中部位在大量疲勞載荷的作用下,出現的早期疲勞損傷會顯示在熱斑跡圖像上。紅外無損檢測技術是一種非接觸式的檢測技術,遠距離空間解析度高、安全可靠對人體無害、靈敏度高、檢測范圍廣、速度快,對被測物體沒有任何影響。 3.6渦流法 渦流法檢測是利用電磁感應原理實現的。電渦流感測器的線圈作為振盪電路中諧振迴路的一個電感元件,加電工作時在線圈裡會產生高頻振盪電流。而感測器接近試件表面時,線圈周圍的高頻磁場在金屬表面和內層感應出高頻電流,即渦流。而渦流產生的損耗及反磁通又通過耦合反射到感測器的線圈中去,當感測器在試件表面移動時遇到裂紋處或裂紋深度寬度有變化時,渦流磁場對線圈的反射作用不同,線圈等效阻抗電感量也不同,進而影響迴路的諧振頻率和幅頻特性,分析處理這種變化就可判斷試件有無裂紋或裂紋深淺寬窄。 渦流技術對表面開口裂紋很靈敏,可以在不去除表面塗層的情況下方便可靠地檢測出金屬材料的表面和近表面裂紋。其特點是檢測速度快、裂紋靈敏度高、適用方便,缺點是不能准確區分裂紋性質、受干擾因素多、不確定性大。它可分為單頻和多頻渦流檢測技術,單頻渦流檢測只能顯示渦流信號的幅值變化,不能抑制,不能區別提離、抖動等干擾信號,定性、定量均有一定困難。多頻渦流檢測技術的發展對上述問題做了較好的解決,多頻渦流檢測就是用幾種不同頻率同時激勵探頭,具有阻抗平面圖形相位顯示和紋幅值顯示功能。根據不同頻率激勵信號所取得的測量結果,通過實時矢量相加減和處理,抑制不需要的干擾信號,具有去偽存真的功能,阻抗分析能在檢測中分離出探頭擺動信號和提離信號等的干擾。常規渦流方法只適用於檢測表面光滑母材上的裂紋,對焊縫上的裂紋檢測會因焊縫在高溫熔合時產生的鐵磁性變化和表面高低不平而出現雜亂無序的磁干擾而無法實施。只有基於復平面分析的金屬材料焊縫電磁渦流檢測技術,採用特殊的點式探頭(電流擾動磁敏探頭)檢測焊縫的表面裂紋才可以允許焊縫表面較為粗糙或帶有一定厚度的防腐層。 脈沖渦流檢測方法是一種新近發展的技術。按照傅立葉變換,一個脈沖信號可以展開為無限多個諧波分量之和,因而,具有較寬的頻譜。當用脈沖電流作激勵信號進行渦流檢測試驗時,蘊含著豐富的被測信息。而且,激勵的脈沖特性使渦流在金屬中存在一個很高的峰值,易於觀察和測量;能夠進行傳統渦流檢測所不能進行的瞬態分析。 目前工程上能檢測出在0.3~0.4mm 塗層下最小裂紋深度為0.5~2mm 的裂紋。
H. 使用頻譜儀測試相位雜訊的操作步驟
使用頻譜儀測試相位雜訊測量不需要按步驟完成,只需要注意以下事項:
應盡量選用本底雜訊低的分析儀,因為所測量的相位雜訊下限取決於分析儀的本底雜訊。分析儀作為一種超外差的分析設備,最終的測量結果是外部輸入信號同本機內部本振信號疊加的結果,如果外部輸入信號的相位雜訊指標高於分析儀本身的指標,測量的結果實際是分析儀的相位雜訊。
只有外部信號的相位雜訊指標要比分析儀指標差時(差3dB以上),測量的結果才是正確的。直接頻譜法不適合於更低噪底的高性能晶振或者直接式頻綜的測試。
不論是使用分析儀的相位雜訊選件還是頻譜分析功能下手動測量,分析儀均不能把調幅雜訊和調頻雜訊區分開來,所以測量結果是調幅和調頻雜訊的總和。為了精確測量相位雜訊,一般要求被測信號的調幅雜訊要比調頻雜訊小得多(小10dB以上),測量結果基本為相位雜訊。
動態范圍代表了分析儀的測量范圍,其下限取決於分析儀自身靈敏度和相位雜訊,其上限取決於1dB壓縮點。在偏離載波較近處能達到的動態范圍的下限主要取決於分析儀自身的相位雜訊,在偏離載波較遠處分析儀自身的相位雜訊很低,動態范圍的下限主要取決於分析儀的靈敏度。
由於分析儀無載波抑制功能,測量的動態范圍受限,尤其是測量偏離載波較遠處的相噪時,需要判斷測量是否受限於分析儀的動態范圍,以免測量結果產生錯誤。
信號的頻譜漂移會給相噪量結果帶來很大的誤差,甚至無法測量。被測設備和測量儀器在測量進行前都需要充分預熱使其達到穩定的工作狀態,分析儀的預熱時間通常要求大於10分鍾。
儀器連接要牢固,盡量避免振動,測量時最好把儀器放置在能吸收振動的防振墊上,減少或者消除振顫雜訊。為了減少外界環境對測量結果的影響,有條件的地方最好在屏蔽室內測量。
(8)頻譜相關檢測方法擴展閱讀:
常用的相位雜訊測量方法主要有直接頻譜分析儀法、相位檢波器法、鑒頻器法和雙通道互相關法等。應該指出,在不同場合對相位雜訊的要求不同,測量方法也有所不同。
典型的相位雜訊測量可以由專業相位雜訊測試系統完成,但這些專業設備的價格相當昂貴,而頻譜分析儀或者新一代的儀是相對常用的儀器,對一些相位雜訊指標要求不是很嚴格的場合,可以用信號/頻譜分析儀進行相位雜訊指標的測量。
通過譜分析進行相位雜訊測量的方法稱為直接頻譜分析儀法。該方法不僅能在分析儀上直接顯示相位雜訊的測量值,而且還可以同時准確地顯示是否有其他離散信號,具有簡單、靈活易用的特點。被測信號可以直接加到分析儀的射頻輸入口後,由分析儀直接進行分析測量;
也可以現將被測信號與相位雜訊指標更好的參考信號混頻後,得到一合適中頻信號,再由分析儀對這一中頻信號進行分析。
I. 頻譜儀怎麼測頻率
簡單的頻譜儀500mhz的,只要接上電源,接上天線,效准中心頻率,調整帶寬,就能清晰的看到附近高頻信號了
跟使用其他儀器一樣的方法與注意事項。
就測輸出信號的頻率。
最好不要直接測晶振,尤其不要接晶振與輸入端相接的那端,以免干擾振湯。
最少要使用 10X 衰減的探棒。